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Abstract—It is well known that the Analytic Hierarchy 
Process (AHP) of Saaty is one of the most powerful 
approach for decision aid in solving of a multi criteria 
decision making (MCDM) problem. Several computing 
weights methods in AHP are analyzed. Based on least 
square method, three methods for calculating weights using 
the least the sum of squares of error criterion, the least the 
sum of error absolute value criterion and the least the error 
absolute value criterion are proposed. New least squares 
method is translated into linear system and Minimax 
method and absolute deviation method are translated into 
linear programming. New proposed methods can apply to 
the ranking estimation in incomplete AHP, which is very 
important to estimate incomplete comparisons data to have 
alternative’s weights. The computation methods and results 
are given through numerical examples. The new methods 
have fast convergence and smaller computational 
complexity.

Index Terms— analytic hierarchy process (AHP) , weights, 
error, linear programming, incomplete matrices 

I.  INTRODUCTION  

The Analytic Hierarchy Process (AHP) is a multi-
criteria decision-making approach and was introduced by 
Saaty (1977 and 1994). The AHP has attracted the 
interest of many researchers mainly due to the nice 
mathematical properties of the method and the fact that 
the required input data are rather easy to obtain. The AHP 
is a decision support tool which can be used to solve 
complex decision problems. It uses a multi-level 
hierarchical structure of objectives, criteria, subcriteria, 
and alternatives. The pertinent data are derived by using a 
set of pairwise comparisons. These comparisons are used 
to obtain the weights of importance of the decision 
criteria, and the relative performance measures of the 
alternatives in terms of each individual decision criterion. 
If the comparisons are not perfectly consistent, then it 
provides a mechanism for improving consistency. Some 
of the industrial engineering applications of the AHP 
include its use in integrated manufacturing (Putrus, 1991), 
in the evaluation of technology investment decisions 

(Boucher and McStravic, 1991), in flexible 
manufacturing systems (Wabalickis, 1988), layout design 
(Cambron and Evans, 1991), and also in other 
engineering problems (Wang and Raz, 1991). The most 
common techniques for an estimating relative priority 
weights is originally proposed eigenvector method. 
Recently, a many alternative approaches developed from 
the least square method to goal programming are found in 
the many numbers of references. Based on the least 
deviations priority method (LDM) given by Chen 
Baoqian (1990), Wang Yingming(1993) proposed a new 
class of generalized least deviations priority methods 
(GLDM) of comparison matrix in analytic hierarchy 
process and also gives a convergent iterative algorithm 
and a simulation example. Zhang Zhimin (1996 and 1997) 
discuss some properties of Least deviations method in 
AHP and investigated the basic properties of MLSM. 
Based on least square method, three methods for 
calculating weights using the least the sum of squares of 
error criterion, the least the sum of error absolute value 
criterion and the least the error absolute value criterion 
are proposed. New proposed methods can apply to the 
ranking estimation in incomplete AHP. 

II.  SEVERAL USUAL CALCULATING METHODS TO AHP 
PROBLEM 

There are numerous methodology presented in many 
publications for deriving priority weights in the AHP. 
Practically, the most common approach is the originally 
proposes eigenvector method. 

A.  Sum Method 

Let )( ijaA = a is n x n judgement matrix. Firstly we 

normalize the column vectors in the judging matrix, then 

add the normalized matrix in rows. The result should be 

normalized again to get the eigenvector:  
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B.  Geometric Mean Method 
The geometric mean method is defined by 
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The geometric mean solution can be derived as 

the solution of following optimization problem: 

.,,2,1,0,1..

)]/ln([lnmin

1

1 1

2

niwwts

wwa

i

n

i
i

n

i

n

j
jiij

L=>=

−

∑

∑∑

=

= =
 

C.  Eigenvector Method 
It consists in taking as weights the components of the 

(right) eigenvector of the matrix A. In our notation the 

eigenvector is defined by 

WAW maxλ=                            （3） 

Where maxλ  is the largest eigenvalue of A. It must be 
noted that this eigenvector solution is normalized 

additively, i. e. . 1
1
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D.  Least Square Method 
Construct generalized deviations function 
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Obviously, the reasonable weight vector 

 should be induced by 

minimizing . This is rather difficult 

to solve because the objective function is nonlinear and 

usually nonconvex, moreover, no unique solution exists 

and the solutions are not easily computable. 

T
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III.  NEW METHODS 

A.  The ideas of new methods 

In least square method, the error is . 

The expression  is nonlinear, thus the least 
square problem is nonlinear programming. If the error is 

, the expression is linear. We can not only 

use the sum of squares of error as objective function, but 
also use the sum of error absolute value and the error 
absolute value as objective function. Three methods are 
given as follows. 
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 B.  New Least Squares method 
Using sum of squares of error as objective function, 

the model is 
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Thus, we can construct Lagrange function  
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Where is the Lagrange multiplier. 
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Add , we have linear system about 1
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1+n  equations. Solve the linear system, we obtain 
 and nwww ,,, 21 L λ . 

C.  Minimax method 
Using maximum error absolute value as objective 

function, the model is 
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Let ijijji
wwav −=

≤≤ 1,1
max , model（5） is 

translated into 
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This is a linear programming.  can 
be get by simplex method [13]. 
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D.  Absolute Deviation Method 
Using the sum of error absolute value as objective 

function, the model is 
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This is a linear programming also.  

IV.  INCOMPLETE AHP 

However, in some real problems, it is impossible or 
difficult to have comparisons of some pairs of 
alternatives. Let us call such cases incomplete AHP. It is 

very important to estimate incomplete comparisons data 
to have alternative’s weights. The typical methods in 
incomplete AHP are Two-Stage method [14-15] and 
Harker method[16]. In Harker method, however, weights 
are calculated without estimate unknown comparisons. In 
Two-Stage method, estimation for unknown comparisons 
is carried out, but the priority of known comparisons and 
estimated comparisons are treated with equal importance. 
Two-Stage method presents a method for estimating a 
missing datum of an incomplete matrix. 

A.  Harker's Method 
Harker method is based on the following idea. If 

-component is missing, put the artificial value ),( ji

j

i
w

w  into the vacant component to construct a 

complete reciprocal matrix . Then consider the 
eigensystem problem: 

)(wA

                   wwwA λ=)( . 
Formally, Harker's method is written as follows. 

Given incomplete matrix , define the 

corresponding derived reciprocal matrix 
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where  denotes the number of missing components in 
the i -th row. 

im

The Harker’s algorithms can be described as follows: 
Step 1 Construct a derived reciprocal matrix A~  of 

. )(xA
Step 2 Calculate the largest eigenvalue max

~λ  of A~  
and its associate eigenvector. 

Step 3 Normalize the eigenvector into a priority 
weight vector. 

B.  Logarithmic Least Squares method 
Using sum of logarithmic squares of error as 

objective function, the model is 
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Let ijij ar ln= , β−= ii wx ln , the model（9） is 
translated into 
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By solving the above minimization problem, the 
weight vector W is described as follows vertical equation: 
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C.  New Least Squares Method for Incomplete Matrices 
We can apply proposed methods to the ranking 

estimation Incomplete AHP.  
Using sum of squares of error as objective function, 

the model is 
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Add , we have linear system about 1
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D.  MinimaxMethod for Incomplete Matrices 
Using maximum error absolute value as objective 

function, the model is 
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This is a linear programming.  can 
be get by simplex method. 
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E.  Absolute Deviation Method for Incomplete Matrices 
Using the sum of error absolute value as objective 

function, the model is 
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This is a linear programming also.  

V.  NUMERICAL EXAMPLES 

A..  Complete Matrice 
Suppose that following is the judgement matrix[12]： 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

113
112

1
55712
3341

5
1

3
1

5
1

3
1

3
1

2
1

7
1

4
1

2
1

A  

a. Using new Least Squares method, we have 
equation as follows: 
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     The tables 1 presents the of the simulation’s output. 
b. Using Minimax method, we have linear 

programming as follows: 
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To solve this linear programming, a software 

optimization of Matlab is utilized. Table 1 illustrate the 
comparison of methods. 

c. Using absolute deviation method, we have linear 
programming as follows: 

545413131212min vuvuvu ++++++ L  
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Table 1 illustrate the comparison of methods. 

TABLE I.  COMPARISON OF SIX SOLUTION METHODS TO THE ANALYTIC 
HIERARCHY PROCESS 

Methods 
（ ） 521 ,,, www L

Sum method （0.2623,0.4744,0.0545,0.0985,0.1103）
Geometric mean 

method （0.2636,0.4773,0.0531,0.0988,0.1072）

Eigenvector method （0.2636,0.4758,0.0538,0.0981,0.1087）
New least squares 

method （0.2584,0.4859,0.0628,0.0957,0.0973）

Minimax method （0.2653,0.4653,0.0571,0.1061,0.1061）
Absolute deviation 

method （0.2703,0.4730,0.0676,0.0946,0.0946）

We have demonstrated the use of new least squares 
method, Minimax method and absolute deviation method 
for deriving the priority weights assessment in the AHP 
method as another alternative for the originally technique 
of eigenvector method of Saaty. The six solution 
approaches to the AHP problem are nearer. Sum method 
and geometric mean method are easy to handle in 
calculation, but new least squares method, Minimax 
method and absolute deviation method with results more 
reasonable are more reasonable. 

B.  Incomplete Matrice 
Suppose that following is the incomplete matrix： 
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Where * is a missing entry. 
a. Harker's Method 
The derived reciprocal matrix A~  is 
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From A~ , we calculate the principal eigenvalue 
7459.5max =λ , and principal  eigen vector 

=(0.2130, 0.1181, 0.0591, 0.2534, 0.3564). w
b. Logarithmic Least Squares method 
The vertical equation is described as follows: 
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The vector  weight is =(0.2342, 0.1627, 0.0899, 
0.2362, 0.2823). 

w

The tables 2 presents the of the simulation’s output. 
c. Using new Least Squares method, we have equation 

as follows: 
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    The tables 2 presents the of the simulation’s output. 
d. Using Minimax method, we have linear 

programming as follows: 

1..
min

521 =+++ wwwts
v

L
 

03 21 ≤−+− vww  

03 21 ≤−− vww  

06 31 ≤−+− vww  

06 31 ≤−− vww  
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054
1

1 ≤−+− vww   

054
1

1 ≤−− vww  

0213
1 ≤−− vww  

0213
1 ≤−+− vww  

02 32 ≤−+− vww  

02 32 ≤−− vww  

042 ≤−+− vww   

042 ≤−− vww  

0316
1 ≤−− vww   

0316
1 ≤−+− vww  

0322
1 ≤−− vww  

0322
1 ≤−+− vww  

042
1

3 ≤−+− vww   

042
1

3 ≤−− vww  

042 ≤−− vww   

042 ≤−+− vww  

02 43 ≤−− vww   

02 43 ≤−+− vww  

02 54 ≤−+− vww   

02 54 ≤−− vww  

04 51 ≤−− vww   

04 51 ≤−+− vww  

0542
1 ≤−− vww   

0542
1 ≤−+− vww  

niwv i ,,2,1,0,0 L=≥≥ . 
Table 2 illustrates the comparison of methods. 
e. Using absolute deviation method, we have linear 

programming as follows: 

∑∑
= =

+
n

i

n

j
ijijij vu

1 1

)(min δ  

1.. 521 =+++ wwwts L  

03 211212 =−+− wwvu  

06 311313 =−+− wwvu  

054
1

11515 =−+− wwvu  

013
1

22121 =−+− wwvu  

02 322323 =−+− wwvu  

0422424 =−+− wwvu  

016
1

33131 =−+− wwvu  

022
1

33232 =−+− wwvu  

042
1

33434 =−+− wwvu  

0244242 =−+− wwvu  

02 344343 =−+− wwvu  

02 544545 =−+− wwvu  

04 155151 =−+− wwvu  

042
1

55454 =−+− wwvu  

niwi ,,2,1,0 L=≥  

nj
nivu ijij

,,2,1
;,,2,1,0,0

L

L

=

=≥≥
. 

Table 2 illustrates the comparison of methods.  

TABLE II. COMPARISON OF THREE SOLUTION METHODS TO INCOMPLETE 
MATRICES 

Methods 
（ ） 521 ,,, www L

Harker's Method (0.2130,0.1181,0.0591,0.2534,0.3564)
Logarithmic Least 
Squares method 

(0.2342,0.1627,0.0899,0.2362,0.2823)

New least squares 
method 

(0.1339,0.1322,0.0534,0.3634,0.3171)

Minimax method (0.1368,0.1263,0.0632,0.3684,0.3053)
Absolute deviation 

method 
(0.1714,0.057,0.0286,0.0571,0.6857)

VI.  CONCLUSIONS 

The traditional Least square method is a nonlinear 
programming. New least squares method is translated into 
linear system and Minimax method and absolute 
deviation method are translated into linear programming. 
It is shown that three methods proposed in this paper have 
fast convergence and smaller computational complexity. 
New proposed methods can also apply to the ranking 
estimation in incomplete AHP. It is very important to 
estimate incomplete comparisons data to have 
alternative’s weights. 
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