
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9

Available online at w
journal homepage: www.elsevier .com/locate/cose

Phishing detection and impersonated entity
discovery using Conditional Random Field and
Latent Dirichlet Allocation
Venkatesh Ramanathan*, Harry Wechsler

Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
a r t i c l e i n f o

Article history:

Received 8 September 2011

Received in revised form

27 October 2012

Accepted 3 December 2012

Keywords:

Boosting

Conditional Random Field

Identity theft

Impersonated entity discovery

Latent Dirichlet Allocation

Machine learning

Named entity

Natural language processing

Phishing
Abbreviations: AUC, Area Under Receiver
HTML, Hyper Text Markup Language; IP, Int
NER, Named Entity Recognition; POS, Part o
Uniform Resource Locator.
* Corresponding author.
E-mail addresses: vramanat@gmu.edu (V

0167-4048/$ e see front matter ª 2012 Elsev
http://dx.doi.org/10.1016/j.cose.2012.12.002
a b s t r a c t

Phishing is an attempt to steal users’ personal and financial information such as passwords,

social security and credit card numbers, via electronic communication such as e-mail and

other messaging services. Attackers pretend to be from a legitimate organization and direct

users to a fake website that resembles a legitimate website, which is then used to collect

users’ personal information. In this paper, we propose a novel methodology to detect

phishing attacks and to discover the entity/organization that the attackers impersonate

during phishing attacks. The proposed multi-stage methodology employs natural language

processing andmachine learning. Themethodology first discovers (i) named entities, which

includes names of people, organizations, and locations; and (ii) hidden topics, using (a)

Conditional Random Field (CRF) and (b) Latent Dirichlet Allocation (LDA) operating on both

phishing and non-phishing data. Utilizing topics and named entities as features, the next

stage classifies each message as phishing or non-phishing using AdaBoost. For messages

classified as phishing, the final stage discovers the impersonated entity using CRF. Experi-

mental results show that the phishing classifier detects phishing attacks with no misclas-

sification when the proportion of phishing emails is less than 20%. The F-measure obtained

was 100%. Our approach also discovers the impersonated entity from messages that are

classified as phishing, with a discovery rate of 88.1%. The automatic discovery of imper-

sonated entity from phishing helps the legitimate organization to take down the offending

phishing site. This protects their users from falling for phishing attacks, which in turn leads

to satisfied customers. Automatic discovery of an impersonated entity also helps email

service providers to collaborate with each other to exchange attack information and protect

their customers.

ª 2012 Elsevier Ltd. All rights reserved.
Operating Characteristic; CRF, Conditional Random Field; EM, Expectation Maximization;
ernet Protocol; LDA, Latent Dirichlet Allocation; MIME, Multipart Internet Mail Extension;
f Speech; ROC, Receiver Operating Characteristic; TDF, Term Document Frequency; URL,

. Ramanathan), wechsler@gmu.edu (H. Wechsler).
ier Ltd. All rights reserved.

mailto:vramanat@gmu.edu
mailto:wechsler@gmu.edu
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9124

1. Introduction automatically detect phishing messages and discover the
Stealing a person’s identity is one of the most profitable

crimes committed by criminals. Among 1.3 million

complaints received by the Federal Trade Commission in 2009,

identity theft ranked first and accounted for 21% of the

complaints costing consumers over 1.7 billion US dollars

(National Data, 2009). Identity theft has been around for many

years while the means of committing it has changed with

technology. The traditional way criminals steal a person’s

identity is by killing the individual. Another way to steal

identity is using phone scams, wherein, criminals inform the

person that they have won a sweepstake, and convince the

user to reveal some personal information to claim the money.

The more popular method of identity theft that is prevalent

even today is called Dumpster Diving. When people discard

letters, financial records, and other personal information in

the garbage dump without shredding, criminals scavenge

those dumps looking for sensitive information such as credit

card, bank account and social security numbers and use that

information to commit crimes.

With the advent of internet, the most popular way to steal

identity is through “phishing”. Like in traditional fishing

where fishermen trolls the river in a boat to catch fish, in

“phishing”, attackers trolls the internet using email message

with convincing content as baits to steal users personal

information. The email directs the user via a hyperlink to

a website owned by criminals that looks very similar to

a legitimate website. The user will then be asked to enter

personal and financial information either to update existing

information or to purchase a product. In reality this lets the

criminal to have access to that valuable information which

they then use to commit fraud or to sell it to a bidder.

Attackers can also trick users into downloading malicious

codes or malware after they click on a link embedded in the e-

mail. This is a useful tool in crimes like economic espionage

where sensitive internal communications can be accessed

and trade secrets stolen. Phishing has been around since 1996

but has become more common and more sophisticated.

Recent attack on the Gmail system, that stole email accounts

of government officials, contractors and military personnel

(PC World, 2011) is evidence to the sophistication of such

attacks.

Considerable research has been done toward protecting

users from phishing attacks. They include firewalls, black-

listing certain domains and internet protocol (IP) addresses,

spam filtering techniques, fake website detection, client side

toolbars and user education. Each of these existing techniques

has some advantages and some disadvantages. For example,

the blacklist approach is harder to maintain with every

expanding IP address/domain space, the filtering techniques

have high misclassification, while users do not pay careful

attention to client side toolbar warnings thus falling for

phishing attacks.

The goal of our novel approach is not only to detect

phishing attack but also the organization that attacker is

impersonating. Toward that goal, we have developed a robust

multi-stage content driven methodology, which can be

implemented as a filter on email servers and web servers, to
impersonated entity in those messages. The methodology

combines the power of natural language processing and

machine learning to build the content filter. The methodology

employs named entity extraction and topic discovery

methods for feature extraction. Named entities are extracted

using Conditional Random Field (CRF) and topics are discov-

ered using Latent Dirichlet Allocation (LDA). A robust classifier

is built by employing topic distribution probabilities and

named entities as features and the classification method,

AdaBoost. Once the content is classified as phishing, the

methodology employs CRF to identity the impersonated

entity, i.e., the organization that this phishing attack is

impersonating.

The novel contribution of this paper is multi-stage meth-

odology that detects not only phishing but also discovers the

impersonated entity from such attacks.While the detection of

phishing helps to protect users from falling to identity theft,

the automatic discovery of impersonated organization helps

legitimate organization to shut down the fake website before

their users potentially fall for one. This keeps legitimate

company’s customers safe and secure which in turn benefits

the company having long lasting customers. It also helps

companies to have partnership with other companies to

mutually exchange phishing campaign targeted toward each

other, which in turn protects respective customers. The

combined application of CRF and LDA methods to detect

phishing attacks and to discover the impersonated entity is

also a novelty of this research. Topic discovery helps to

discover impersonated entity and the discovery of imper-

sonated entity helps to discover better topics. This paper is

organized as follows.We first review state of the art protection

techniques and present their advantages and disadvantages

(see section 2). The research methodology is presented in

section 3. The multi-stage implementation architecture is

presented in section 4. Experiments and results obtained from

the openly available dataset are presented in section 5.

Section 6 presents a brief overview of autonomic computing

while Section 7 proposes a framework for making our devel-

oped methodology autonomic and its computational effi-

ciency. Section 8 presents a discussion of the developed

methodology and how it can be extended for future research.

This paper concludes in section 9. Methods employed by the

research methodology namely, CRF, LDA and AdaBoost are

presented in appendix A, B and C respectively.

2. Background

The primarymotivation for attackers using phishing is to steal

identity from users. Several techniques have been developed

to protect users from phishing attacks. A review of the state-

of-the-art tools is presented below.

The protection at network (router and firewall) level is

typically achieved by blocking a range of IP addresses or a set

of domains from entering the network. Firewall protects

organization’s network by blocking traffic directed to certain

ports and IP addresses from suspicious ports and IP addresses.

A firewall may have rules such as ‘block all traffic to any port

http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9 125

greater than 1024’, ‘block all traffic from any IP address that

matches 165.25.x.x’, etc. DNSBL (2011) is a database widely

used for blocking at IP address level by several internet service

providers. This list is updated with new IP addresses, after

observing for a period of time abusive behavior. Email

providers keep this list updated at the firewall level periodi-

cally. When a Simple Mail Transfer Protocol (SMTP) connec-

tion request comes from one of these blacklisted IP addresses,

connection is refused, thus preventing phishing and spam

emails from these IP addresses from reaching the end user.

DNSBL (2011) is employed for sender level blocking. Firewall

rule to block phishing is a reactive approach (instead of

a proactive approach). Also, attackers evade this protection

technique by hijacking legitimate user’s PC and constantly

moving from one IP to another IP address. SURBL (2011) and

URIBL (2011) provide a list of domains, categorized as phishing

or spam, extracted frommessage bodies. The domain blacklist

is created by setting up spam traps and honeypots at several

locations and performing content level analysis of messages.

Organizations block or spam folder the email message if

a SMTP connection request comes from these blacklisted

domains or themessage body contains these domains. Similar

to DNSBL (2011), SURBL (2011) and URIBL (2011) list based

blocking is a reactive approach, as list is updated after

observing abusive behavior. Snort (2011) is open source

intrusion detection system software that is employed at

network level. Snort (2011) examines network packet headers

and performs anomaly detection. If a large number of

connection requests come from certain IP addresses to large

number of different ports, Snort can have rule in place to block

traffic from them. These rules are threshold driven which

require careful consideration. Also, these rules to enforce

protection must constantly be updated and require manual

intervention. PhishTank (2012) provides a list of confirmed

phishing sites. Email providers block phishing emails if the

message body contains PhishTank (2012) URLs in them.

PhishTank (2012) contains only a partial list of phishing URLs.

Moreover, majority of phishing sites (approximately 60%) are

short-lived (lasts less than 2 h), according to APWG (2012).

Thus, blocking phishing emails using this approach is not

fully effective. Several other network level approaches have

been developed for spam detection. This includes (i) behav-

ioral blacklisting approach that classifies email message

based on spatial and temporal traffic pattern of the email

(Feamster, 2008); (ii) network flow approach that identifies

spam message based on set of IP packets that passes an

observation point in the network during a certain time

interval and having a certain set of common properties

(Sperotto et al., 2009); and, (iii) geographic coordinate based

approach that identifies spam based on region that IP address

belong to (Cortez et al., 2010). All the above network level

approaches are targeted for email spam detection instead of

phishing detection.

Phishing is also prevented by enforcing authentication

prior to using the system. There are two levels of authenti-

cation, user level and domain level. Typically, the email

service provider authenticates user, before he or she sends an

email (user level). The domain level authentication is per-

formed in the providereprovider communication (one mail

server to the other mail server). The user level authentication
is performed using password as credentials. The password

authentication can easily be cracked as evidenced by surge in

phishing attacks. Microsoft has developed a technology called

Sender ID (2006) while Yahoo has a similar technology called

DomainKey (2006). Both these techniques perform domain

level authentication. In order for these domain level tech-

niques to work, providers on the sender and the recipient side

must implement the same technology. Due to lack of agree-

ment between email providers, this technology is not that

prevalent.

Server side filters and classifiers typically extract features

from the email and train a classifier to classify phishing email

vs. good email. SpamAssassin (2011) is awidely used host level

filter. This is a rule-based filter that requires constantly

changing for the rule to be effective. Attackers figure out the

rule being employed and bypass these filters by appropriately

constructing the email. PILFER (Fette et al., 2007) is another

email classifier that is trained using 10 features extracted from

email data. Both these filters have highmisclassification rates.

phishGILLNET (Ramanathan and Wechsler, 2012), is a robust

content classifier, developed by the authors, that employs

topic modeling method, Probabilistic Latent Semantic Anal-

ysis (PLSA), AdaBoost and Co-Training. phishGILLNET

(Ramanathan andWechsler, 2012) outperformed state-of-the-

art phishing classifiers and yielded perfect classification on

public corpus email datasets when co-training algorithm was

employed. It also has the additional benefit of handling

unlabeled examples thus saving time and labor involved in

human annotation. This paper is an improvement over

phishGILLNET (Ramanathan and Wechsler, 2012) in the sense

that it employs topics modeling method LDA (as compared to

PLSA) and CRF to not only detect phishing attacks but also

discover impersonated entity.

Tools that operate on the client side (i.e., user’s machine)

include user profile filters and browser based toolbars.

SpoofGuard (2004), CatchingPhish (Cordero and Blain, 2006),

CallingID (2011), CloudMark (2011), NetCraft (2011), FirePhish

(2006), eBay toolbar (2007) and IE Phishing Filter (2011) are

some of the client side tools. User profile filters observe user’s

website visiting pattern and maintain a list of URLs in local

database. When a user visit’s a URL that is different from his/

her website visits, it warns the user with a dialog. Toolbars are

built and trained using the typical pattern of phishing website

URLs. Some patterns of phishing website include IP address in

the URL, long URLs, many dots in the URL, etc. This technique

is very susceptible to technology changes (such as IPV4 vs.

IPV6, URL shortening services) and hence it is not robust.

Moreover, most users ignore the warnings displayed by the

dialogs. Client side tools are helpful for users who pay careful

attention to warnings and act accordingly. It also helps when

the tools are part of a provider who does not have a robust

server side filter.

The other form of protection involves educating the user

about phishing attacks and pattern of phishing email. The

basicmode of educating user is posting help pages in websites

and warning the user about phishing. MailFrontier (2011) has

setup a website containing screenshots of several phish

emails. Robila and Ragucci (2006) evaluated the effect of user

education in differentiating phishing and good emails. The

authors presented a lecture on how to identify phishing

http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

Fig. 1 e Methodology.

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9126

emails and the harm of falling for a phish in an introduction to

computing class. At the end of the lecture, the authors pre-

sented student with both phishing and good emails. Students

were then asked to identify the email type. The study

concluded that students identified phishing emails correctly

after the lecture. Students also acknowledged the usefulness

of the lecture. Similar study was also conducted at the Indiana

University (Jagatic, 2007).

Existing protection techniques have some advantages and

some disadvantages in stopping the phishing attacks and

protecting the end user. Network level protection using

domain and IP address blacklisting require periodic updates

and are reactive in nature as list can be updated only after

observing abuse pattern for some time period. Moreover,

attackers can compromise legitimate user’s machine to

conduct phishing attacks and hence blacklisting may block

legitimate user fromusing theweb. Client side tools and filters

rely on user interaction and user actions to prevent users from

falling to phishing attacks. Most users do not pay attention

to warning dialogs and they end up falling for phishing

attacks. Among the server side content filters to detect

phishing attacks, phishGILLNET developed by the authors

(Ramanathan andWechsler, 2012) outperformed state-of-the-

art phishing classifiers. The goal of this research is to improve

our earlier work by employing CRF for named entity extrac-

tion, LDA for topic discovery, and AdaBoost for classification

to not only detect phishing attacks but also discover imper-

sonated organizations. The research methodology is

described in the following section.
3. Methodology

The research methodology employs natural language pro-

cessing and machine learning to detect phishing attacks and

to discover the entity/organization that the attackers imper-

sonate during phishing attacks. The multi-stage methodology

first extracts in Stage I, (i) named entities, which includes

names of people, organizations, and locations; and (ii) hidden

topics, using CRF and LDA operating on both phishing and

non-phishing data. Next in Stage II, utilizing topics and named

entities as features, each message is classified as phishing

or non-phishing using AdaBoost. Finally in Stage III, for

messages classified as phishing, the impersonated entity is

discovered using CRF. A schematic representation of the

multi-stage research methodology is shown in Fig. 1. The

multi-stage research methodology and motivations for

applying CRF, LDA, and AdaBoost methods are described in

this section.

3.1. Stage I e feature extraction (CRF, LDA)

The first stage is the feature extraction stage. Two sets of

features are extracted during this stage namely, named enti-

ties and topics. Named entities are extracted using CRF in

Stage I(a) and topics are extracted using LDA in Stage I(b).

3.1.1. Stage I(a) e named entity feature extraction (CRF)
In this stage, named entities are first extracted, which are then

used in Stage II as one set of features to build a classifier for
phishing detection. Named entities are proper names (or

proper nouns) that are names of people, organizations, loca-

tions etc. An example of a “phishing email” and a “non-

phishing email” are shown below from the author’s mailbox.

Named entities are in bold and italicized.

3.1.1.1. Phishing email.
“subject: PayPal online : message alert!

Dear Customer

resolution center: your account is limited. regarding this, please

follow the link below to resolve this issue:

click here to resolve the problem http://autoplusoman.com/

security.html

PayPal - number: id832329-paypal/2011

please allow us 1 to 3 days to resolve your problem.”

3.1.1.2. Non-phishing email.
“Dear Venkatesh Ramanathan,

You just changed your password.

If you didn’t change your password, give us a call right away at

402-935-7733.

Just a reminder:

Never share your password with anyone.

Create passwords that are hard to guess and don’t use personal

information.

http://autoplusoman.com/security.html
http://autoplusoman.com/security.html
http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9 127

Be sure to include uppercase and lowercase letters, numbers, and

symbols.

Use different passwords for each of your online accounts.

Sincerely,

PayPal

Copyright ª 2012 PayPal, Inc. All rights reserved.

PayPal is located at 2211 N. First St., San Jose, CA 95131.”

In the above examples, PayPal is the name of an organi-

zation, Venkatesh Ramanathan is the name of a person, San

Jose is the name of a city, and CA is the name of a state. In the

first stage, we make use of CRF for named entity recognition

(NER), which is an information retrieval task that seeks to

locate and classify elements in text documents as one of these

proper names (see Fig. 1). CRF is themethod of labeling proper

names (names of people, locations, organizations, etc.) in

a body of text. Given a sentence, the method involves deter-

mining words that are named entities and appropriately

labeling the entity as the correct proper name. A brief theo-

retical description of CRF is given in Appendix A. A review

of the literature reveals that the CRF model has been

successfully employed for labeling and parsing sequential

data in natural language processing and image processing

applications.

Phishing emails typically target financial, social

networking, online gaming and email service providers.

According to the Anti Phishing Working Group (APWG, 2012),

75% of the phishing attacks target financial institutions, with

PayPal being one of the top phishing targets. If an email

contains the name of a financial institution, such as PayPal,

there is a high probability that the email is a phishing email. A

key motivation for using CRF is its capability to automatically

extract named entities from the body of the email, resulting in

an improvement to classification accuracy and helping to

narrow the searchwhen processing large volumes of emails. It

is also possible that the email sent by the financial institution

is a legitimate email (see “non-phishing email” example

above). The determination whether the email is legitimate or

not is made in Stage II using organization names as one of the

features.

The second motivation for using CRF is its robustness in

extracting named entities (such as names of organizations).

CRF extracts names of organizations based on the context in

which such words appear, the words that precede the given

word, and the words that succeed the given word. In the

phishing example above, “is located at” is the context in the

following sentence: “PayPal is located at 2211 N. First St., San

Jose, CA 95131.” New organizations could emerge and existing

corporations could merge to form a new organization.

Attackers may start targeting these new organizations. Since

CRF extracts names of companies based on context, we do not

have to keep a pre-defined list of all company names.

The third motivation for using CRF is its ability to auto-

matically extract personalized information (names of people)

from a given document. Attackers send out phishing emails in
bulk hoping some users would fall for the attack. Thus, most

phishing emails are not personalized (see “phishing” example

above that has “Dear Customer” whereas “non-phishing” email

has “Dear Venkatesh Ramanathan”). This is because: a) the

attackers do not have the users’ names, or, b) they know the

users’ names but they do not know if the users have accounts

with the organization that the attackers are impersonating, or,

c) they do not want to spend time in composing millions of

personalized emails. Emails from legitimate organizations

sent to their registered customers are, in general, personalized

as they do have names of the people (see “non-phishing”

email example). Thus, automatic extraction of names of the

people using CRF, which would normally be present in a good

email but usually absent in a phishing email, are employed as

additional features for building the classifier. There are

several exceptions to this. The targeted phishing attacks,

known as spear phishing, where attackers do know user’s

names, are personalized. Similarly, legitimate emails such as

ones sent from legitimate organizations to potential/

prospective customers, respectfully addressed emails (such

Dear Sir, Dear Madam), etc., may not be personalized. The

presence/absence of personalized information is one of the

many features employed by our methodology. Hence, it

provides one of the signals (not the whole signal) and also

helps to narrow the search to detect phishing attacks.

The final named entity, extracted using CRF, is the location

information. The motivation for use of the location informa-

tion is its presence in a non-phishing email and usually absent

in a phishing email. In the non-phishing email sample (shown

previously), the location where organization is located,

namely, San Jose, CA, is present while it is absent in the

phishing email. It must be noted that it is very easy for an

attacker to include the location information in the phishing

email. Thus, it is not as robust a feature as the other named

entities.

3.1.2. Stage I(b) e feature extraction (LDA)
Topics comprise the second set of features extracted in the

feature extraction stage (see Fig. 1). Group of words or phrases

constitute a topic. For example, a “baseball” topic may

comprise words/phrases such as “Yankees”, “home run”,

“major league”.

In Stage 1(b), we make use of LDA to discover topics from

a collection of phishing and non-phishing messages. The

motivation for the use of LDA and some significant differences

vis-à-vis PLSA employed in our earlier research (Ramanathan

and Wechsler, 2012) for topics discovery is briefly discussed

here, while the theory behind LDA is given in Appendix B. LDA

is a topic modeling method, similar to PLSA, which employs

a bag-of-words approach to discover hidden theme(s)/topics

for given documents. Note, a topic model assigns each docu-

ment a probability distribution over “topics”, which are in turn

a probability distribution over words/phrases. In PLSA, the

latent (hidden) topics aremodeled using a weighted likelihood

approach instead of using full probability theory, i.e., PLSA is

a non-Bayesian version of LDA. This leads to two problems

using PLSA (Blei et al., 2003). First, the number of parameters in

the PLSA model grows linearly with the size of the corpus,

which leads to the problem of overfitting. Second, there is

no robust method for the assignment of probabilities to

http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9128

documents outside the training set. LDA overcomes these

problems by defining a generative process for each document

wherein the topic distributions are assumed to have a Dirich-

let prior.

Here, we apply LDA to discover hidden topics from phish-

ing messages. The motivation for the use of LDA for phishing

is illustrated through a sample phishing email from the online

banking company CIMB Clicks. Words/phrases that comprise

a ‘financial phishing’ topic are shown in bold and italicized.

3.1.2.1. Phishing email.
“subject: CIMB important notice - account security validation

expired

dear customer

your CIMB Clicks account security validation has expired,

this maybe as a result of wrong or incomplete data

entered during the lastupdate.

it’s strongly required that you should validat your

bank account and confirm your internet banking records.

click on the following link:

http://www.ingelam.cl/respaldo/ingelam.php

fraud prevention unit

legal advisor

CIMB Clicks security dept. team.”

One of the motivations for using LDA is its robustness to

changes in word usage. It is good at handling synonyms,

different words with similar meanings. In a phishing email,

attackers seek immediate attention from the user. It is evident

from the above example that the ‘financial phishing’ topic

comprises the word ‘important’. To seek user attention,

attackers may use similar sounding words such as ‘alert’ (see

PayPal phishing example), ‘urgent’, etc. Attackers may also

choose ‘bank account’ vs. ‘checking account’, ‘rejected’ vs.

‘canceled’, ‘financial institution’ vs. ‘electronic payments

association’, etc., and compose a phishing message targeting

the same organization. An exact word based filter is not robust

to such changes in word usage unlike LDA.

LDA is also robust to polysemy, words with different

meaning in different context. For example, a ‘financial phish-

ing’ topic comprises the word “bank” (see above example). The

word “bank” in the context of “river bank” is a completely

different topic. LDA is robust in discovering such differences.

LDA is robust in discovering the threatening theme in

a phishing message that requires the user to act immediately

and failure to do so will result in serious repercussions. In the

‘financial phishing’ topic, words/phrases that exhibit such

theme include “validation expired”, “incomplete data”, “strongly

required”, “confirm”, “click”, etc. This is to convince users to act
on those emails by clicking the links contained in the email and

filling out the form that require user credentials.

LDA is also robust in discovering topics that contain

intentionally misspelled words and conjoined words. The

“financial phishing” topic contains misspelled word ‘validat’

and conjoined word ‘lastupdate’. Attackers employ these

techniques to avoid detection by exact word based filters. LDA

is robust to such tricks by attackers.

The most powerful feature of LDA is its ability to discover

multiple topics from a single document. One of the tricks

attackers employ in phishing email is to include non-phishing

content using white font color HTML attribute. A snippet of

such an example is shown below.

3.1.2.2. Phishing email that contains non-phishing content in
white font.

“<html>

..

subject: important notice

dear customer,

we recently reviewed your account, and suspect that your TD

Canada

Trust online banking account might have been accessed by an

unauthorized third party.

..

</p>

<span style¼"FONT-FAMILY: ’Arial’,’sans-serif’;

COLOR: white; FONT-SIZE: 24pt">

The candy business underwent a drastic change in the 1830when

technological advances and the availability of sugar opened up

the market.

The new market was not only for the enjoyment of the rich but

also for the

pleasure of the working class as well. There was also an

increasing market

for children. Confectioners were no longer the venue for the

wealthy and

.

</html>”

In the aboveexample, the “financial phishing” topic targeted

to TD Canada Trust bank customer is followed by a non-

phishing topic, “confectionary”. The non-phishing content

(white font on white background) will not be visible to the

http://www.ingelam.cl/respaldo/ingelam.php
http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

Fig. 2 e Architecture.

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9 129

user’s naked eye. However, this email will pass through filters

that treat the document as a whole as most words that are of

non-phishing in nature, confectionery in this case, dominate

words that are of phishing nature. Since the user will not see

the non-phishing topic and the phishing topic sounds legiti-

mate, the user will fall for the phishing attack. However,

a server side filter using LDA will discover that there are two

distinct topics in the email and assign different probabilities to

each topic. Thus, we employ LDA to discover those hidden

topics. Once topics are discovered using LDA, the document/

topic probability distributions are used as a second set of

features for building the phishing classifier.

3.2. Stage II e phishing classifier (AdaBoost)

The second stage involves building a robust classifier by

employing the boosting method, AdaBoost (see Fig. 1). Boost-

ing combines many weak and moderately accurate classifiers

to build a robust and thus strong classifier for detecting

phishing attacks. Boosting also helps to fuse heterogeneous

features resulting in improved classification performance.

Here, Adaboost is employed on combined feature sets of topic

distribution probabilities obtained using LDA and named

entities obtained using CRF to build a strong classifier for

phishing detection. The motivation for combining LDA and

CRF methods is as follows. LDA incorporates bag-of-words

approach and hence it does not depend on the order of

words in the document. CRF relies on preceding and suc-

ceeding words to label a word(s) as a particular entity, orga-

nization, name or location. While the fusion of LDA and CRF is

done at the classification stage using AdaBoost, future work

may involve named entity extraction using CRF providing

prior probabilities for LDA to yield better and more efficient

ways for topics discovery. Likewise, topics discovered using

LDA may be used to do build a more focused named entity

extraction using CRF.

3.3. Stage III e impersonated entity discovery (CRF)

Once the classifier classifies a particular message as phishing,

the final stage involves automatic discovery of impersonated

entities (see Fig. 1). In the phishing examples shown earlier,

impersonated organizations include “PayPal”, “CIMB Clicks”,

and “TD Canada Trust”. The detection of phishing and subse-

quent blocking by an email provider helps to protect users from

falling prey to identity theft. The automatic discovery of

impersonated entities helps legitimate organizations to shut

down the fakewebsite before their users potentially fall for one,

as their users may be using other email providers that may not

have detected and blocked the same phishing messages. This

keeps legitimate company’s customers safe and secure,

regardless of which systems they use, which in turn benefits

the entity/company having long lasting and satisfied

customers. Automatic discovery also helps companies to

engage in partnerships with other companies to mutually

exchange phishing information. As the impersonating organi-

zation discovery is akin to named entity extraction, CRF is

employed for automatic discovery of such entities from

phishing messages. The generic NER extraction using CRF,

employed in the first stage, can extract more than one entity
type but is not robust to discover impersonated organizations

from phishing messages. Hence, a custom classifier, that is

much more focused and specific for impersonated organiza-

tions discovery, is built by employing CRF and trained on

phishing messages.

The methodology developed in this research not only

identifies a phishing message but also identifies the organiza-

tion that attackers impersonate in the message. The imple-

mentation of the corresponding multi-stage architecture is

detailed in the next section.

4. Architecture

The architecture of the developed methodology is shown in

Fig. 2. Themajor architectural components are (i) Parser, (ii) CRF

Feature Extractor, (iii) LDA Feature Extractor, (iv) AdaBoost

Classifier, and, (v) CRF Impersonated Entity Extractor. Each

architectural component’s functionality and their sub compo-

nentswill be elaborated below. The Parser component and TDF

Matrix Builder sub-component were developed in our earlier

research (Ramanathan andWechsler, 2012). Theyare described

here for the purpose of understanding the overall architecture.

All the architectural components are implemented using Java

programming language with the use of openly available soft-

ware, when available.

(i) Parser: Raw email data is typically present in Multipart

Internet Mail Extension (MIME) format. In our work, we use

words and hyperlinks present in the body of the email to build

LDA model and CRF feature extractor. Thus, the parser parses

the email document and extracts body text, hyperlinks and

words present in the body of the email. Parser consists of the

following sub components:

MIME Parser: Parses email MIME message and extracts

email headers and email body. The parser also extracts any

hyperlinks present in the body. In a phishing email, these

hyperlinks link to the phishing website.

HTML Parser: MIME message containing HTML documents

are included as multipart/html subpart in the email body

part. When the MIME parser detects a HTML subpart, it

http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9130

invokes the HTML parser to separate out text, style-sheets,

hyperlinks and scripts. For the purpose of feature extrac-

tion, only text and hyperlinks are considered.

Tokenizer: This tokenizes text present in email body

into separate words. Tokenizer utilizes white space

(tabs, space, new lines) as token delimiters. The hyper-

links are tokenized after removing non-alpha-numeric

characters.

(ii) CRF Feature Extractor:Weemploy the Conditional Random

Field (CRF) to extract named entities. The LDAmodel does not

consider named entities, such as names of people, organiza-

tions and locations. Since such proper names do not have any

linguistic variation, LDA would not be useful to represent

themas feature set. CRF is used to extract such named entities

from the text of the email using the NER software written by

Stanford’s Natural Language Processing Group (Stanford NER,

2011). The CRF feature extractor includes the following sub

components.

CRF Model Loader: Stanford’s NER software comes with

a pre-trainedmodel that has been trained on CoNLL, MUC6,

MUC7, and ACE datasets. These datasets are the compre-

hensive source of data containing news articles from

United States and United Kingdom. This component loads

the pre-trained model in memory to extract named entities

from phishing and good emails.

CRF Named Entity Labeler: Given a new document, CRF

named entity labeler component identifies and labels each

word to most appropriate named entity. Each word is

labeled as one of four entities, namely, location, organi-

zation, person or other. The labeling is limited to one

entity per word. Some words may belong to more than

one entity. For example, ‘amazon’ is not only an organi-

zation but also a rain forest, ‘Bush’ is a ‘person’, a ‘politi-

cian’ and also means a ‘shrub’. The methodology

employed here assigns an entity to a word based on the

context in which the word appears and the assignment is

limited to one entity, which is fine under most

circumstances.

CRF Named Entity Extractor: Entities from the labeled

document are extracted by this component. These entities

serve as one set of features for building the classifier.

(iii) LDA Feature Extractor: This component builds an LDA

topic model from input data consisting of phishing and non

phishing data and extracts topic/document distribution

probabilities for a given new document. These probability

distributions serve as second set of features to build the

classifier. This component consists of following sub-

components:

TDF Matrix Builder: This component builds the term-

document-matrix using words from the body of the

email. A term-document matrix describes the frequency

of terms that occur in a collection of documents. The

rows of the matrix correspond to document (di) in the

collection and the columns correspond to terms (wj) that

are present in those documents. The terms wj belong to

one of the part-of-speech tags (adjectives, adverbs, nouns

and verbs). The matrix entries n(di,wj) denote number of

times word wj occurs in document di. Prior to building

TDF Matrix the following pre-processing steps must be

accomplished.
Stop Words Removal: Stops words are words that do not

contain important significance for building the model.

Some example stop words include ‘the’, ‘at’, ‘like’, etc. We

remove stop words from all the tokenized email body text.

Stemming: Stemming is a method for removing inflexion

endings from certain words. For example, word ‘con-

signed’, after stemming becomes ‘consign’. Here we

employed Porter’s Stemming (PorterStemmer, 2006)

algorithm to words in email body.

Dictionary Lookup: We employed WordNet (2006) dictionary

to lookup words in dictionary. WorldNet database has Part

of Speech (POS) extractor. It identifies verbs, nouns,

adverbs and adjectives.Words found inWorldNet database

forms part of the input for building TDF matrix.

Spell Checker: Attackers intentionally misspell words in

a phishing email to avoid detection by standard spam

filters. For words that are not found inWordNet database,

Google Suggest API (2011) is utilized to retrieve words that

are similar to the misspelled word.

Levenshtein Distance: Levenshtein Distance (2011) is

a metric for measuring the amount by which two words

differs. The metric is also called edit distance. It is the

minimum edit operations required to transform one word

to another. The edit operations include insertion, deletion

and substitution of a new character. In a phishing email

there are misspelled words, which after edit operation, is

found in dictionary. Examples include “vuln‘a’rability”,

“youaccounts”, etc. Also, there are terms made of garbage

characters that are never found in dictionary.We consider

only misspelled words that can be corrected after certain

edit operation. After obtaining the suggested words using

Google API, Levenshtein distance is computed. Only those

words whose edit distance is less than some configured

threshold (default value of 5) are further included for

building TDF matrix.

Using words, (specifically adjectives, adverbs, nouns and

verbs), found directly in dictionary and edited words using

Levenshtein’s edit operation, the term-document-frequency

matrix is created.

LDA Model Trainer: This component trains and builds

a LDA topicmodel. The input to themodel is the TDFmatrix

of the dataset. The trainer employs 90% of the data for

building the model and remaining 10% for model’s predic-

tive performance. Stanford’s Topic Modeling Toolbox

(Stanford TMT, 2012) is employed to implement this

component. The LDA trainer uses collapsed variational

Bayes approximation algorithm (Asuncion et al., 2009), as it

is computationally faster and leads to faster model

convergence, to build the LDAmodel. LDA requires number

of topics, K, to be specified at initialization similar to cluster

analysis. In addition, LDA requires Dirichlet parameters, a,

parameter of the Dirichlet prior on the per-document topic

distributions, and b, parameter of the Dirichlet prior on the

per-topic word distributions, to be specified upfront. The

model performancewas evaluated by computing perplexity

(see Appendix B).

LDA Model Inference: In model inference, previously

trained LDA model is employed to compute probability

distributions on the new unseen dataset. Here, we use this

component to compute per-document topic probability

http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9 131

distributions and per-topic word distributions on the test

dataset. Stanford TMT’s model inference module is used to

compute probabilities on the test dataset.

LDA Topic Probability Extractor: This extracts word/topic

and topic/document distribution probabilities computed by

the LDA model inference sub-component. Our method

makes use of the topic/document distribution probabilities

as the second set of features to build the classifier. By using

these probability distributions instead of actual words, the

classifier is expected to be robust in detecting phishing

attacks.

(iv) AdaBoost Classifier: In order to build a robust phishing

classifierweemploy theAdaBoost algorithm.The featuresused

to build the classifier are shown in Table 1. The boosting algo-

rithm employs named entities obtained from the CRF model

and per-document topic probability distributions obtained

from the LDA model. The CRF model extracts named entities

using a pre-trained model. Only proper names, locations,

organizations and names of people, are included as one set of

features. The per-document topic probability distributions of

the LDA model that yielded the lowest perplexity are used as

second set of features. AdaBoost is robust in building a classifier

using these disparate feature sets. The classifier is built using

the WEKA software (WEKA, 2009).

(v) CRF Impersonated Entity Extractor: This component

extracts organization that the attacker impersonates in the

phishing attacks. The component employs CRF to train and

build a custom classifier for this purpose. The classifier that

comeswith StanfordNER is trained on corpus containing news

articles that is not robust in extracting impersonating organi-

zations from phishing messages. Hence, we build a custom

classifier using phishing corpus specifically to extract imper-

sonated organizations. Most of the core software component

of Stanford NER was used to implement this component.

Custom components for parsing, tokenizing, labeling and

training were implemented in Java. As detailed in the earlier

section, automatic extraction of impersonated organizations

helps legitimate companies to enforce phishing website take

down, which in turn protects their users.
Table 1 e Features for phishing classifier.

Feature Description Source

P(z1jdi) Probability that document di
belongs to topic z1

LDA

P(z2jdi) Probability that document di
belongs to topic z2

LDA

.. . ..

P(zkjdi) Probability that document di
belongs to topic zk

LDA

Location1 Named entity e location CRF

... .. .

LocationL Named entity e location CRF

Name1 Named entity ename CRF

.. . .

NameN Named entity e name CRF

Organization1 Named entity e organization CRF

.. . .

OrganizationO Named entity e organization CRF
The architecture developed here has two main novel

contributions, (i) a phishing detection methodology that

combines LDA and CRF to build a robust classifier using Ada-

Boost, and, (ii) impersonated entity extractor using CRF.

Experiments conducted on public corpus to evaluate the

architecture developed in this research and the architecture’s

performance will be reported in the next section.

5. Experiments

The performance of the multi-stage architecture is evaluated

and experimental results are reported here. The architecture

is evaluated using openly available standard datasets con-

taining phishing and non-phishing data. Evaluation of the

phishing classifier is done on email datasets. Evaluation of the

automatic discovery of impersonated entity is done on

phishing emails, phishing URLs and phishing websites.

5.1. Datasets and data preparation

Three publicly available email datasets were used to evaluate

the phishing detection architecture: (i) ham (good) emails

from SpamAssassin PublicCorpus (2006), (ii) phishing emails

from the PhishingCorpus (2006), and, (iii) email archive con-

taining spam and phishing emails from SPAM Archive (2012).

One publicly available phishing URLs from PhishTank (2012)

were used for automated email labeling, and, phishing URLs

and accompanying phishing websites were used imperson-

ated organizations discovery.

SpamAssassin PublicCorpus (2006) contains a total of 6047

messages, of which, 4150 messages are good and the remain-

ing are spam. These messages were collected by the Spa-

mAssassin project for the years 2002e2003 andmade available

to the research community. For evaluation, spam messages

were not used (only 4150 good messages are used instead).

The dataset PhishingCorpus (2006) contains 4550 phishing

emails. These emails were collected by an individual for the

period 2004e2007 anddonated to the research community. For

evaluation, all the phishing emails from this corpuswereused.

SPAM Archive (2012) contains emails collected by Bruce

Guenter using various bait accounts since 1998. For the

purpose of evaluation, we employed emails from January 2012

and February 2012. This accounted for approximately 87,000

emails. Most emails in SPAM Archive are spam messages. As

SPAM Archive does not provide separate phishing emails, an

automated process was performed here to isolate phishing

messages from spam messages described as follows.

PhishTank (2012) provides confirmedphishingURLs that are

verified and labeled as phishing by human experts. Two sets of

phishing URLs from PhishTank were created for our experi-

ments. One set included all phishing URLs for the year 2010.

This accounted for approximately 196,000 URLs. The other set

of phishing URLs included August 2011 through February 2012.

This accounted for approximately 58,000 phishing URLs.

The phishing websites corresponding to the second set of

phishing URLs, captured using a web crawlerwere also utilized

here for architecture evaluation. Furthermore, a list of

confirmed phishing domains were downloaded from SURBL

(2011). Using phishing URLs from the second set and phishing

http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9132

domains from SURBL, emails that contain a phishing URL or

a phishing domain in SPAM Archive were separated into

a separate phishing email corpus. This accounted for approx-

imately 2200 phishing emails out of the total of 87,000 emails in

SPAM Archive.

Thus, there is a total of 4550 phishing emails from Phish-

ingCorpus, 4150 good emails from SpamAssassin Corpus, 2200

phishing emails from SPAM Archive and 84,800 spam emails

from SPAM Archive. These emails were used to validate the

phishing classifier. Number of phishing URLs in the dataset

are 196,000 for the year 2010 and 58,000 for the years

2011e2012 and number of phishing websites are 58,000 for the

years 2011e2012.

All the email messages were parsed using a MIME parser to

separate email headers from email body. Multipart messages

containing HTML parts were further parsed using a HTML

parser to extract the body text and hyperlinks. For evaluation,

only messages that contain either body text or hyperlinks

were considered. Thus, messages without message body and

messages that failed parser were not included for building

models. For building models and validating phishing classi-

fier, phishing emails included all messages from Phishing-

Corpus and separated phishing emails from SPAM Archive,

and, non phishing emails included good emails from Spa-

mAssassin and spam emails from SPAM Archive.

For building the impersonated organizations discovery

model using CRF, the phishing data in the dataset used

included 6750 phishing emails, 254,000 phishing URLs and

58,000 phishing websites. To build this model and verification

using CRF, we needed datasets that has corresponding

impersonated organizations identified upfront. Authors

manually identified impersonated organization from 3000

phishing emails (2000 from PhishingCorpus (2006) and 1000

fromSPAMArchive (2012)). Some fraction of the phishingURLs

from PhishTank have their impersonated organizations pre

identified.We considered 50,000 suchphishingURLs from2010

dataset and 30,000 phishing URLs from 2011 to 2012 dataset

that had impersonated organization in them. The phishing

websites included30,000websites from the year 2011and 2012.

The same phishing email message parsed that was used for

evaluating phishing classifier was used for impersonated

organizations discovery evaluation. Furthermore, phishing

URLs were tokenized by removing non-alpha-numeric char-

acters and phishing websites were parsed using the HTML

parser to extract the text portion of website content. The

tokenized phishing URLs and parsed phishing websites were

used as well for evaluation of the impersonated entity

discovery.

5.2. Training and testing

The generic named entity extraction using StanfordNER (2011)

was performed using the pre-trained model included with the

software. This pre-trained model was trained on corpus con-

taining news articles that included CoNLL, MUC6, MUC7, and

ACE datasets. The LDA topics discovery model was built by

varying the number of topics ‘K’ from 5 to 200. The Dirchlet

prior probability distribution parameters a and b were initial-

ized to 0.1. The maximum number of iterations for conver-

gence was set to 500. The k-fold cross validation strategy was
employed to build and evaluate the topics model, with a k

value of 10. Thus, the model was built on 90% of the dataset

and validated on the remaining 10%. This process was

repeated 10 times and the average values are reported here.

The classifier model is built using AdaBoost algorithm.

WEKA (2009) software is used to build the AdaBoost classifier.

The ARFF file, format used by WEKA, is prepared using the

combined topic features from LDA and named entity features

from CRF. For an email message that does not contain

a specific feature, missing value notation was used in the

preparation of ARFF file. The k-fold cross validation was used

to build the AdaBoost classifier. The number of folds that was

used for the experiment was 10. The maximum number of

iterations was set to 1000 and the AdaBoost weight threshold

was set to 100. The weak learner for AdaBoost was Random

Forest algorithm. Experiments were conducted on older (2006)

andnewer (2012) datasets to evaluate the temporal robustness.

As the pre-trained CRFmodel is not robust enough to discover

impersonated entity (organizations), we built a custom model

to perform discovery, using CRF, by employing just phishing

messages. Impersonated organizations discoverymodelswere

built by using different proportions (50/50 split) of the same

dataset. Models were also built using different years data to

evaluate temporal robustness and different types of data

(phishing emails, phishing URLs, phishing websites) to eval-

uate robustness to data types.

5.3. Performance measures

The performance of the LDA topics model is evaluated using

perplexity. The perplexity for an LDAmodel is computed using

the equation given in Appendix B. The model with the lowest

perplexity is the one that generalizes well for classifying new/

unseen data. The classification performance of phishing clas-

sifier is evaluated using the standardmeasures of performance

described as follows. As it is a binary classification problem,

the task is to learn how to classify unseen examples into one of

two categories, positive categories and negative categories,

True Positive (TP) means the actual and predicted categories

are positive, True Negative (TN) means actual and predicted

categories are negative, False Positives (FP) means the pre-

dicted should have been negative instead classified as positive,

and. False Negatives (FN) means predicted should have posi-

tive instead classified as negative. Commonly used perfor-

mance metrics in classification problems are accuracy,

precision, recall, specificity and Fmeasure. They are defined as

follows. Accuracy is a measure of how accurate the learned

system makes prediction on unseen test instances

(Accuracy¼ (TPþTN)/(TPþ FPþTNþ FN)). Precision is defined

as the proportion of true positives against all the positive

results (Precision ¼ TP/(TP þ FP)). Recall is the ratio of number

of instances correctly classified to total number class instances

(Recall ¼ TP/(TP þ FN)). Specificity measures the proportion of

negatives that are correctly identified (Specificity ¼ TN/

(TN þ FP)). F measure is the harmonic mean of precision and

recall estimates (F¼ 2*(Precision� Recall)/(Precisionþ Recall)).

ROC curve is a plot of true positive rate vs. false positive rate.

Each point on the ROC curve represents different tradeoff

between false positives and false negatives. The slope of the

line tangent to curve is defined as the cost ratio. If the two ROC

http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

Table 2 e LDA model performance.

Number of topics Perplexity Computation time (min)

Dataset e 4.5 K phishing (PhishingCorpus, 2006), 4.1 K non-phishing

(SpamAssassin, 2006)

5 553.71 1

10 433.36 1

50 260.36 3

100 245.73 6

200 232.27 15

Dataset e 2.2 K phishing, 84.8 K non-phishing (SPAM Archive)

200 873.12 65

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9 133

curves do not intersect, it implies that one method dominates

the other method. The two-dimensional depiction of classifier

performance in a ROC curve is reduced to single scalar value

representing expected performance by computing the area

under the ROC curve (AUC). The AUC measure has an impor-

tant statistical property. The AUC of a classifier is equal to the

probability that a classifier will rank a randomly chosen posi-

tive example higher than the randomly chosen negative

example. The performance measure for evaluation of the

impersonated organizations discovery model is the fraction of

phishing messages in which impersonated organization was

correctly discovered.

5.4. Results

Results from experiments conducted to evaluate the multi-

stage architecture are presented in Tables 2e4. In Table 2,

the performance of the LDA topicsmodel is shown. The topics

model was evaluated on older (2006) and newer (2012) to show

the temporal robustness of LDA. As it can be seen, the

perplexity for a 200 topicsmodel is 232.27 on year 2006 dataset

and 873.12 on year 2012 dataset. As the perplexity did not

reduce significantly when number of topicswas increased, the

200 topicsmodel was used to build the phishing classifier. The

phishing classifier was built using the combined feature set,

the topics distribution probabilities from LDA and named

entities extracted using CRF. The classifier was built using

AdaBoost with a Random Forest weak learner. Results from
Table 3 e Classification (using CRF, LDA, AdaBoost) performan

% of
phishing
emails

True
positive
rate (TPR)

False
positive
rate (FPR)

Precis

Training/testing strategy: 10-fold cross validation

Data source: PhishingCorpus (2006), SpamAssassin, 2006

Max data: 4.1 K phishing, 4.1 K non-phishing

Weak learner for AdaBoost: random forest

50% 0.961 0.039 0.96

40% 0.987 0.013 0.98

30% 0.988 0.012 0.98

20% 1.0 0.0 1.0

10% 1.0 0.0 1.0

Training/testing strategy: 10-fold cross validation

Data source: SPAM Archive (2012)

Max data: 2.2 K phishing, 84.8 K non-phishing

Weak learner for AdaBoost: random forest

2.5% 1.0 0.002 1.0
the 10-fold cross validation is presented in Table 3. The Ada-

Boost classifier was built for varying proportions of phishing

email in the dataset, 50%, 40%, 30%, 20% and 10%. The clas-

sification F-measure for the combined feature set obtained for

50%, 40% and 30% splits were 0.961, 0.987 and 0.988 respec-

tively. The area under the ROC measure (AUC) varied from

0.979 to 1.0 for varying proportions of phishing email in the

dataset. When the proportion of phishing emails in the data-

set is less than or equal to 20%, the AdaBoost classifier yields

perfect classification (i.e., nomisclassification). Thus, it shows

the effect of combined topic features and named entities as

feature sets and applying boosting in overall performance

improvement. Results were obtained on different year data to

show the temporal robustness of the classifier. We conducted

experiments on a newer (Jan 2012eFeb 2012) public email

corpus that included newer phishing attacks that target social

networking sites (such as Facebook) and online gaming sites

(such as Sulake) that are not part of the year 2006 dataset. The

classification performance in this dataset also yielded F-

measure of 100%, thus showing robustness of the phishing

classifier.

The results from the impersonated entity discovery model

are shown in Table 4. These results were obtained by training

a model using CRF that consisted of only phishing messages.

Models were trained and tested on different data types

(phishing emails, phishing URLs, phishing websites) to show

the robustness of our approach to disparate data types. In

addition, we also show the temporal robustness by training

and testing on different years data. As it can be seen from

Table 4, the best discovery was achieved when trained and

tested on email datasets. The best discovery was 88.1%, i.e.,

the model was able to discover impersonated organization in

88.1% of the messages that were tested, when trained on 2006

emails and tested on year 2012 emails. Our approach also

yielded discovery rate of 76.1% on phishing URLs and 81.6% on

phishing websites. The reason for reduced discovery rate on

URLs and websites as compared to emails was due to CRF’s

reliance on words that precede and succeed and well formed

sentences to discover the impersonated entity. We present

next a brief overview of autonomic computing.

ce.

ion Recall F-
measure

Area under
ROC (AUC)

1 0.961 0.961 0.979

7 0.987 0.987 0.997

8 0.988 0.988 0.997

1.0 1.0 1.0

1.0 1.0 1.0

1.0 1.0 0.996

http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

Table 4 e Impersonated entity discovery (using CRF) performance.

Training Testing % message with
correctly
discovered

impersonated entity

% message with
incorrectly
discovered

impersonated entity

Data: phishing email

Year: 2006

Size: 1 K

Source: PhishingCorpus

Data: phishing emails

Year: 2006

Size: 1 K

Source: PhishingCorpus

86.2 0.0

Data: phishing email

Year: 2006

Size: 2 K

Source: PhishingCorpus

Data: phishing emails

Year: 2012

Size: 1 K

Source: SPAM Archive

88.1 0.0

Data: phishing URLs

Year: 2010

Size: 25 K

Source: PhishTank

Data: phishing URLs

Year: 2010

Size: 25 K

Source: PhishTank

74.5 0.0

Data: phishing URLs

Year: 2010

Size: 50 K

Source: PhishTank

Data: phishing URLs

Year: 2011e2012

Size: 30 K

Source: PhishTank

76.1 0.0

Data: phishing websites

Year: 2011e2012

Size: 15 K

Source: crawled

pages of PhishTank

URLs

Data: phishing websites

Year: 2011e2012

Size: 15 K

Source: crawled

pages of PhishTank

URLs

81.2 0.0

Data: phishing websites

Year: 2011

Size: 23 K

Source: crawled

pages of PhishTank

URLs

Data: phishing websites

Year: 2012

Size: 7 K

Source: crawled

pages of PhishTank

URLs

81.6 0.0

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9134

6. Autonomic computing

The evaluation of the multi-stage research methodology and

the results reported in Section 5 are limited to offline pro-

cessing. Additional critical issues to consider are (i) how the

developed methodology can operate in real-time, (ii) how can

it adapt to changes in phishing attacks, and (iii) how can it

automatically tune itself. One approach to achieving these

goals is using Autonomic Computing. Autonomic computing

is an approach to self-managed computing system with

a minimum human interference. It is an initiative started by

IBM in early 2001 (Autonomic Computing, 2012). This initiative

was developed to overcome the growing complexity in

managing large scale computing systems. The system that is

autonomic makes decisions on its own using high level

operating policies. The operating policies are created by the

system administrator. The four key functional components of

autonomic computing are self-optimization, self-protection,

self-configuration and self-healing. Self-optimization involves

automatic monitoring and control of resources utilized by the

system that ensures system operates in optimal fashion

meeting desired performance measures. Self-protection

requires identifying attacks targeted to bring the system

down and protecting the system from such attacks in

a proactive manner. Self-configuration requires the system to

be able to configure itself upon start-up, restart, shut down,
etc. in an automatic fashion. Self-healing requires the system

to automatically discover faults due to hardware or software

and automatically correct such faults by applying software

upgrades and software patches.We next present a framework

for making our methodology autonomic.
7. Self-managing shield

We propose a framework, called self-managing shield, to

make the developed multi-layered methodology autonomic

(see Fig. 3). The scope of this framework is limited to email

processing. The framework consists of four functional

modules, which includes SMTP server, online evaluator, off-

line modeler and an autonomic engine. We evaluate this

framework using a simulated mail client, and report pro-

cessing times.
7.1. SMTP server

Inbound emails from email clients are processed by the SMTP

server. Email providers typically have several thousand

instances (processes) of SMTP server. For the purpose evalu-

ation in this research we employed open source software,

Postfix (Postfix, 2012).

http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

Fig. 3 e Self-managing shield.

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9 135

7.2. Online evaluator

The online evaluator module is the core module that is

responsible for classifying email messages as phishing (or not

phishing), and extracting impersonated entity, if it is a phish-

ing message. In this framework, we built a mail filter (MILTER,

2012) application, which is a plug-in interface supported by the

open source, Postfix. There exist several MILTER applications

such as to verify authenticity of the sender, block unwanted

emails, etc. Here, we have developed our online evaluator

using MILTER to classify incoming emails. Online evaluator

was implemented as a multi-threaded application, spawning

a thread for each incoming request. The application gets the

entire mail message in MIME format from the SMTP server.

This module implements all the functional components such

as parser, CRF and LDA feature extractors, AdaBoost classifier

and CRF impersonated entity extractor. Prediction models are

loaded in memory to optimize the processing time for classi-

fication. Once this module classifies the message and extracts

the impersonated entity, a response containing the informa-

tion is sent to Postfix SMTP server.

7.3. Mail deposit

The SMTP server deposits the mail and records the response.

For the purpose of evaluation, this response was written to

disk. In a real email system, there will be databases to store

incoming emails and response.

7.4. Offline modeler

Models are built using components in the offline modeler.

This module is not in the critical path that process inbound

email messages i.e., the processing time for inbound email

processing will not be affected by this module and, hence,

called offline. Prediction models (LDA, CRF) are built periodi-

cally upon initiation by the autonomic engine.

7.5. Autonomic engine

The core intelligence of (i) initiating the offline modeler, (ii)

computing actual performance and expected performance,
(iii) controlling the frequency of prediction model update in

the online evaluator, is done by the autonomic engine.

The self-protection aspect of autonomic engine requires

robust prediction models that are proactive. As the attacker’s

motivation and mode of operation changes over time driven

by technology changes such as dial-up to broadband, email

based communication to social networking centric commu-

nication, plain text messages to HTML enriched messages,

password based authentication to openID authentication,

etc., the system should have robust prediction models that

should observe such changes and predict future attacks

before it occurs. This framework plans to achieve that by

gathering external data from spam trap, honeypots and other

data sources, and use that data to update prediction models,

if necessary. Spam trap and honeypots setup bait accounts

that attracts attackers. By using messages from these sour-

ces, we can see if there is a phishing campaign that is

imminent.

The self-configuration aspect of autonomic engine requires

system and model parameters be updated without human

involvement. Some of the parameters that require self-

configuration include number of topics K, prior probability

estimates and predictionmodels (LDA, CRF Named Entity, CRF

Impersonated Entity). The autonomic engine plans to incor-

porate self-configuration by (i) (re)computing prior probability

estimates for the LDA model using external data (ii) auto-

matically determining number of topics K using external data

sources, (iii) automatically determining if new topics have

emerged by varying number of topics dynamically and

checking the performance measures, (iv) checking if the CRF

impersonated entity discovery model adapts to the formation

of new entities, including merge and split of existing entities.

For example, to update if number of topics K needs to be

adjusted, the performance measure perplexity is computed

with and without external new data and by varying K. If the

perplexity improves with a change, that change is adopted.

The updated prediction models and model parameters are

automatically updated in the online evaluator for subsequent

message processing.

The self-optimization aspect of autonomic engine requires

system to continually operate above desired threshold. The

autonomic engine plans to continually optimize misclassifi-

cation rates based on response from user feedback and

external data sources. Most email clients have feedback

mechanism in place to report issues when a good email

shows up in spam folder or when a phishing email shows up

inbox. Only feedback from users with good reputation is

included for performance evaluation. This is achieved by

using a user reputation database. The framework will use

existing user feedback and the response recorded in mail

deposit to determine if the classification label (phishing or

non phishing) predicted by online evaluator agrees (or

disagrees) with user and then computes actual performance.

If the actual performance does not match the predicted

model performance (from previous building of prediction

models) or below the desired threshold, the samples that are

misclassified are fed back for re-training models using offline

modeler. Prediction models are built until misclassified

samples are classified correctly. When the predicted perfor-

mance improves, the models are updated in the online

http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9136

evaluator for subsequent message processing. The newer

prediction models are refreshed/reloaded in the memory of

the online evaluator.

The autonomic aspects presented here are isolated to

optimizing phishing classification performance. There are

self-tuning and self-optimization that addresses other

performance measures such as message throughput, CPU

utilization, energy usage, etc. These aspects are outside the

scope of this research.

7.6. Computational efficiency

In order to evaluate the performance of self-managing shield,

we built an email client simulator that connects to the SMTP

server (Postfix, 2012), sends a MIME message, process the

response and disconnects. As our goal is to verify if our

proposed methodology is computationally efficient for real-

time processing, only the ‘online evaluator module’ perfor-

mance times are recorded and reported in Table 5. The client is

aMacOSXmachine (version-10.6.5, CPU-2.66GHz IntelCore i7,

RAM-4 GB). The ‘online evaluator’ is run on a Cent OSmachine

(version-linux 2.6.18 kernel, CPU-1.99 GHz Intel Core 2 Duo

CPU, RAM-4 GB). The SMTP Server is run on a different Cent OS

machine with the same configuration. We simulated a steady

workload of 1200 messages per second (equates to approxi-

mately 100 million messages per day) and recorded the

performance times of the online evaluator. The prediction

modelswere loaded inmemory to avoid hitting the database or

the disk. The online evaluator spawned a thread for each

incoming requestwith amaximumconfigurable thread pool of

1000. The computation times of individual components of the

online evaluator and the total processing times are tabulated

in Table 5. The average per message processing time recorded

was 42 ms. This would be the additional latency that our

methodology will introduce for filtering out email messages.

TheCPUutilization of the online evaluatorwas 8%. Large email

service providers process billions of email messages. These

providers will also have thousands of machines to handle that

load. Additional experiments to simulate other workload

patterns (such as burst traffic, different request distributions,

etc.) are left for future research. Though our evaluation was

done on a small scale, it is evident that our methodology is

computationally efficient and introduces a very low latency to

email message processing.
Table 5 e Processing time for online evaluator.

Workload: 1200 messages/second
Average CPU utilization: 8%

Component Average per message
processing time
(milliseconds)

Parser 6

NER Extractor (CRF) 8

Topic Extractor (LDA) 18

Classifier (AdaBoost) 3

Impersonated Entity Extractor (CRF) 7

Total 42
8. Discussion

In this section, we first present the strengths of our proposed

research methodology in comparison to our earlier research

(Ramanathan and Wechsler, 2012). Next, we discuss how the

architecture can be expanded for future research.

8.1. Strengths of the proposed research methodology

We present here a comparison of the multi-stage architecture

with phishGILLNET (Ramanathan and Wechsler, 2012). The

classification performance obtained by the phishing classifier

(F-measure of 100%) was also obtained by our earlier research,

phishGILLNET (Ramanathan and Wechsler, 2012). While

phishGILLNET (Ramanathan and Wechsler, 2012) obtains the

F-measure using expensive co-training, the current research

obtains the same performance by combining LDA and CRF.

LDA does not consider ordering of words while CRF does

consider order. As CRF and LDA are complementary to

each other this yields robust results. Furthermore, LDA over-

comes the limitations of PLSA employed by phishGILLNET

(Ramanathan and Wechsler, 2012) (see section 3).

In addition, the proposed methodology can discover

impersonated entities. Results for impersonated entity

discovery show that our methodology discovers entity from

disparate data sources, phishing emails, phishing URLs and

phishing websites. By employing CRF, ourmethodology is able

to discover newer entities (such as Facebook, Sulake) thatwere

not present in the 2006 corpus. Thus, our methodology is

robust in impersonated entity discovery, as attackers mostly

target entities that are popular and currently successful. These

entities could change from time to time.

Our methodology is also able to discover variations of

a given entity, such as, paypal, paipal, paypa1, etc., which

attackers employ while creating phishing URLs to resemble

a legitimate entity.

Our methodology is domain neural. It can be employed to

detect phishing attacks and discover impersonated entity at

social networking posts (Facebook, Twitter, etc.), instant

messages, chat, blog posts, etc. As long as the content is

available in text, MIME and HTML formats, this architecture

can handle all of them.

8.2. Future enhancements

Future enhancements to our methodology should consider

the following:

8.2.1. Robust parser
We consider only messages that we were able to successfully

parse using MIME and HTML parser. We also accounted for

only text and hyperlinks present in the “body” of those

messages. Some phishing messages could be in image form

and some messages, in an adversarial fashion, are con-

structed to fail parsing. Future work should expand on the

architecture advanced here and allow for such messages.

While we considered only text attachments, future research

should also consider email attachments in formats such as

word document, Adobe PDF, etc.

http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9 137

8.2.2. Integrated CRF and LDA
The multi-stage architecture described in this paper, inde-

pendent of each other, extracts named entities using CRF and

discovers topics using LDA.The outputs from thefirst stage are

then combined using AdaBoost for the classification stage.

LDA incorporates in itsmodel two parameters, a, parameter of

the Dirichlet prior on the per-document topic distribution and,

b, parameter of the Dirichlet prior on the per-word topic

distribution. Choosing the right priors helps to discover better

topics more efficiently and minimizes the chance of getting

stuck in local optima. One avenue for future research is to

estimate prior probabilities for LDAmodel using CRF. Knowing

the impersonated entity could also help to discover topics. For

example, say PayPal is the impersonated entity in themajority

of the phishing messages. Since PayPal is an online payment

service, the priors can be appropriately chosen to discover

online payment phishing topics from the dataset. LDA does

not rely on order of words while CRF does. Thus, and inte-

grated LDA and CRF has the potential to yield better results.

8.2.3. Scalability
One of the issues to consider for future evaluation is scaling.

Our research has shown that we were able to get good results

on a smaller setup with 2012 dataset. A typical email server

process billions ofmessage a day. As the goal of this research is

to implement this architecture as a server side filter on a large

scale email system, further evaluations should be conducted

to determine how this architecture performs. One way to

evaluate scalability is to implement the architecture using

MapReduce (2012) framework on a distributed cluster

computing platform.
9. Conclusions

A robust multi-stage phishing detection and impersonated

entity discovery methodology is developed in this research.

CRF is used to extract named entities. Named entities are used

as one set of features. Topics are discovered using LDA. The

per-document topic probability distributions obtained fromthe

LDA topic model are used as a second set of features. The

combined probability estimates and named entities are used to

build a strong classifier using AdaBoost. The 10-fold cross

validation is employed to build and validate the phishing

classifier. The boostingmethod resulted in nomisclassification

on the test set when the percentage of phishing emails is less

than 20%.

On messages that are classified as phishing, the imper-

sonated entity is discovered by building a model that employs

CRF. Impersonated entity is discovered from disparate data

types (phishing emails, phishing URLs and phishing websites).

Results show that the discovery rate was highest (88.1%) on

phishing emails. This is due to CRF’s dependence on words

that precede, words that succeed, and well-formed sentences

to perform robust discovery. The discovery rate in phishing

URLs was the lowest (76.1%).

The unique combined approach that employs CRF and LDA

to yield perfect classification for phishing detection, and also

enables impersonated entity discovery using CRF, are the
novel contributions of this research. Robust content-driven

phishing detection developed in this research helps service

providers to implement this architecture as a server side filter

to eliminate phishing messages before they get to the user.

Upon discovery of an impersonated entity in a phishing

message, an organization can communicate the phishing

attack to the entity that is the target of the attack. This in turn

helps that entity to initiate phishing website take down and

other counter measures, thereby protecting customers. A

simulated experiment also shows that our approach is

computationally efficient and introduces a very small latency

to email message processing.

Appendix A. Conditional Random Field (CRF)

Given a vector of input features x ¼ {x1, x2, . xn} and a vector

of output variables y ¼ {y1, y2, . ym}, a generative model

estimates the joint probability distribution p(y, x) and

a discriminative model estimates the conditional probability

distribution p(yjx). The main difference between the two is

that the discriminative model does not include a model of

p(x). The Conditional Random Field (CRF) is a discriminative,

uni-directed graphical model that models the probability

distribution p(yjx). The nodes can be divided into two disjoint

sets x and y, the observed and output variables, respectively.

Lafferty (2001) defines the probability of a particular label

sequence y given observation sequence x to be a normalized

product of potential functions, each of the form, expressed as

follows:

exp

2
4X

j

ljtj
�
yi�1;yi;x; i

�þX
k

mksk
�
yi;x; i

�35 (A.1)

where, tjðyi�1;yi;x; iÞ is the transition feature function of the

entire observation sequence and labels at positions i and i � 1

in the sequence; sk (yi, x, i) e state feature function of the label

at position i, and the observation sequence; LAMBDAj, MUk e

parameters estimated from training data.

In order to simplify the above equation, the following two

additional expressions are introduced:

s
�
yi; x; i

� ¼ s
�
yi�1; yi; x; i

�
(A.2)

Fjðy; xÞ ¼
Xn
i¼1

fj
�
yi�1; yi; x; i

�
(A.3)

In the above expressions, fjðyi�1; yi; x; iÞ is either a state

function sðyi�1; yi; x; iÞ or a transition function tðyi�1; yi; x; iÞ.
Thus, the probability of y given observed variable x can be

written as follows:

pðyjx; lÞ ¼ 1
ZðxÞexp

0
@X

j

ljFjðy; xÞ
1
A: (A.4)

Z(x) is called the normalization factor. The CRF model

parameters are estimated using log likelihood function,

expressed using the following expression:

http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9138

LðlÞ ¼
X2
4log 1 þ

X
ljFj

�
yðkÞ; xðkÞ�

3
5: (A.5)
k
ZðxðkÞÞ

j

The parameters cannot be determined analytically.

Instead, parameters of CRF are obtained using an iterative

procedure such as iterative scaling or gradient methods

(Lafferty, 2001).
Appendix B. Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) is a natural language pro-

cessing method that discovers topics from a collection of

documents. Documents are represented as random mixtures

over latent topics and each topic is represented by a distribu-

tion over words. LDA (Blei et al., 2003) is built on the founda-

tions of PLSA (Hoffman, 2001). Given parameters a and b, the

LDAmodel is expressed as the joint probability distribution of

a topic mixture q, a set of N topics z, a set of N words w using

the following expression:

pðq; z;wja;bÞ ¼ pðqjaÞ
YN
n¼1

pðznjqÞpðwnjzn;bÞ (B.1)

where, pðznjqÞ is qi for the unique i such that zn ¼ 1: Integrating

over q and summing over z, the marginal distribution of

a document is expressed as follows:

pðwja; bÞ ¼
Z

pðqjaÞ
"aN

n¼1

X
zn

pðznjqÞpðwnjzn; bÞ
#
dq (B.2)

The probability of a corpus D, computed from the product of

marginal probabilities of individual documents, is expressed

as follows:

pðDja; bÞ ¼
YM
d¼1

Z
pðqdjaÞ

"aNd

n¼1

X
zdn

ðpðzdnjqdÞpðwdnjzdn; bÞ
#
dqd (B.3)

The parameters a and b are corpus level parameters

assumed to be sampled once in the process of generating

a corpus. The document level variables qd are sampled once

per document. The word level variables wdn and zdn are

sampled once for each word in the document. Several algo-

rithms have been developed to solve LDA that requires esti-

mation of the posterior probability distribution of hidden topic

variables. It includes expectation-maximization algorithm,

expectation-propagation algorithm, and collapsed Gibbs

sampling (Asuncion, 2009). The performance of the LDA

model on the test dataset is evaluated using perplexity.

Perplexity for a LDA model is computed using the following

expression:

Perplexity ¼ exp

2
64 �

P
d

logpðwdÞP
d

Nd

3
75 (B.4)

where, Nd the number of words in document d and p(wd) is the

per-word topic probability distribution of document d.
Appendix C. AdaBoost

AdaBoost is one of the powerful machine learning algorithms

developed by Freund and Schapire (1999). It is an algorithm for

constructing a strong classifier as a linear combination of

simple weak classifiers. The algorithm is detailed as follows:

Given input training data (x1, y1), (x2, y2),..,(xm, ym), where

xi belongs to feature space X and yi belongs to label set

Y ¼ {�1,þ1} and ‘m’ is the number of training samples:

Step0 : Initializeweightsforthefirstiteration;D1ðiÞ¼1=m (C.1)

For iteration index t ¼ 1,..T, where T is the maximum

number of iterations,

Step 1: Train a weak learner using distribution Dt.

Step 2: Obtain weak hypothesis:

ht : X/f�1;þ1g (C.2)

with error:

εt ¼
X

i:htðxiÞsyi

DtðiÞ (C.3)

Step 3: Compute:

at ¼ 1
2
ln

�
1� εt

εt

�
(C.4)

Step 4: Updates weights for this step:

Dtþ1ðiÞ ¼
DtðiÞexp

� � atyihtðxiÞ
�

Zt
(C.5)

where Zt is the normalization factor.

The final strong classifier, which is a weighted majority of

W weak hypothesis, is given as:

HðxÞ ¼ sgn

 X
w˛W

awhwðxÞ
!

(C.6)

The basic AdaBoost algorithm has been further been

extended to create two variations, namely, AdaBoost.MH and

AdaBoost.MR. AdaBoost.MH optimization criteria is to mini-

mize the Hamming loss, while that of AdBoost.MR is

to minimize the ranking loss. Also, the original binary classifi-

cation AdaBoost algorithm, has been expanded for multi-class

classification problems in AdaBoost.M1 and AdaBoost.M2.

r e f e r e n c e s

APWG. Anti phishing working group [accessed 30.09.12], http://
www.antiphishing.org; 2012.

Asuncion A, Welling M, Smyth P, Teh YW. On smoothing and
inference for topic models. In: Proc. of the twenty-fifth annual
conference on uncertainty in artificial intelligence, Corvalis,
OR; 2009. p. 27e34.

Autonomic Computing [accessed 20.06.12], http://en.wikipedia.
org/wiki/Autonomic_computing; 2012.

Blei DM, Ng AY, Jordan MI. Latent Dirichlet allocation. Journal of
Machine Learning Research 2003;3:993e1022.

CallingID. Your protection from identity theft, fraud, scams and
malware. Available from: http://www.callingid.com/Default.
aspx; 2011 [accessed 21.07.11].

http://www.antiphishing.org
http://www.antiphishing.org
http://en.wikipedia.org/wiki/Autonomic_computing
http://en.wikipedia.org/wiki/Autonomic_computing
http://www.callingid.com/Default.aspx
http://www.callingid.com/Default.aspx
http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

c om p u t e r s & s e c u r i t y 3 4 (2 0 1 3) 1 2 3e1 3 9 139

CloudMark. Available from: http://www.cloudmark.com/en/
products/cloudmark-desktopone/index; 2011 [accessed 26.07.11].

Cordero A, Blain T. Catching phish: detecting phishing attacks
from rendered website images. Available from: http://
citeseerx.ist.psu.edu/viewdoc/download?doi¼10.1.1.92.
9084&rep¼rep1&type¼pdf; 2006 [accessed 26.07.11].

Cortez P, Correia A, Sousa P, Rocha M, Rio M. Spam filtering using
network-level properties, advances in data mining,
applications and theoretical aspects. LNCS 2010;6171:476e89.

DNSBL. Spam database lookup. Available from: http://www.
dnsbl.info/; 2011 [accessed 21.07.11].

DomainKey. Tools and library for email servers and clients.
Available from: http://domainkeys.sourceforge.net/; 2006
[accessed 21.07.11].

eBay Toolbar. Available from: http://download.cnet.com/eBay-
Toolbar/3000-12512_4-10153544.html?tag¼contentMain;
downloadLinks; 2007 [accessed 21.07.11].

Feamster N. Fighting spam, phishing, and online scams at the
network level. In: Proceedings of the 4th Asian conference on
internet engineering; 2008. p. 39e40.

Fette I, Sadeh N, Tomasic A. Learning to detect phishing emails. In:
Proceedings of the 16th international conference on world wide
web; 2007. p. 649e56.

FirePhish. Anti-phishing extension. Available from: https://
addons.mozilla.org/en-US/firefox/addon/firephish-anti-
phishing-extens/; 2006 [accessed 26.07.11].

Freund Y, Schapire R. A short introduction to boosting. Journal-
Japanese Society For Artificial Intelligence 1999;14:771e80.

Hofmann T. Unsupervised learning by probabilistic latent
semantic analysis. Machine Learning 2001;42:177e96.

IE Phishing Filter. Available from: http://support.microsoft.com/
kb/930168; 2011 [accessed 21.07.11].

Jagatic TN, Johnson TN, Jakobsson M, Menczer F. N.A. Social
phishing. Communications of the ACM 2007;50:94e100.

Lafferty J. Conditional random fields: probabilistic models for
segmenting and labeling sequence data. In: Machine learning-
international workshop; 2001. p. 282e9.

Levenshtein Distance. Available from: http://en.wikipedia.org/
wiki/Levenshtein_distance; 2011 [accessed July 26.07.11].

MailFrontier. Phishing IQ test e UK edition. Available from:
http://survey.mailfrontier.com/survey/phishing_uk.html;
2011 [accessed 21.07.11].

MapReduce [accessed 01.06.12], http://en.wikipedia.org/wiki/
MapReduce; 2012.

MILTER [accessed 10.09.12], http://www.milter.org; 2012.
National Data. Deter. Detect. Defend. Avoid ID theft. Available

from: http://www.ftc.gov/bcp/edu/microsites/idtheft/
reference-desk/national-data.html; 2009 [Accessed 21.07.11].

Netcraft. Anti-phishing toolbar. Available from: http://toolbar.
netcraft.com/; 2011 [accessed 26.07.11].

PC World. Google says phishers stole e-mail from US officials,
others. Available from: http://www.pcworld.com/
businesscenter/article/229202/google_says_stole_email_from_
us_officials_others.html; 2011 [accessed 21.07.11].

PhishingCorpus. Available from: http://monkey.org/wjose/wiki/
doku.php; 2006 [accessed 21.07.11].

PhishTank. Available from: http://www.phishtank.com; 2012
[accessed 01.06.12].
PorterStemmer. The porter stemming algorithm. Available from:
http://tartarus.org/wmartin/PorterStemmer/; 2006 [Accessed
26.07.11].

Postfix, http://www.postfix.org; 2012 [accessed 10.09.12].
Ramanathan V, Wechsler H. phishGILLNET e phishing detection

methodology using probabilistic latent semantic analysis,
AdaBoost and co-training. EURASIP Journal on Information
Security 2012;2012:1.

Robila SA, Ragucci JW. Don’t be a phish: steps in user education.
In: Proceedings of the 11th annual SIGCSE conference on
innovation and technology in computer science education;
2006. p. 237e41.

Sender ID. Email authentication technology. Available from:
http://www.microsoft.com/mscorp/safety/technologies/
senderid/default.mspx; 2006 [accessed 21.07.11].

Snort. Network intrusion prevention and detection system.
Available from: http://www.snort.org/; 2011 [accessed 21.07.11].

SPAM Archive. Public email corpus. Available from: http://
untroubled.org/spam/; 2012 [accessed 30.04.12].

SpamAssassin. Open source email filter. Available from: http://
spamassassin.apache.org/; 2011 [accessed 19.07.11].

SpamAssassin PublicCorpus. Available from: http://
spamassassin.apache.org/publiccorpus/; 2006 [accessed
21.07.11].

Sperotto A, Vliek G, Sadre R, Pras A. Detecting spam at the
network level, the internet of the future. LNCS 2009;5733:
208e16.

SpoofGuard. Available from: http://crypto.stanford.edu/
SpoofGuard/; 2004 [accessed 21.07.11].

Stanford NER. Named entity recognition and information
extraction. Available from: http://nlp.stanford.edu/ner/index.
shtml; 2011 [accessed 21.07.11].

Stanford TMT. Topic modeling toolbox. Available from: http://nlp.
stanford.edu/software/tmt/tmt-0.4/; 2012 [accessed 30.04.12].

SURBL. URI Reputation data. Available from: http://www.surbl.
org/; 2011 [accessed 21.07.11].

URIBL. Realtime URI blacklist. Available from: http://www.uribl.
com/; 2011 [accessed July 2011].

WordNet. A lexical database for English. Available from: http://
wordnet.princeton.edu/; 2006 [accessed 26.07.11].

WEKA. Data mining with open source machine learning software
in Java. Available from: http://www.cs.waikato.ac.nz/ml/
weka/; 2009 [accessed 21.07.11].

Venkatesh Ramanathan earned his PhD in Computer Science
from George Mason University, Fairfax, VA, USA, in 2012. His
expertise and research interests include machine learning,
natural language processing, biometrics, information retrieval,
computer security, and privacy.

Harry Wechsler is a Professor at the Department of Computer
Science, George Mason University, Fairfax, VA, USA. He earned his
PhD in Computer Science from the University of California, Irvine,
in 1975. His research interests include biometrics, computer vision,
data mining, humanecomputer interfaces, intelligent systems,
data mining, machine learning, pattern recognition, computer
security, and privacy. Dr.Wechsler has authored over 280 scientific
papers and several books. He is a Fellow of IEEE and IAPR.

http://www.cloudmark.com/en/products/cloudmark-desktopone/index
http://www.cloudmark.com/en/products/cloudmark-desktopone/index
http://citeseerx.ist.psu.edu/viewdoc/download%3fdoi%3d10.1.1.92.9084%26rep%3drep1%26type%3dpdf
http://citeseerx.ist.psu.edu/viewdoc/download%3fdoi%3d10.1.1.92.9084%26rep%3drep1%26type%3dpdf
http://citeseerx.ist.psu.edu/viewdoc/download%3fdoi%3d10.1.1.92.9084%26rep%3drep1%26type%3dpdf
http://citeseerx.ist.psu.edu/viewdoc/download%3fdoi%3d10.1.1.92.9084%26rep%3drep1%26type%3dpdf
http://citeseerx.ist.psu.edu/viewdoc/download%3fdoi%3d10.1.1.92.9084%26rep%3drep1%26type%3dpdf
http://citeseerx.ist.psu.edu/viewdoc/download%3fdoi%3d10.1.1.92.9084%26rep%3drep1%26type%3dpdf
http://www.dnsbl.info/
http://www.dnsbl.info/
http://domainkeys.sourceforge.net/
http://download.cnet.com/eBay-Toolbar/3000-12512_4-10153544.html%3ftag%3dcontentMain;downloadLinks
http://download.cnet.com/eBay-Toolbar/3000-12512_4-10153544.html%3ftag%3dcontentMain;downloadLinks
http://download.cnet.com/eBay-Toolbar/3000-12512_4-10153544.html%3ftag%3dcontentMain;downloadLinks
http://download.cnet.com/eBay-Toolbar/3000-12512_4-10153544.html%3ftag%3dcontentMain;downloadLinks
https://addons.mozilla.org/en-US/firefox/addon/firephish-anti-phishing-extens/
https://addons.mozilla.org/en-US/firefox/addon/firephish-anti-phishing-extens/
https://addons.mozilla.org/en-US/firefox/addon/firephish-anti-phishing-extens/
http://support.microsoft.com/kb/930168
http://support.microsoft.com/kb/930168
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
http://survey.mailfrontier.com/survey/phishing_uk.html
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/MapReduce
http://www.milter.org
http://www.ftc.gov/bcp/edu/microsites/idtheft/reference-desk/national-data.html
http://www.ftc.gov/bcp/edu/microsites/idtheft/reference-desk/national-data.html
http://toolbar.netcraft.com/
http://toolbar.netcraft.com/
http://www.pcworld.com/businesscenter/article/229202/google_says_stole_email_from_us_officials_others.html
http://www.pcworld.com/businesscenter/article/229202/google_says_stole_email_from_us_officials_others.html
http://www.pcworld.com/businesscenter/article/229202/google_says_stole_email_from_us_officials_others.html
http://monkey.org/%7Ejose/wiki/doku.php
http://monkey.org/%7Ejose/wiki/doku.php
http://monkey.org/%7Ejose/wiki/doku.php
http://www.phishtank.com
http://tartarus.org/%7Emartin/PorterStemmer/
http://tartarus.org/%7Emartin/PorterStemmer/
http://www.postfix.org
http://www.microsoft.com/mscorp/safety/technologies/senderid/default.mspx
http://www.microsoft.com/mscorp/safety/technologies/senderid/default.mspx
http://www.snort.org/
http://untroubled.org/spam/
http://untroubled.org/spam/
http://spamassassin.apache.org/
http://spamassassin.apache.org/
http://spamassassin.apache.org/publiccorpus/
http://spamassassin.apache.org/publiccorpus/
http://crypto.stanford.edu/SpoofGuard/
http://crypto.stanford.edu/SpoofGuard/
http://nlp.stanford.edu/ner/index.shtml
http://nlp.stanford.edu/ner/index.shtml
http://nlp.stanford.edu/software/tmt/tmt-0.4/
http://nlp.stanford.edu/software/tmt/tmt-0.4/
http://www.surbl.org/
http://www.surbl.org/
http://www.uribl.com/
http://www.uribl.com/
http://wordnet.princeton.edu/
http://wordnet.princeton.edu/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://dx.doi.org/10.1016/j.cose.2012.12.002
http://dx.doi.org/10.1016/j.cose.2012.12.002

	Phishing detection and impersonated entity discovery using Conditional Random Field and Latent Dirichlet Allocation
	1. Introduction
	2. Background
	3. Methodology
	3.1. Stage I – feature extraction (CRF, LDA)
	3.1.1. Stage I(a) – named entity feature extraction (CRF)
	3.1.1.1. Phishing email
	3.1.1.2. Non-phishing email

	3.1.2. Stage I(b) – feature extraction (LDA)
	3.1.2.1. Phishing email
	3.1.2.2. Phishing email that contains non-phishing content in white font

	3.2. Stage II – phishing classifier (AdaBoost)
	3.3. Stage III – impersonated entity discovery (CRF)

	4. Architecture
	5. Experiments
	5.1. Datasets and data preparation
	5.2. Training and testing
	5.3. Performance measures
	5.4. Results

	6. Autonomic computing
	7. Self-managing shield
	7.1. SMTP server
	7.2. Online evaluator
	7.3. Mail deposit
	7.4. Offline modeler
	7.5. Autonomic engine
	7.6. Computational efficiency

	8. Discussion
	8.1. Strengths of the proposed research methodology
	8.2. Future enhancements
	8.2.1. Robust parser
	8.2.2. Integrated CRF and LDA
	8.2.3. Scalability

	9. Conclusions
	Appendix A. Conditional Random Field (CRF)
	Appendix B. Latent Dirichlet Allocation (LDA)
	Appendix C. AdaBoost
	References

