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Security and Privacy in Cloud Computing
Zhifeng Xiao and Yang Xiao, Senior Member, IEEE

Abstract—Recent advances have given rise to the popularity
and success of cloud computing. However, when outsourcing the
data and business application to a third party causes the security
and privacy issues to become a critical concern. Throughout the
study at hand, the authors obtain a common goal to provide
a comprehensive review of the existing security and privacy
issues in cloud environments. We have identified five most
representative security and privacy attributes (i.e., confidentiality,
integrity, availability, accountability, and privacy-preservability).
Beginning with these attributes, we present the relationships
among them, the vulnerabilities that may be exploited by
attackers, the threat models, as well as existing defense strategies
in a cloud scenario. Future research directions are previously
determined for each attribute.

Index Terms—cloud computing, security, privacy, trust, confi-
dentiality, integrity, accountability, availability.

I. INTRODUCTION

CLOUD computing has begun to emerge as a hotspot
in both industry and academia; It represents a new

business model and computing paradigm, which enables on-
demand provisioning of computational and storage resources.
Economic benefits consist of the main drive for cloud com-
puting due to the fact that cloud computing offers an effective
way to reduce capital expenditure (CapEx) and operational
expenditure (OpEx). The definition of cloud computing has
been given in many literatures [1], [2], [3], [10], but nothing
has gained wide recognition. Throughout this working text,
we cite [1], which defines cloud computing as: ”A large-scale
distributed computing paradigm that is driven by economies of
scale, in which a pool of abstracted, virtualized, dynamically-
scalable, managed computing power, storage, platforms, and
services are delivered on demand to external customers over
the Internet.”

A. cloud architecture

Fig. 1 depicts the general architecture of a cloud platform,
which is also called cloud stack [61]. Building upon hardware
facilities (usually supported by modern data centers), cloud
services may be offered in various forms from the bottom
layer to top layer. In the cloud stack, each layer represents one
service model. Infrastructure-as-a-Service (IaaS) is offered in
the bottom layer, where resources are aggregated and managed
physically (e.g., Emulab) or virtually (e.g., Amazon EC2), and
services are delivered in forms of storage (e.g., GoogleFS),
network (e.g., Openflow), or computational capability (e.g.,

Manuscript received 14 November 2011; revised 24 March 2012
The authors are with Department of Computer Science, The University of

Alabama,Tuscaloosa, AL 35487-0290 USA (e-mail: yangxiao@ieee.org).
Digital Object Identifier 10.1109/SURV.2012.060912.00182

Hardware

A
dm

inistration: D
eploym

ent, C
onfiguration, M

onitoring, Life-cycle M
anagem

ent

B
usiness Support: M

etering, B
illing, A

uthentication, U
ser M

anagem
ent

P
aaS

Applications (e.g., Google Docs)

Composite Application Services
(e.g., Opensocial)

Basic Application Services
(e.g., OpenId)

Higher Infrastructure Services
(e.g., Google Bigtable)

Resource Set

Programming Environment
(e.g., Django)

Execution Environment
(e.g., Google App Engine)

Basic Infrastructure Service

Computational 
(e.g., Hadoop MapReduce)

Storage (e.g., GoogleFS)

Network (e.g., OpenFlow)

Virtual Resource Set 
(e.g., Amazon EC2)

Physical Resource Set (e.g., Emulab)

Fig. 1. Architecture of Cloud Computing [61]

Hadoop MapReduce). The middle layer delivers Platform-as-
a-Service (PaaS), in which services are provided as an envi-
ronment for programming (e.g., Django) or software execution
(e.g., Google App Engine). Software as a Service (SaaS)
locates in the top layer, in which a cloud provider further con-
fines client flexibility by merely offering software applications
as a service. Apart from the service provisioning, the cloud
provider maintains a suite of management tools and facilities
(e.g., service instance life-cycle management, metering and
billing, dynamic configuration) in order to manage a large
cloud system.
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B. Cloud Characteristics and Security Challenges

The Cloud Security Alliance has summarized five essential
characteristics [6] that illustrate the relation to, and differences
from, traditional computing paradigm.

• On-demand self-service – A cloud customer may uni-
laterally obtain computing capabilities, like the usage
of various servers and network storage, as on demand,
without interacting with the cloud provider.

• Broad network access – Services are delivered across
the Internet via a standard mechanism that allows cus-
tomers to access the services through heterogeneous thin
or thick client tools (e.g., PCs, mobile phones, and
PDAs).

• Resource pooling – The cloud provider employs a multi-
tenant model to serve multiple customers by pooling
computing resources, which are different physical and
virtual resources dynamically assigned or reassigned
according to customer demand. Examples of resources
include storage, processing, memory, network bandwidth,
and virtual machines.

• Rapid elasticity – Capabilities may be rapidly and
elastically provisioned in order to quickly scale out or
rapidly released to quickly scale in. From customers’
point of view, the available capabilities should appear to
be unlimited and have the ability to be purchased in any
quantity at any time.

• Measured service – The service purchased by customers
can be quantified and measured. For both the provider and
customers, resource usage will be monitored, controlled,
metered, and reported.

Cloud computing becomes a successful and popular busi-
ness model due to its charming features. In addition to the
benefits at hand, the former features also result in serious
cloud-specific security issues. The people whose concern is
the cloud security continue to hesitate to transfer their business
to cloud. Security issues have been the dominate barrier of the
development and widespread use of cloud computing. There
are three main challenges for building a secure and trustworthy
cloud system:

• Outsourcing – Outsourcing brings down both capital
expenditure (CapEx) and operational expenditure for
cloud customers. However, outsourcing also means that
customers physically lose control on their data and tasks.
The loss of control problem has become one of the root
causes of cloud insecurity. To address outsourcing secu-
rity issues, first, the cloud provider shall be trustworthy
by providing trust and secure computing and data storage;
second, outsourced data and computation shall be veri-
fiable to customers in terms of confidentiality, integrity,
and other security services. In addition, outsourcing will
potentially incur privacy violations, due to the fact that
sensitive/classified data is out of the owners’ control.

• Multi-tenancy – Multi-tenancy means that the cloud
platform is shared and utilized by multiple customers.
Moreover, in a virtualized environment, data belonging to
different customers may be placed on the same physical
machine by certain resource allocation policy. Adver-
saries who may also be legitimate cloud customers may

exploit the co-residence issue. A series of security issues
such as data breach [5], [17], [29], computation breach
[5], flooding attack [26], etc., are incurred. Although
Multi-tenancy is a definite choice of cloud venders due to
its economic efficiency, it provides new vulnerabilities to
the cloud platform. Without changing the multi-tenancy
paradigm, it is imperative to design new security mech-
anisms to deal with the potential risks.

• Massive data and intense computation – cloud comput-
ing is capable of handling mass data storage and intense
computing tasks. Therefore, traditional security mecha-
nisms may not suffice due to unbearable computation
or communication overhead. For example, to verify the
integrity of data that is remotely stored, it is impractical
to hash the entire data set. To this end, new strategies
and protocols are expected.

C. Supporting techniques

Cloud computing has leveraged a collection of existing
techniques, such as Data Center Networking (DCN), Virtual-
ization, distributed storage, MapReduce, web applications and
services, etc.
Modern data center has been practically employed as an

effective carrier of cloud environments. It provides massive
computation and storage capability by composing thousands
of machines with DCN techniques.
Virtualization technology has been widely used in cloud

computing to provider dynamic resource allocation and service
provisioning, especially in IaaS. With virtualization, multiple
OSs can co-reside on the same physical machine without
interfering each other.
MapReduce [53] is a programming framework that sup-

ports distributed computing on mass data sets. This breaks
large data sets down into small blocks that are distributed to
cloud servers for parallel computing. MapReduce speeds up
the batch processing on massive data, which makes this be-
come the preference of computation model for cloud venders.

Apart from the benefits, the former techniques also present
new threats that have the capability to jeopardize cloud se-
curity. For instance, modern data center suffers bandwidth
under-provisioning problems [24], which may be exploited and
may consequently perform a new DOS attack [20] due to the
shared infrastructure in cloud environments. Virtual Machine
(VM) technique also has the capability to enable adversaries
to perform cross-VM attacks [17] and timing attacks [60] due
to VM co-residence. Further details are to be discussed in
Section II and Section III.

D. Attribute-driven Methodology

Security and privacy issues in cloud environments have been
studied and surveyed in prior literatures. To better understand
these issues and their connections, researchers have employed
various criteria to build a comprehensive picture.

Gruschka et al. [32] suggests modeling the security ecosys-
tem based on the three participants of cloud system: service
user, service instance, and the cloud provider. The authors
classify the attack into six categories (i.e., user to service,
service to user, user to cloud, cloud to user, service to cloud,
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and cloud to service). This taxonomy is suggested to describe
the threats and vulnerabilities presented in cloud computing.
Subashini et al. [39] have summarized the cloud security issues
based on service delivery models (i.e., IaaS, PaaS, SaaS).
Vaquero et al. [4] have given another comprehensive survey
according to the seven main threats presented in [7]. Grobauer
et al. [70] have pointed out the importance to distinguish
general security issues from cloud-specific security issues. In
addition, cloud computing vulnerabilities are discussed and
summarized from various aspects.

In this paper, we consider the cloud environment as a
new computing platform to which the classic methodology
of security research can be applied as well. Therefore, we
determine to employ an attribute-driven methodology to con-
duct our review. We employ the ecosystem of cloud secu-
rity and privacy in view of five security/privacy attributes
(i.e., confidentiality, integrity, availability, accountability, and
privacy-preservability), shown in Fig. 2, that are the most
representative ones in current research advances. Some re-
searchers regard privacy as one component of security, while
in this paper, we separate privacy from security due to its
importance and specialty in cloud environments. Privacy is
considered as highly relevant to security, as well as other
security attributes that have positive or negative influences on
privacy. The security ecosystem is generic and is applicable
to any computer and networked systems. In order to build
a comprehensive picture of cloud security and privacy, we
follow the semantics of the ecosystem to organize this survey.
Starting with the five attributes, we have discussed the vul-
nerabilities that can be exploited by adversaries. We have also
surveyed the threat models that attackers can use to jeopardize
the security objectives. Some threats and attacks have been
undertaken properly, while others are still remaining to be
solved. These aspects are also related security and privacy in
systems other than cloud computing [99], [100], [101], [102],
[103], [104], [105], [106], [107], [108], [109], [110], [111],
[112], [113], [114], [115], [116], [117], [118], [119], [120],
[121], [122], [123].

E. Notation System

To better demonstrate the connection among vulnerability,
threat, and defense mechanism. We employ the following
notation system: let Vi denote a type of vulnerability, Ti.j

denote a type of threat that takes advantage of Vi, and Di.j.k

denote a defense mechanism that deals with Ti.j . For instance,
vulnerability V1 may be exploited by adversaries in order to
create a threat model T1.1, which shall be patched by security
solution D1.1.1.

F. Cloud Vulnerabilities

1) V1 – VM co-residence: In cloud computing, co-residence
(or co-tenancy) means that multiple independent customers
share the same physical infrastructure. Concretely, virtual
machines belonging to different customers may be placed
in the same physical machine. VM co-residence has raised
certain security issues, such as Cross-VM attack [17] and
Malicious SysAdmin [60].

Security Privacy

Confidentiality

Integrity

Availability

Accountability

Privacy-preservability

Threats

Defense

Vulnerabilities

Fig. 2. Ecosystem of Cloud Security and Privacy

2) V2 – Loss of Physical Control: Cloud customers have
their data and program outsourced to cloud servers. As a result,
owners lose direct control on the data sets and programs.
Loss of physical control means that customers are unable
to resist certain attacks and accidents. For example, data or
software may be altered, lost, or even deleted; in addition, it
is difficult and impractical to ensure data/computation integrity
and confidentiality with traditional methods.
3) V3 – Bandwidth Under-provisioning: A traditional

DOS/DDOS attack does exist in cloud computing, and relative
solutions have been given in prior researches [21], [22].
Specific to cloud computing, there is a new type of DOS attack
[20] that takes advantage of the current under-provisioned
cloud-computing infrastructure. According to Cisco’s design
guide [24], a data center is usually designed to be under-
provisioned with a factor of 2.5:1 to 8:1, meaning that the
actual network capacity is much less than the aggregate
capacity of the hosts located in the same subnet.
4) V4 – Cloud Pricing Model: Cloud computing adheres to

the pay-as-you-go pricing model [10] that determines the cost
of services in terms of metrics such as server hours, band-
width, storage, etc. Since all cloud customers are financially
responsible for the services they use, attackers always have
incentives to harass the billing process by exploiting the pric-
ing model. For example, Economic Denial of Sustainability
(EDoS) attack [19] manipulates the utility pricing model and
causes unmanageable costs for cloud customers.

The remainder of this paper is structured as follows: Sec-
tions II to VI discuss confidentiality, integrity, availability,
accountability, and privacy in cloud computing, respectively;
finally, the paper is concluded in Section VII.

II. CLOUD CONFIDENTIALITY

When dealing with cloud environments, confidentiality im-
plies that a customer’s data and computation tasks are to
be kept confidential from both the cloud provider and other
customers. Confidentiality remains as one of the greatest
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concerns with regards to cloud computing. This is largely due
to the fact that customers outsource their data and computation
tasks on cloud servers, which are controlled and managed by
potentially untrustworthy cloud providers.

A. Threats to Cloud Confidentiality

1) T1.1 – Cross-VM attack via Side Channels: Ristenpart
et al. [17] demonstrates the existence of Cross-VM attacks in
an Amazon EC2 platform. A Cross-VM attack exploits the
nature of multi-tenancy, which enables that VMs belonging
to different customers may co-reside on the same physical
machine. Aviram et al. [60] regard timing side-channels as
an insidious threat to cloud computing security due to the
fact that a) the timing channels pervasively exist and are
hard to control due to the nature of massive parallelism and
shared infrastructure; b) malicious customers are able to steal
information from other ones without leaving a trail or raising
alarms. There are two main steps to practically initiate such
an attack:

• Step 1: placement. An adversary needs to place a
malicious VM on the physical server where the target
client’s VM is located. To achieve this, an adversary
should first determine where the target VM instance is
located; this can be done with network probing tools
such as nmap, hping, wget, etc. An adversary should also
be able to determine if there are two VM instances; 1)
comparing Domain0’s IP addresses to see if they match,
and 2) measuring the small packet round-trip time can do
this check. The correctness of co-resident checks can be
verified by transmitting messages between instances via
a covert channel. After all the prep work, a malicious
VM instance must be created on the target physical
machine by specifying a set of parameters (e.g., zone,
host type); there are two basic strategies to launch such a
VM: 1) brute-force strategy, which simply launches many
instances and checks co-residence with the target; 2) an
adversary can exploit the tendency that EC2 launches new
instances on the same small set of physical machines. The
second strategy takes advantage of EC2’s VM assigning
algorithm by starting a malicious VM after a victim VM
is launched so that they will likely be assigned to the
same physical server; this approach surely has better
success rate of placement.

• Step 2: extraction. After step 1, a malicious VM has
co-resided with the victim VM. Since the malicious VM
and the victim are sharing certain physical resources, such
as data cache, network access, CPU branch predicators,
CPU pipelines, etc., there are many ways an adversary
can employ attacks: 1) measuring a cache usage that can
estimate the current load of the server; 2) estimating a
traffic rate that can obtain the visitor count or even the
frequently requested pages; 3) a keystroke timing attack
that can steal a victim’s password by measuring time
between keystrokes.

As follow-up work, various covert channels are investigated
and in-depth analysis is provided. Attackers can easily exploit
L2 cache, due to its high bandwidth. Xu et al. have particularly

explored the L2 cache covert channel with quantitative as-
sessment [71]. It has been demonstrated that even the channel
bit rate is higher than the former work [17], the channel’s
ability to exfiltrate useful information is still limited, and it
is only practical to leak small secrets such as private keys.
Okamura et al. developed a new attack, which demonstrates
that CPU load can also be used as a covert channel to encode
information [72]. Memory disclosure attack [81], [82] is
another type of cross-VM attack. In a virtualized environment,
memory deduplication is a technique to reduce the utilization
of physical memory by sharing the memory pages with same
contents. A memory disclosure attack is capable of detecting
the existence of an application or a file on a co-residing
VM by measuring the write access time that differs between
deduplicated pages and regular ones.
2) T1.2 – Malicious SysAdmin: The Cross-VM attack dis-

cusses how others may violate confidentiality cloud customers
that co-residing with the victim, although it is not the only
threat. Privileged sysadmin of the cloud provider can perform
attacks by accessing the memory of a customer’s VMs. For
instance, Xenaccess [30] enables a sysadmin to directly access
the VM memory at run time by running a user level process
in Domain0.

B. Defense Strategies

Approaches to address cross-VM attack fall into six cate-
gories: a) placement prevention intends to reduce the success
rate of placement; b) physical isolation enforcement [80];
c) new cache designs [75], [76], [77], [78]; d) fuzzy time
intends to weaken malicious VM’s ability to receive the
signal by eliminating fine-grained timers [73]; e) forced VM
determinism [60] ensures no timing or other non-deterministic
information leaking to adversaries; f) cryptographic implemen-
tation of timing-resistant cache [79]. Since c), d), e), and f)
are not cloud-specific defense strategies, we do not include
details in this section.
1) D1.1.1 – Placement Prevention: In order to reduce the

risk caused by shared infrastructure, a few suggestions to
defend the attack in each step are given in [17]. For instance,
cloud providers may obfuscate co-residence by having Dom0
not respond in traceroute, and/or by randomly assigning in-
ternal IP addresses to launched VMs. To reduce the success
rate of placement, cloud providers might let the users decide
where to put their VMs; however, this method does not prevent
a brute-force strategy.
2) D1.1.2 – Co-residency Detection: The ultimate solution

of cross-VM attack is to eliminate co-residency. Cloud cus-
tomers (especially enterprises) may require physical isolation,
which can even be written into the Service Level Agreements
(SLAs). However, cloud vendor may be reluctant to abandon
virtualization that is beneficial to cost saving and resource
utilization. One of the left options is to share the infrastructure
only with ”friendly” VMs, which are owned by the same
customer or other trustworthy customers. To ensure physical
isolation, a customer should be enabled to verify its VMs’
exclusive use of a physical machine. HomeAlone is a system
[80] that detects co-residency by employing a side-channel
(in the L2 memory cache) as a detection tool. The idea is to



XIAO and XIAO: SECURITY AND PRIVACY IN CLOUD COMPUTING 847

silence the activity of ”friendly” VMs in a selected portion of
L2 cache for a certain amount of time, and then measure the
cache usage to check if there is any unexpected activity, which
indicates that the physical machine is co-resided by another
customer.
3) D1.1.3 – NoHype: NoHype ([83], [84]) attempts to

minimize the degree of shared infrastructure by removing the
hypervisor while still retaining the key features of virtual-
ization. The NoHype architecture provides a few features: i)
the ”one core per VM” feature prevents interference between
VMs, eliminates side channels such as L1 cache, and retains
multi-tenancy, since each chip has multiple cores; ii) memory
partition restricts each VM’s memory access on a assigned
range; iii) dedicated virtual I/O devices enables each VM to
be granted direct access to a dedicated virtual I/O device. No-
Hype has significantly reduced the hypervisor attack surface,
and increased the level of VM isolation. However, NoHype
requires to change hardware, making it less practical when
consider applying it to current cloud infrastructures.
4) D1.2.1 – Trusted Cloud Computing Platform: Santos et

al. [29] present a trusted cloud-computing platform (TCCP),
which offers a closed box execution environment for IaaS
services. TCCP guarantees confidential execution of guest
virtual machines. It also enables customers to attest to the
IaaS provider and to determine if the service is secure before
their VMs are launched into the cloud.

The design goals of TCCP are: 1) to confine the VM
execution inside the secure perimeter; 2) that a sysadmin
with root privileges is unable to access the memory of a
VM hosted in a physical node. TCCP leverages existing
techniques to build trusted cloud computing platforms. This
focuses on solving confidentiality problems for clients’ data
and for computation outsourced to the cloud. With TCCP, the
sysadmin is unable to inspect or tamper with the content of
running VMs.
5) Other opinions: retaining data control back to customer:

Considering the customer’s fear of losing the data control in
cloud environments, Descher et al. [40] propose to retain data
control for the cloud customers by simply storing encrypted
VMs on the cloud servers. Encrypted VM images guarantee
rigorous access control since only the authorized users known
as key-holders are permitted access. Due to the encryption, the
data cannot be mounted and modified within the cloud without
an access key, assuring the confidentiality and integrity. This
approach offers security guarantees before a VM is launched;
however, there are ways to attack the VM during running time
[30] and to jeopardize the data and computation.

C. Summary and Open issues

Regarding confidentiality, cross-VM attack and malicious
SysAdmin mainly threaten a cloud system; both threats
take advantage of the vulnerability of virtualization and co-
residence. Other tenants perform cross-VM attack, whereas
the malicious SysAdmin is inside attack from cloud vender.
Defending these threats is not a trivial task due to the following
facts: 1) various side channels and other shared components
can be exploited, and defending each of them is not an easy
job; 2) There are a few open issues to be explored:

• Co-residency detection is considered as a promising tech-
nique since customers should be able to check whether
the physical isolation is well enforced. HomeAlone [80]
has the ability to achieve accuracy of detection on L2
cache side channels. However, besides L2 cache, other
side channels may be exploited as well. Therefore, in
order to provide thorough detection of co-residence, a
suite of detection methods targeting on various side
channels should be developed.

• NoHype has opened another window to deal with cross-
VM threat. However, current commodity hardware im-
poses limitations to implement NoHype. Additionally,
live VM migration is not well supported by this new
architecture. Therefore, before making a real step for-
ward, researchers need to address the hardware changes
to accommodate NoHype and to maintain more features
for VM management.

III. CLOUD INTEGRITY

Similar to confidentiality, the notion of integrity in cloud
computing concerns both data integrity and computation in-
tegrity. Data integrity implies that data should be honestly
stored on cloud servers, and any violations (e.g., data is lost,
altered, or compromised) are to be detected. Computation
integrity implies the notion that programs are executed without
being distorted by malware, cloud providers, or other mali-
cious users, and that any incorrect computing will be detected.

A. Threats to Cloud Integrity

1) T2.1 – data loss/manipulation: In cloud storage, applica-
tions deliver storage as a service. Servers keep large amounts
of data that have the capability of being accessed on rare
occasions. The cloud servers are distrusted in terms of both
security and reliability [14], which means that data may be lost
or modified maliciously or accidentally. Administration errors
may cause data loss (e.g., backup and restore, data migration,
and changing memberships in P2P systems [11]). Additionally,
adversaries may initiate attacks by taking advantage of data
owners’ loss of control over their own data.
2) T2.2 – dishonest computation in remote servers: With

outsourced computation, it is difficult to judge whether the
computation is executed with high integrity. Since the compu-
tation details are not transparent enough to cloud customers,
cloud servers may behave unfaithfully and return incorrect
computing results; they may not follow the semi-honest model.
For example, for computations that require large amount of
computing resources, there are incentives for the cloud to
be ”lazy” [85]. On the other hand, even the semi-honest
model is followed, problems may arise when a cloud server
uses outdated, vulnerable code, has misconfigured policies
or service, or has been previously attacked with a rootkit,
triggered by malicious code or data [86].

B. Defense Strategies

1) D2.2.1 – Provable Data Possession (PDP): Integrity
checking on data is a long-term research topic [62], [68].
However, traditional methods cannot be properly adopted
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to tackle the challenges of integrity checking presenting in
cloud storage. The main challenge of integrity checking is
that tremendous amounts of data are remotely stored on
untrustworthy cloud servers; as a result, methods that require
hashing for the entire file become prohibitive. In addition, it is
not feasible to download the file from the server and perform
an integrity check due to the fact that it is computationally
expensive as well as bandwidth consuming. Each of the former
notions is not acceptable in cloud environments.

Provable Data Possession, referred to as (PDP) [11], [12],
[14], [15], becomes employed through the process of checking
the data integrity with cloud storage in order to answer the
question, ”Is it possible for customers to be sure that the
outsourced data is honestly stored in cloud?”
a) A Naive Method
For comparison purposes, a naive method is given in [12].

This idea consists of the client computing a hash value for file
F with a key k (i.e., h(k, F )) and subsequently sending F to
the server. Once the client finds a necessity to check the file,
it releases k and sends k to the server, which is subsequently
asked to re-compute the hash value, based on the F and k;
after this, the server replies to the client with the hash result for
comparison. The client can initiate multiple checks by keeping
different keys and hash values. This approach provides strong
proof that the server still retains F . However, the negative
aspect is the high overhead that is produced. This overhead
exists because each time of verification requires the server
to run a hashing process over the entire file. The notion at
this moment is computationally costly, even for lightweight
hashing operations.
b) Original Provable Data Possession (PDP)
The original PDP model [11] requires that the data is pre-

processed in the setup phase in order to leave some meta-
data on the client side for verification purposes subsequently,
for that data to be sent to the cloud server. Once the client
feels a necessity to check the data integrity at a later time,
he/she sends a challenge to the cloud server, which will
respond with a message based on the data content. After
combining the reply and the local meta-data, the client is able
to prove whether the integrity of the data is violated. The
probabilistic guarantee of PDP shows that PDP can achieve
a high probability for detecting server misbehavior with low
computational and storage overhead.

PDP is only applicable to static files (i.e., append-only files),
meaning that the data may not be changed once uploaded to
the server. This limitation reduces its applicability to cloud
computing due to the fact that it is featured with dynamic
data management.
c) Proof of Retrievability (POR)
Proof of Retrievability (PoR) [12] employs an auditing

protocol when solving a similar problem to PDP. The problem
is that each of the two enables clients to check the integrity of
outsourced data without having to retrieve it. PoR is designed
to be lightweight. In other words, it attempts to minimize the
storage in client and server side, the communication complex-
ity of an audit, and the number of data-blocks accessed during
an audit [12].

The POR protocol is depicted in Fig. 3. The user stores
only a key, which is used to encode the file F in order to get

KeyGen
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Verifier
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ke
y
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F

F’
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Fig. 3. Schematic of POR System

the encrypted file F’. The task is that a set of sentinel values
are embedded into F’, and the server only stores F’ without
knowing where the sentinels may be since the sentinels are
indistinguishable from regular data blocks. In the challenge
and response protocol, the server is asked to return a certain
subset of sentinels in F’. If the server has tampered with or
deleted F’, there is high probability that certain sentinels are
also corrupted or lost; this causes the server to be unable to
generate a complete proof for the original file. Therefore, a
client has evidence to prove that the server has corrupted the
file. Due to the fact that the number of sentinels is limited,
POR adopts error-correcting codes to recover the file with only
a small fraction being corrupted.

Similar to PDP, PoR can only be applied to static files. A
subtle change to the file will ruin the protocol and completely
confuse the clients.
d) Scalable PDP
Scalable PDP [14] is an improved version of the original

PDP. The difference in the two are described as the following:
1) scalable PDP adopts symmetric key encryption instead
of public-key to reduce computation overhead, but scalable
PDP does not support public verification due to symmetric
encryption; 2) scalable PDP has added dynamic operations
on remote data. One limitation of scalable PDP is that all
challenges and answers are pre-computed, and the number of
updates is limited and fixed as a priori.
e) Dynamic PDP
The goal of Dynamic PDP (DPDP) [15] is to support full

dynamic operations (e.g., append, insert, modify, and delete).
The purpose of dynamic operations is to enable authenticated
insert and delete functions with rank-based authenticated di-
rectories that are built on a skip list. The experiment result
shows that, although the support of dynamic updates costs
certain computational complexity, DPDP is practically effi-
cient. For instance, to generate proof for a 1GB file, DPDP
only produces 415 KB proof data and 30 ms computational
overhead.

The DPDP protocol introduces three new operations, which
are known as PrepareUpdate, PerformUpdate and VerifyUp-
date. PrepareUpdate is run by a client in order to generate
an update request that includes the updates to perform (i.e.,
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TABLE I
APPROACHES OF DATA INTEGRITY CHECKING IN CLOUD STORAGE

Keywords Protocol Sketch Pros Cons Primitives
PDP [11] 1. Client: KeyGen

2. Client: TagBlock
3. Server: GenProof
4. Client: CheckProof

- Supports both encrypted data
and plain data.
- Efficient: only a small portion
of file needs to be accessed to
generate proof on the server.
- Offers public verifiability.

- Only supports integrity check-
ing for static data (i.e., append
only).
- Probabilistic guarantees may re-
sult in false positive.

Homomorphic hashing: to com-
pose multiple block inputs into a
single value to reduce the size of
proof.

POR [12] 1. Client: KeyGen
2. Client: Encode
3. Server: Extract
4. Client: Challenge
5. Server: Respond
6. Client: Verify

- Ability to recover file with
error-correcting code.
- Efficient.

- Static data only.
- File needs to be encrypted be-
fore uploading to server.
- Needs additional space to hide
sentinels in.

Error-correcting code: to recover
a partially corrupted file.

Scalable
PDP [14]

1. Client: KeyGen
2. Client: TokenGen
3. Server: Update
4. Client: Challenge
5. Server: Proof
6. Client: Verify

- No bulk encryption is required.
- Allow outsourcing dynamic
data in some degree.
- Rely on symmetric-key which
is more efficient than public-key
encryption.

- Does not offer public verifiabil-
ity.
- All challenges and answers are
pre-computed.
- Number of updates is limited
and fixed as a priori.

- Symmetric-key cryptography.
- Message Authentication Code
(MAC).

Dynamic
PDP [15]

1. Client: KeyGen.
2. Client: PrepUpdate
3. Server: PerfromUpdate
4. Client: VerifyUpdate
5. Client: Challenge
6. Server: Proof
7. Client: Verify

- Support fully dynamic data op-
eration (i.e., insert, modification,
delete, and append).
- All challenges and answers are
dynamically generated.

- Fully dynamic support causes
relatively higher computational,
communication, and storage
overhead.

- Rank-based authenticated direc-
tory.
- RSA-tree.
- Authenticated skip list.

HAIL [16] 1. Client: KeyGen
2. Client: Encode
3. Server: Decode
4. Client: Challenge
5. Server: Respond
6. Client: Verify
7. Svr / cli: Redistribute

- Ability to check integrity in dis-
tributed storage via data redun-
dancy.
- Proof is compact in size and is
independent of data size.

- Static data only. - Pseudorandom functions.
- Message authentication codes
(MACs).
- Universal hash functions.

modify block i, delete block i, etc.). PerformUpdate is run by
a server to perform the actual file update, and subsequently
returns an update proof to the client who, in turn, verifies the
server behavior during the update.
f) HAIL: A High-Availability and Integrity Layer for cloud

storage
HAIL [16] differs from the prior work with regards to the

fact that it considers a distributed setting in which a client
must spread a file across multiple servers with redundancy and
only store a small constant state in local machine. The main
threats that HAIL combats are mobile adversaries, which may
possibly corrupt file F by undermining multiple servers.
g) Summary of PDP
PDP is a class of problems that provides efficient and prac-

tical approaches in order to determine whether the outsourced
data is honestly stored. We have summarized and compared
several newly emerging approaches in Table I. The evolution
of PDP shows the improvements from static data to dynamic
data as well as from single-server setting to distributed-servers
setting.
2) D2.1.2 – Third Party Auditor: Instead of letting cus-

tomers verify data integrity, it is also possible to offload task
of integrity checking to a third party which can be trusted by
both cloud provider and customers. Wang et al. [45] propose
to adopt a third party auditor (TPA) to check the integrity
of outsourced data in cloud environments. TPA ensures the
following: 1) cloud data can be efficiently audited without a
local data copy, and cloud clients suffer no on-line overhead
for auditing; 2) no new vulnerabilities will be introduced
to jeopardize data privacy. The key technique is a public-

based homomorphic authenticator, which has been utilized
in existing literatures [46]. When combining a homomorphic
authenticator with random masking, TPA becomes unable to
access the data content while it is performing auditing.

3) Combating dishonest computing: The outsourcing fea-
ture of cloud computing motivates researchers to revisit a
classic problem that addresses integrity of external computa-
tions. How may a machine outsource a computation to another
machine and then, without running the computation locally,
verify the correctness of the result output by the other machine
[87]? Conventional strategies to check external computation
integrity fall into four categories:

• D2.2.1: Re-computation requires the local machine to
re-do the computation, and then compare the results.
Re-computation guarantees 100% accuracy of mistake
detection, and does not require trusting the cloud vendor.
However, the cost is usually unbearable due to the fact
that each of the verifications require at least the equal
time as the original computation. To this end, customers
could possibly have no incentive to verify computation
integrity in this manner. A variation of re-computation is
sampling [66], which offers probabilistic guarantees of
mistake detection, depending on the degree of sampling.
Sampling trades accuracy for efficiency.

• D2.2.2: Replication assigns one computation task to mul-
tiple machines, and then compares the results. Majority
voting may be employed to determine correctness. Repli-
cation assumes semi-trust to cloud vender because both
computation and verification are conducted remotely.
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Intelligent adversaries that control certain amounts of
machines may bypass replication checking by returning
the same incorrect results.

• D2.2.3: Auditing [51], [89] usually works together with
logging. During the execution of a computation, a logging
component records all critical events into a log file,
which is subsequently sent to one or multiple auditors
for review. Auditing is a typical approach to do forensics
investigation. One drawback of auditing is that if the
attacker understands the computation better than the
auditor, it is possible for the attacker to manipulate data
bits without being detected.

• D2.2.4: Trusted Computing [29], [58] enforces the
computer to behave consistently in expected ways with
hardware and software support. The key technique of
integrity checking is known as remote attestation, which
works by having the hardware generate a certificate
stating that what software is running. The certificate can
then be sent to the verifier to show that the software is
unaltered. One assumption of trusted computing is that
some component like the hardware and the hypervisor is
not physically altered.

Some verification methods ([85], [90], [91], [92]) are do-
main or application specific. For example, Wang et al. have
designed a practical mechanism for linear programming (LP)
outsourcing [85]; by exploring the duality theorem of LP
computation and deriving the conditions that correct result
must satisfy, the verification mechanism only incurs close-
to-zero additional cost on both cloud servers and customers.
Freivalds’ method [89] verifies a m ∗m matrix multiplication
in O(m2) with a randomized algorithm. Blanton et al. [92]
provide an approach of outsourcing large-scale biometric
computation with reasonable overhead.

The above approaches either rely on various assumptions
that have restrictions, or incur high computation cost. The
ultimate goal, however, is to provide both practical and
unconditional integrity verification for remote computation.
Towards this goal, Setty et al. [95] suggest to seek help from
some early research results such as interactive proof [93],
and probabilistically checkable proofs (PCPs) [94], which
attempt to design an ideal method that enables a customer
to check an answer’s correctness in constant time, with a
suitably encoded proof and under a negligible chance of false
positive [94]. To date, PCP-based verification method is not
practical for general purpose yet, according to Setty’s research.
Although its application on a particular problem (i.e., matrix
multiplication) seems to be encouraging, the author has also
pointed out some serious issues such as expensive setup time.

C. Summary and Open issues

Cloud Integrity becomes vulnerable because the customers
do not physically control their data and software. For data
integrity, there are two challenges: i) huge data volume makes
conventional hashing scheme not viable; ii) integrity checking
can only be practical when there are additional requirements,
which increase the difficulty; for instance, dynamic operation
support on remote data is non-trivial with integrity guarantees,
and in distributed setting, both integrity and consistency are

taken into consideration. On the other hand, computation
integrity is far tougher. The main challenge is the lack of
knowledge of the computation internals; if the verification
method applies to generic computations. A well-designed
integrity checking method satisfies the following conditions:
i) for practical concerns, the workload of local computation
of verification should be less than the original computation.
Otherwise it is not efficient to do outsourcing; ii) the proof
can be verified by any party to ensure non-repudiation; iii) no
or few assumption is imposed.

There is great research potential in this area:

• Combing integrity checking with other realistic require-
ments is a promising research trend. State-of-the-art
researches have studied to support dynamic operation on
cloud data; also, single machine setting is extended to the
distributed setting. However, no prior works investigate
integrity checking along with both dynamic operation and
distributed setting. Moreover, other traditional features
on distributed system such as fault-tolerance can be
considered as well.

• A significant advance will be made if a practical and
unconditional verification method is developed for com-
putation integrity. It is an important attempt [95] to reduce
computation complexity when applying probabilistically
checkable proofs to matrix multiplication as a case study.
However, even in one case study, a few serious problems
arise. The improvement space is still large.

• On the other hand, domain-specific method can achieve
satisfying effects because these methods usually take
advantage of the inner features of computation. Some
scientific computations such as Linear Programming and
matrix operation have their outsourcing versions. How-
ever, other types such as non-linear optimization are
remaining to be outsourced to cloud with strong integrity
assurance.

IV. CLOUD AVAILABILITY

Availability is crucial since the core function of cloud com-
puting is to provide on-demand service of different levels. If a
certain service is no longer available or the quality of service
cannot meet the Service Level Agreement (SLA), customers
may lose faith in the cloud system. In this section, we have
studied two kinds of threats that impair cloud availability.

A. Threats to Cloud Availability

1) T3.1 – Flooding Attack via Bandwidth Starvation: In a
flooding attack, which can cause Deny of Service (DoS), a
huge amount of nonsensical requests are sent to a particular
service to hinder it from working properly. In cloud comput-
ing, there are two basic types [34] of flooding attacks:

• Direct DOS – the attacking target is determined, and the
availability of the targeting cloud service will be fully
lost.

• Indirect DOS – the meaning is twofold: 1) all services
hosted in the same physical machine with the target
victim will be affected; 2) the attack is initiated without
a specific target.
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Fig. 4. Traditional Data Center Network Architecture

The authors in [34] also point out that one of the con-
sequences of a flooding attack is that if a certain cloud
service is unavailable or the quality of service is degraded,
the subscribers of all affected services may need to continue
paying the bill. However, we argue that since cloud providers
must have previously signed a Service Level Agreement (SLA)
with their clients, a responsible party must be determined once
the service level is degraded to some threshold since clients
will be aware of that degradation. We will elaborate upon this
problem (i.e., cloud accountability) in the next section.

The nature of under-provisioning and public openness in a
cloud system brings new vulnerability that can be exploited
to carry out a new DOS attack to jeopardize the cloud service
provision by saturating the limited network bandwidth. As
shown in Fig. 4, links A, B, C are uplinks of router R5, R1,
and R2, respectively. Suppose that link B is the active link
and link C is the fail-over link (i.e., a link will be activated
when the active link is down). Due to under-provisioning, the
aggregate capacity of H1, H2, H3, and H4 (which form the
subnet 1) is a few times larger than any capacity for links A,
B, or C. In order to saturate link B, attackers (which may be a
few hosts controlled by the adversary) in subnet 1 only need
to generate enough traffic to target the hosts in another subnet
(e.g., subnet 2). Once link B is saturated by the non-sense
traffic, hosts in subnet1 are unable to deliver services to cloud
users.

To initiate such a DOS attack (bandwidth starvation) effec-
tively, there are a few steps:

1) Topology identification – Since only hosts in different
subnets are connected by bottleneck links, an adversary
needs to first identify the network topology. By exploit-
ing the multiplexing nature of a router, the number of
routers between two hosts can be determined; this helps
selected hosts picture the topology.

2) Gaining access to enough hosts – The number of
hosts to perform the attack is determined by the uplink’s
capacity, which can be estimated by some tools such as
Pathload [26], Nettimer [27], or Bprobe [25].

3) Carrying out the attack – The author suggests em-

ploying UDP traffic because it will starve other TCP
sessions.

2) T4.1 – Fraudulent Resource Consumption (FRC) attack:
A representative Economic Denial of Sustainability (EDoS)
attack is FRC [96], [97], which is a subtle attack that may
be carried out over a long period (usually lasts for weeks) in
order to take effect. In cloud computing, the goal of a FRC
attack is to deprive the victim (i.e., regular cloud customers) of
their long-term economic availability of hosting web contents
that are publicly accessible. In other words, attackers, who
act as legal cloud service clients, continuously send requests
to website hosting in cloud servers to consume bandwidth,
which bills to the cloud customer owning the website; seems
to the web server, those traffic does not reach the level of
service denial, and it is difficult to distinguish FRC traffic
from other legitimate traffic. A FRC attack succeeds when it
causes financial burden on the victim.

B. Defense strategy

1) D3.1.1 – defending the new DOS attack: This new type
of DOS attack differs from the traditional DOS or DDOS [24]
attacks in that traditional DOS sends traffic to the targeting
application/host directly while the new DOS attack does not;
therefore, some techniques and counter-measures [21], [22]
for handling traditional DOSs are no longer applicable.

A DOS avoidance strategy called service migration [20]
has been developed to deal with the new flooding attack. A
monitoring agent located outside the cloud is set up to detect
whether there may be bandwidth starvation by constantly
probing the cloud applications. When bandwidth degradation
is detected, the monitoring agent will perform application
migration, which may stop the service temporarily, with it
resuming later. The migration will move the current appli-
cation to another subnet of which the attacker is unaware.
Experiment results show that it only takes a few seconds to
migrate a stateless web application from one subnet to another.
2) D4.1.1 – FRC attack detection: The key of FRC detec-

tion is to distinguish FRC traffic from normal activity traffic.
Idziorek et al. propose to exploit the consistency and self-
similarity of aggregate web activity [96]. To achieve this
goal, three detection metrics are used: i) Zipf ’s law [97] are
adopted to measure relative frequency and self-similarity of
web page popularity; ii) Spearman’s footrule is used to find
the proximity between two ranked lists, which determines the
similarity score; iii) overlap between the reference list and the
comparator list measures the similarity between the training
data and the test data. Combining the three metrics yields a
reliable way of FRC detection.

C. Summary and Open Issues

Service downgrade can be resulted by both internal and
external threats. An internal threat comes from malicious
cloud customers who take advantage of the bandwidth under-
provisioning property of current DCN architecture to starve
legitimate service traffic. On the other hand, external threat
refers to the EDoS attack, which degrades the victim’s long-
term economic availability. Both DoS and EDos have appeared
in other scenarios, however, the ways they employ to attack the



852 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 2, SECOND QUARTER 2013

cloud platform are novel and worthwhile to be investigated.
The following issues could be future research directions:

• D3.1.1 gives an avoidance strategy that adopts service
migration. DoS avoidance is however not sufficient to
entirely defend this attack, because the adversaries are
not identified yet. The issue can be further addressed
by accountability. In this case, to track the malicious
behavior, the key is to identify the origin of non-sense
traffic that tried to saturate the connection link.

• D4.1.1 describes a mechanism for FRC detection. How-
ever, it is not clear that how does a victim react to the
attack, and the identification of attackers is not presented,
as well. To complement D4.1.1, new researches in this
area are expected.

• FRC attack is carried out by consuming bandwidth,
which is one of the resources that are billable. How-
ever, other resources, such as computing capabilities
and storage, are also potentially vulnerable to EDoS
attack. Therefore, it is imperative to discover viable threat
models and defense strategies towards a comprehensive
study of EDoS attack.

V. CLOUD ACCOUNTABILITY

While accountability has been studied in other systems
[124], [125], [126], [127], [128], [129], [130], [131], it is
essential in order to build trust relationships in cloud environ-
ment [35], [47], [48], [50], [52], [88]. Accountability implies
that the capability of identifying a party, with undeniable
evidence, is responsible for specific events [124], [125], [126],
[127], [128], [129], [130], [131]. When dealing with cloud
computing, there are multiple parties that may be involved;
a cloud provider and its customers are the two basic ones,
and the public clients who use applications (e.g., a web
application) outsourced by cloud customers may be another
party. A fine-grained identity, however, may be employed
to identify a specific machine or even the faulty/ malicious
program that is responsible.

A. Threats to Cloud Accountability

1) T2.2 – SLA violation: A. Haeberlen addresses the im-
portance of accountability in cloud computing [47], where
the loss of data control is problematic when something goes
awry. For instance, the following problems may possibly
arise: 1) The machines in the cloud can be mis-configured
or defective and can consequently corrupt the customer’s data
or cause his computation to return incorrect results; 2) The
cloud provider can accidentally allocate insufficient resources
for the customer, an act which can degrade the performance
of the customer’s services and then violate the SLA; 3) An
attacker can embed a bug into the customer’s software in
order to steal valuable data or to take over the customer’s
machines for spamming or DoS attacks; 4) The customer may
not have access to his data either because the cloud loses it
or simply because the data is unavailable at an inconvenient
time. If something goes wrong, for example, data leaks to a
competitor, or the computation returns incorrect results; it can
be difficult for a customer and provider to determine which
of them has caused the problem, and, in the absence of solid

evidence, it is nearly impossible for them to hold each other
responsible for the problem if a dispute arises.
2) T2.3 – Dishonest MapReduce: MapReduce [53] is a

parallel computing paradigm that is widely employed by major
cloud providers (Google, Yahoo!, Facebook, etc.). MapReduce
splits a large data set into multiple blocks, each of which
are subsequently input into a single worker machine for pro-
cessing. However, working machines may be mis-configured
or malicious, as a result, the processing results returned by
the cloud may be inaccurate. In addition, it is difficult for
customers to verify the correctness of results other than by
running the same task again locally. Dishonest MapReduce
may be viewed as a concrete case of computation integrity
problem, as we discussed in Section III (i.e., cloud integrity).
The issue will be further addressed by accountability, because
even after customers have verified the correctness of MapRe-
duce output, there is still a necessity to identify the faulty
machines or any other possible reasons that resulted in wrong
answers.
3) T2.4 – Hidden Identity of Adversaries: Due to privacy

concerns, cloud providers should not disclose cloud cus-
tomers’ identity information. Anonymous access is employed
to deal with this issue; although anonymity increases privacy,
it also introduces security problems. Full anonymity requires
that a customer’s information must be completely hidden from
absolutely anyone or anything else. In this case, malicious
users can jeopardize the data integrity without being detected
since it becomes easier to hide their identities.
4) T4.2 – Inaccurate Billing of Resource Consumption:

The pay-as-you-go model enables customers to decide how
to outsource their business based on their necessities as well
as the financial situations. However, it is quite difficult for
customers to verify the expenses of the resource consump-
tion due to the black box and dynamic nature of cloud
computing. From the cloud vendor’s perspective, in order to
achieve maximum profitability, the cloud providers choose
to multiplex applications belonging to different customers to
keep high utilization. The multiplexing may cause providers
to incorrectly attribute resource consumption to customers or
implicitly bear additional costs, therefore reducing their cost-
effectiveness [18]. For example, I/O time and internal network
bandwidth are not metered, even though each incurs non-trivial
cost. Additionally, metering sharing effects, such as shared
memory usage, is difficult.

B. Defense Strategies

1) D2.2.1 – Accountability on Service Level Agreement
(SLA): To deal with this dispute of an SLA violation, a
primitive AUDIT (A, S, t1, t2) is proposed in [47] to allow
the customers to check whether the cloud provider has fulfilled
the SLA (denoted by A) for service S between time internal
t1 and t2. AUDIT will return OK if no fault is detected;
otherwise AUDIT will provide verifiable evidence to expose
the responsible party. The author in [47] does not detail the
design of AUDIT, instead the author provides a set of building
blocks that may be contributive, including 1) tamper-evident
logs that can record all the history actions of an application,
2) virtualization-based replays that can audit the actions of
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other applications by replaying their logs, 3) trusted time
stamping that can be used to detect performance fault (i.e.,
latency or throughput cannot match the level in SLA), and
4) sampling that can provide probability guarantees and can
improve efficiency of replay.
2) D2.2.2 – Accountable Virtual Machine: Accountable

Virtual Machine (AVM) [50] is follow-up work of [47].
The intent of AVM is to enable users to audit the software
execution on remote machines. AVM is able to 1) detect faults,
2) identify faulty node, 3) provides verifiable evidence of a
particular fault and point to the responsible party. AVM is
applicable to cloud computing in which customers outsource
their data and software on distrusted cloud servers. AVM
allows cloud users to verify the correctness of their code
in the cloud system. The approach is to wrap any running
software in a virtual machine, which keeps a tamper-evident
log [51] to record the entire execution of the software. If we
assume there is a reference implementation, which defines the
correct execution of the software, the cloud users have enough
information to verify the software correctness by replaying the
log file and comparing it with the reference copy. If there is
an inconsistency, there will be mismatches detected. The log
is tamper-evident, meaning that nobody may tamper with the
log file without being detected. Once the integrity of the log
file is ensured, the evidence obtained from it is trustworthy.
The evidence is provable by any external party. One limitation
of AVM is that it can only detect faults caused by network
operations since it only logs network input/output messages.
3) D2.2.3 – Collaborative Monitoring: A solution that is

similar to AVM was developed in [48] by maintaining an ex-
ternal state machine whose job is to validate the correctness of
the data and the execution of business logic in a multi-tenancy
environment. The authors in [48] define the service endpoint
as the interface through which the cloud services are delivered
to its end users. It is assumed that the data may only be
accessed through endpoints that are specified according to the
SLA between the cloud provider and the users. The basic idea
is to wrap each endpoint with an adapter that is able to capture
the input/output of the endpoint and record all the operations
performed through the endpoint. The log is subsequently sent
to the external state machine for authentication purposes. To
perform the correctness verification, the Merkle B-tree [49] is
employed to authenticate the data that is stored in the cloud
system. An update operation on the data will also update the
MB-tree. A query operation is authenticated by a range query
on the MB-tree. Once the correctness checking fails, the state
machine will report problems and provide verifiable evidence
based on the query result of the MB-tree.
4) D2.3.1 – Accountable MapReduce: In [54], this problem

has been addressed with SecureMR, which adopts full task
duplication to double check the processing result. SecureMR
requires that twice two different machines, which will double
the total processing time, execute a task. Additionally, Se-
cureMR suffers false positive when an identical faulty program
processes the duplicated tasks.

Xiao et al. [66] propose to build an Accountable MapRe-
duce to detect the malignant nodes. The basic idea is as
follows: the cloud provider establishes a trust domain, which
consists of multiple regular worker machines referred to

as Auditors. An auditor makes use of the determinism of
Map/Reduce functions in order to apply an Accountable Test
(A-Test) for each task on each working machine. The AC
picks up a task that has been completed by a machine M,
then re-executes it and compares the output with M’s. If an
inconsistency shows up, then M is proved to be malicious. The
A-Test will stop when all tasks are tested. A full duplication
of an execution requires large computation costs. Instead of
pursuing a 100% detection rate, the authors determined to
provide probability guarantees in order to accelerate the A-test.
At this moment, the general idea is to only re-execute a part of
each task. By carefully selecting the parameters, high detection
rate (e.g., 99%) may be achieved with low computation costs.
5) D2.4.1 – Secure Provenance: Secure provenance is in-

troduced with an aim to ensure that verifiable evidence might
be provided to trace the real data owner and the records of
data modification. Secure provenance is essential to improve
data forensic and accountability in cloud systems. Lu et al.
[41] have proposed a secure provenance scheme based on
bilinear paring techniques, first bringing provenance problems
into cloud computing. Considering a file stored in cloud,
when there is dispute on that file, the cloud can provide all
provenance information with the ability to plot all versions of
the file and the users that modified it. With this information,
a specific user identity can be tracked.
6) D4.2.1 – Verifiable Resource Accounting: Sekar and

Maniatis [18] have proposed verifiable resource accounting,
which enables cloud customers to be assured that i) their
applications indeed consumed the resources they were charged
for and ii) the consumption was justified based on an agreed
policy. The scheme in [18] considers three roles: the customer
C, the provider P, and the verifier V. First, C asks P to
run task T; then, P generates a report R describing what
resources P thinks that C consumes. C then sends the report
R and some additional data to V who checks whether R is a
valid consumption report. By implementing a trusted hardware
layer with other existing technologies such as offloading
monitoring, sampling, and snapshot, it can be ensured that a)
the provider does not overcharge/undercharge customers and
b) the provider correctly assigns the consumption of a resource
to the principal responsible for using that resource.
7) Other Opinions: In order to practically include account-

ability into cloud environment, Ko et al. [69] present the
Cloud Accountability Life Cycle (CALC), describing the key
phases to build cloud accountability. The CALC contains
seven phases: 1) policy planning, 2) sense and trace, 3)
logging, 4) safe-keeping of logs, 5) reporting and replaying,
6) auditing, and 7) optimizing and rectifying.

C. Summary and Open Issues

Accountability is a significant attribute of cloud comput-
ing because the computing paradigm increases difficulty of
holding an entity responsible for some action. Following a
pay-as-you-go billing model, cloud vendor provides resources
rented by customers who may host their web contents opening
to public clients. Even a simple action (e.g., a web request)
will involve multiple parties. On the other hand, accountability
not only handles security threats, it also deals with various



854 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 15, NO. 2, SECOND QUARTER 2013

incidents, such as software bug, mis-configuration, and hard-
ware failure, to help identify the event origin. Therefore, an
accountable cloud will be a great step towards a trustworthy
cloud.

There are a few open issues for future research:
• Accountable MapReduce enables accountability for

MapReduce by offering verifiable evidence pointing to
a responsible faulty/malicious node when either Map
function or Reduce function is not faithfully performed.
However, current solutions are based on replication,
which has two drawbacks: a) replication is not efficient,
and cloud vendors do not have much incentive to do so;
sampling can improve efficiency but it reduce accuracy,
which is even more important to customers; b) replication
is effective only if cloud vendor follows semi-trust model,
which may not be true in real world. Therefore, it is
imperative to design new schemes that can achieve both
efficiency and accuracy.

• To implement resource usage accountability, D4.2.1 relies
on cloud vendors to generate a consumption report that
has the ability to be verified by a third party. Another
idea is reducing the cloud provider’s support. There are
two possible options [18]. The first option is resource
prediction, which enables customers to predict workloads
by mining the execution logs, and then compares the
result with provider’s usage report. The primary concern
of resource prediction is that it is not accurate enough.
Another option is to enable multiple customers to detect
violations collaboratively. However, it is hard to keep
customers’ privacy if the two work together.

VI. CLOUD PRIVACY

Privacy is yet another critical concern with regards to cloud
computing due to the fact that customers’ data and business
logic reside among distrusted cloud servers, which are owned
and maintained by the cloud provider. Therefore, there are
potential risks that the confidential data (e.g., financial data,
health record) or personal information (e.g., personal profile)
is disclosed to public or business competitors. Privacy has been
an issue of the highest priority [132], [133], [134].

Throughout this text, we regard privacy-preservability as the
core attribute of privacy. A few security attributes directly or
indirectly influence privacy-preservability, including confiden-
tiality, integrity, accountability, etc. Evidently, in order to keep
private data from being disclosed, confidentiality becomes in-
dispensable, and integrity ensures that data/computation is not
corrupted, which somehow preserves privacy. Accountability,
on the contrary, may undermine privacy due to the fact that
the methods of achieving the two attributes usually conflict.
More details will be given in this section.

A. Threats to Cloud Privacy

In some sense, privacy-preservability is a stricter form
of confidentiality, due to the notion that they both prevent
information leakage. Therefore, if cloud confidentiality is ever
violated, privacy-preservability will also be violated. Similar
to other security services, the meaning of cloud privacy is
twofold: data privacy and computation privacy (T2.5).

B. Defense Strategies

Chow et al. [59] have classified the privacy-preserving
approaches into three categories, which are shown in Table
II.

Gentry proposed Fully Homomorphic Encryption (FHE,
D2.5.1) to preserve privacy in cloud computing [64]. FHE
enables computation on encrypted data, which is stored in
the distrusted servers of the cloud provider. Data may be pro-
cessed without decryption. The cloud servers have little to no
knowledge concerning the input data, the processing function,
the result, and any intermediate result values. Therefore, the
outsourced computation occurs ’under the covers’ in a fully
privacy-preserving way. FHE has become a powerful tool to
enforce privacy preserving in cloud computing. However, all
known FHE schemes are too inefficient for use in practice.
While researchers are trying to reduce the complexity of FHE,
it is worthwhile to consider alleviating the power of FHE
to regain efficiency. Naehrig et al. has proposed somewhat
homomorphic encryption [98], which only supports a number
of homomorphic operations, which may be much faster and
more compact than FHE.

Pearson et al. ([42] and [43]) propose privacy manager
(D2.5.2) that relies on obfuscation techniques. The privacy
manager can provide obfuscation and de-obfuscation service to
reduce the amount of sensitive information stored in the cloud.
The main idea is to only store the encrypted form of clients’
private data in the cloud end. The data process is directly
performed on the encrypted data. One limitation is that cloud
vendors may not be willing to implement additional services
for privacy protection. Without provider’s cooperation, this
scheme will not work.

Squicciarini et al. [31] explores a novel privacy issue that
is caused by data indexing. In order to tackle data indexing
and to prevent information leakage, the researchers present a
three-tier data protection architecture to offer different levels
of privacy to cloud customers.

Itani et al. [44] presents a Privacy-as-a-Service so it may
enable secure storage and computation of private data by lever-
aging the tamper-proof capabilities of cryptographic coproces-
sors. Which, in turn, protect customer data from unauthorized
access.

Sadeghi et al. [58] argue that pure cryptographic solutions
based on fully homomorphic and verifiable encryption suffer
high latency for offering practical secure outsourcing of com-
putation to a distrusted cloud service provider. They propose to
combine a trusted hardware token (D2.5.3) with Secure Func-
tion Evaluation (SFE) in order to compute arbitrary functions
on data when it is still in encrypted form. The computation
leaks no information and is verifiable. The focus of this work
is to minimize the computation latency to enable efficient,
secure outsourcing in cloud computing. A hardware token is
tamper-proof against physical attacks. If the token is under
the assumption of being trusty, the clients’ data processing
may be performed in the token that is attached to a distrusted
cloud server. The property of a token can guarantee that the
data computation is confidential as well as being verifiable.
The solution presented in [58] only needs to deploy a tamper-
proof token in the setup pre-processing phase. In the follow-
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TABLE II
APPROACHES OF PRIVACY ENFORCEMENT

Approach Description Example
Information centric security Data objects have access-control policies with them. A data outsourcing architecture combining cryptogra-

phy and access control [9].
Trusted computing The system will consistently behave in expected ways

with hardware or software enforcement.
Trusted Cloud Computing Platform [29]; Hardware to-
ken [58]; Privacy-aaS [44].

Cryptographic protocols Cryptographic techniques and tools are employed to
preserve privacy.

Fully Homomorphic Encryption (FHE) [64] and its
applications [58]

up online phase, only symmetric cryptographic operations are
performed in the cloud, without requiring further interaction
with the token.
1) Other Opinions: Cryptography is NOT all-purpose

Van Dijk et al. [63] argue that cryptography alone cannot
provide complete solutions to all privacy issues in cloud
computing, even with powerful tools like FHE. The authors
formally define a class of privacy problems in terms of various
application scenarios. It has been proved that when data is
shared among customers, no cryptographic protocol can be
implemented to offer privacy assurance. Let us define the
following notations [63]:

• S – the cloud, which is a highly resourced, monolithic
entity.

• C = C1, C2, ..., Cn – a set of customers/tenants of S.
• xi – a static, private value belonging to Ci but stored in

S.
The task of S is to run different applications/functions over
{xi}.
a) Class one: private single-client computing
These applications only process data xi owned by a single

client Ci. No other parties should be able to learn any
information about the internal process. A typical example is
a tax-preparation program taking as input financial data that
belongs to a single client and should be hidden from both S
and other clients. This class can be properly solved by an FHE
that meets all the secure requirements.
b) Class two: private multi-client computing
These applications operate on data set {xi} owned by

multiple clients {Ci}. Since there are more clients involved,
data privacy among clients is preserved in a more complicated
way. There are access-control policies that must be followed
when processing data. A real world application is a social
networking system, in which xi is the personal profile of a
client Ci; Ci is able to specify which friends can view what
portions/functions of her data (i.e., gives an access control
policy). It has been proved that private multi-client computing
is unachievable using cryptography.
c) Class three: stateful private multi-client computing
This class is a restricted version of class two. The difference

is that the access-control policy on a client’s data is stateful,
meaning that it depends on the application execution history.
This class is not discussed thoroughly in the paper [63], but
the authors do believe it has an important position in cloud
applications.
2) Other Opinions: Privacy Preserving Frameworks

Lin et al. presented a general data protection framework [56]
in order to address the privacy challenges in cloud service pro-
vision. The framework consists of three key building blocks:

1) a policy ranking strategy to help cloud customers identify
a cloud provider that best fits their privacy requirements; 2)
an automatic policy generation mechanism that integrates the
policies and requirements from both participants and produces
a specific policy as agreed by them; 3) policy enforcement
that ensures the policy will be fulfilled. A straightforward
path to obtain policy ranking is comparing the customer
requirement with the policies of multiple service providers
and subsequently picking the one with the highest rank. The
comparison may happen on the client’s side, the cloud provider
side, or through a broker. Policy algebra can be employed to
carry out the policy generation. Each policy should be first
formalized and then integrated with fine-grained policy algebra
[57]. Pearson [28] suggests that privacy should be taken into
account from the outset and should be considered in every
phase of cloud service design.

C. Open Issues

Regarding cloud privacy, there are some open issues to be
studied in future researches:

• The authors think that accountability and privacy may
conflict with each other. The enforcement of account-
ability will violate privacy in some degree, and extreme
privacy protection (e.g., full anonymity to hide users’
identity) will make accountability more challenging. An
extreme example, a shared file, accessed by multiple
users who, may hide their identities due to anonymity
for the purpose of privacy protection. However, mali-
cious users are tracked with difficultly because of the
anonymous access. From the viewpoint of accountability,
general approaches include information logging, replay,
tracing [22], etc. These operations may not be completed
without revealing some private information (e.g., account
name, IP address). We must seek a trade-off in which the
requirement of one attribute can be met while simultane-
ously maintaining some degree of the other attribute.

• The assessment of attributes is another important issue
since it provides a quantitative way to evaluate them. The
goal is to determine how secure a cloud is or how much
privacy can be offered. The meaning is twofold: 1) it
will be helpful to compare different security approaches;
for example, to achieve 100% privacy, scheme A costs
100; scheme B can achieve 99% accountability with cost
of 10. Apparently, scheme B is more practically effi-
cient, although it sacrifices one percent of accountability.
Without an assessment, it is difficult to compare two
strategies quantitatively. 2) The quantitative clauses of
the security/privacy requirements can be drafted into the
Service Level Agreements (SLAs).
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the new DOS attack [20]

D4.1.1: FRC attack 
detection [96, 97]

Cloud Accountability 

V2: Loss of Physical Control

T2.2: SLA Violation [47] T2.3: Dishonest MapReduce [53]

T2.4: Hidden Identity of Adversaries [41]

T4.2: Inaccurate Billing 
of Resource Consumption

V4: Cloud Pricing Model

D2.2.1: Accountable SLA [47]

D2.2.2: AVM [50]
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Monitoring [48]
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MapReduce [54, 66]

D2.4.1: Secure 
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D4.2.1: Verifiable Resource 
Accounting [18]

Cloud Privacy-preservability 

V2: Loss of Physical Control

T2.5: computation privacy breach

D2.5.1: FHE 
[58, 64, 98]

D2.5.2: privacy 
manager [42, 43]

D2.5.3: trusted 
hardware token [58]

Fig. 5. A Summary of Research Advances in Cloud Security and Privacy

VII. CONCLUSIONS

Throughout this paper, the authors have systematically
studied the security and privacy issues in cloud computing
based on an attribute-driven methodology, shown in Fig. 5.
We have identified the most representative security/privacy
attributes (e.g., confidentiality, integrity, availability, account-
ability, and privacy-preservability), as well as discussing the
vulnerabilities, which may be exploited by adversaries in order
to perform various attacks. Defense strategies and suggestions
were discussed as well. We believe this review will help shape
the future research directions in the areas of cloud security and
privacy.
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