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The Cloud Computing paradigm focuses on the provisioning of reliable and scalable infrastructures
(Clouds) delivering execution and storage services. The paradigm, with its promise of virtually infinite
resources, seems to suit well in solving resource greedy scientific computing problems. The goal of this
work is to study private Clouds to execute scientific experiments coming from multiple users, i.e., our
work focuses on the Infrastructure as a Service (IaaS) model where custom Virtual Machines (VM) are
launched in appropriate hosts available in a Cloud. Then, correctly scheduling Cloud hosts is very
important and it is necessary to develop efficient scheduling strategies to appropriately allocate VMs
to physical resources. The job scheduling problem is however NP-complete, and therefore many heuris-
tics have been developed. In this work, we describe and evaluate a Cloud scheduler based on Ant Colony
Optimization (ACO). The main performance metrics to study are the number of serviced users by the
Cloud and the total number of created VMs in online (non-batch) scheduling scenarios. Besides, the
number of intra-Cloud network messages sent are evaluated. Simulated experiments performed using
CloudSim and job data from real scientific problems show that our scheduler succeeds in balancing
the studied metrics compared to schedulers based on Random assignment and Genetic Algorithms.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Scientific computing is a field of study that applies computer
science to solve typical scientific problems in disciplines such as
Bioinformatics [44], Earth Sciences [23], High-Energy Physics [7],
Molecular Science [53] and even Social Sciences [5]. Scientific com-
puting is usually associated with large-scale computer modeling
and simulation, and often requires large amounts of computer
resources to satisfy the ever-increasing resource intensive nature
of its experiments. An example of these experiments is parameter
sweep experiments (PSEs), which we have extensively described in
previous works [19,30,36].

Cloud Computing [11] is a paradigm which suits well in solving
the above cited computing problems, because of its promise of
provisioning infinite resources. Within a Cloud, resources can be
effectively and dynamically managed using virtualization technol-
ogies. Cloud Computing comes in three flavors: infrastructure,
platform, and software as services. In commercial Clouds, these
services are made available to customers on a subscription basis
using pay-as-you-use models. Although the use of Clouds finds
its roots in IT environments, the idea is gradually entering scientific
and academic ones [37].

Currently, there are several commercial Clouds that offer com-
puting/storage resources, platform-level services or applications.
Moreover, it is possible to build private Clouds (i.e., intra-datacen-
ter) using open-source Cloud Computing solutions. This work is
focused on the Infrastructure as a Service (IaaS) model, where
physical resources are exposed as services. Under this model, users
request virtual machines (VM) to the Cloud, which are then associ-
ated to physical resources. However, in order to achieve the best
performance, VMs have to fully utilize the physical resources by
adapting to the Cloud environment dynamically. To perform this,
scheduling the processing units of a Cloud (hosts) is an important
issue and it is necessary to develop efficient scheduling strategies
to appropriately allocate the VMs in physical resources. Here,
scheduling refers to the way VMs are allocated to run on the
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available computing resources, since there are typically many
more VMs running than physical resources. The VM allocation is
responsibility of a software component called scheduler. However,
scheduling is an NP-complete [52] problem and therefore it is not
trivial from an algorithmic perspective. In this context, scheduling
may also refer to two goals, namely delivering efficient high perfor-
mance computing or supporting high throughput computing. High
performance computing (HPC) focuses on decreasing job execution
time whereas high throughput computing (HTC) aims at increasing
the processing capacity of the system. As will be shown, the stud-
ied ACO scheduler attempts to balance both aspects.

Swarm Intelligence (SI) metaheuristics have been suggested as
interesting techniques to solve combinatorial optimization prob-
lems – e.g., job scheduling – by simulating the collective behavior
of social insects swarms [10]. Within these, the ACO metaheuristic
proposed by Marco Dorigo [16] was inspired by the ability of real
ant colonies to efficiently organize the foraging behavior of the col-
ony using external chemical pheromone trails for communication.
Since then, ACO algorithms have been widely used for solving
many combinatorial optimization problems [17], many of them
closely related to the problem at hand. A review of the literature
about the uses of ACO algorithms for scheduling problems can be
found in the work of Tavares Neto and Godinho Filo [46]. More-
over, since scheduling in Clouds is also a combinatorial optimiza-
tion problem, some schedulers in this line that exploit ACO have
been surveyed in our previous work [35]. In this paper, we describe
a scheduler based on ACO to allocate VMs to physical Cloud
resources.

Unlike previous work of our own [19,30], the aim of this paper
is to experiment with the ACO scheduler in an online Cloud (non-
batch) scenario in which multiple users connect to the Cloud at dif-
ferent times to execute their PSEs. In this paper, by extending the
preliminary results first reported in a previous work presented at
the Pareng 2013 Conference [36], we have deepened the experi-
mental analysis by incorporating two new pure HTC and HPC sce-
narios. Moreover, we measure network resources consumed by the
scheduler and its competitors when handling VM requests issued
by users.

Experiments have been conduced in order to evaluate the trade-
off between the number of serviced users (which relates to
throughput) among all users that are connected to the Cloud, and
the total number of VMs that are allocated by the scheduler (which
relates to response time). The more the users served, the more the
executed PSEs, and hence throughput increases. Moreover, when
more VMs can be allocated, more physical resources can be taken
advantage of, and hence PSE execution time decreases. The main
performance metric to study in this paper is a weighted metric
in which the results obtained from different scheduling algorithms
have been normalized and weighted in order to determine, from
the evaluated algorithms, which one better balances the aforemen-
tioned metrics. For this, two weights have been assigned to the
individual metrics, i.e., a weigh for the number of serviced users
(weightSU) and a weight for the number of created VMs (weight-
VMs). Each pair of weight combinations (weightSU, weightVMs)
represent a different scenario. In this paper we evaluate two pure
HTC and HPC scenarios by assigning the weight combinations (1,
0) and (0, 1), and a mixed HTC/HPC scenario by assigning weights
(0.5, 0.5) with the aim of balancing these two basic metrics.

In addition, similarly to the preliminary results reported in [36],
we study how the number of serviced users and created VMs is
affected when using an exponential back-off strategy to retry allo-
cating failing VMs. Experiments were performed with job data
obtained from a real-world PSE [21] based on 3D finite element
study whereas our previous results [19,30,36] were computed
from 2D finite element simulations. In computational terms, this
problem led to much more computing intensive jobs. It is worth
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mentioning that we have deliberately included some of the expla-
nations from [36], specially the description of our ACO scheduler,
so as to make this paper self-contained.

The comparisons have been performed against alternative
Cloud schedulers, namely a Random allocation algorithm and a
Cloud scheduler based on Genetic Algorithms [1]. Results show
that our ACO scheduler performs competitively with respect to
the number of serviced users and allows for a fair assignment of
VMs. In other words, our scheduler provides a good balance to
the number serviced users, i.e., the number of Cloud users that
the scheduler is able to successfully serve, and the created VMs.
The common ground for comparison is an ideal scheduler that
always achieves the best possible allocation of VMs to physical
resources according to these metrics. Experiments were performed
by using CloudSim [12], a Cloud simulator that is widely employed
for assessing Cloud schedulers.

The rest of the paper is structured as follows. Section 2 gives
some background necessary to understand the concepts underpin-
ning our scheduler. Then, Section 3 presents the scheduler. Section
4 reports the experimental evaluation. Then, Section 5 surveys rel-
evant related works. Lastly, Section 6 concludes the paper and
delineates future research opportunities.
2. Background

Cloud Computing [11] is a computing paradigm that has been
recently incepted in the academic community [4]. Within a Cloud,
services that represent computing resources, platforms or applica-
tions are provided across (sometimes geographically) dispersed
organizations. Moreover, a Cloud provides resources in a highly
dynamic and scalable way and offers to end-users a variety of ser-
vices covering the entire computing stack. Particularly, within IaaS
Clouds, slices of computational power in networked hosts are
offered with the intent of reducing the owning and operating costs
of having such resources in situ. Besides, the spectrum of configu-
ration options available to scientists, such as PSEs scientific users,
through Cloud services is wide enough to cover any specific need
from their research.
2.1. Cloud Computing basics

The growing popularity of Cloud Computing has led to several
definitions, as previously indicated by Vaquero et al. [48]. Some
of the definitions given by scientists in the area include:

� Buyya et al. [11] define Cloud Computing in terms of its utility
to end users: ‘‘A Cloud is a market-oriented distributed comput-
ing system consisting of a collection of interconnected and vir-
tualized computers that are dynamically provisioned and
presented as one or more unified computing resource(s) based
on service-level agreements established through negotiation
between the service provider and consumers’’.
� On the other hand, Mell and Grance [32] define Cloud Comput-

ing as ‘‘a model for enabling ubiquitous, convenient, on demand
network access to a shared pool of configurable computing
resources (i.e. networks, servers, storage, applications and ser-
vices) that can be rapidly provisioned and released with mini-
mal management effort or service provider interaction. This
Cloud model is composed of five essential characteristics, three
services models (Software/Platform/Infrastructure as a Service),
and four deployment models, whereas the five characteristics
are: on-demand self-service, broad network access, resource
pooling, rapid elasticity, and measured services. The deploy-
ment models include private, community, public and hybrid
Clouds’’.
onse time in online scientific Clouds via Ant Colony Optimization (SP2013/
5.01.005
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As suggested, central to Cloud Computing is the concept of vir-
tualization, i.e., the capability of a software system of emulating
various operating systems. In a Cloud, virtualization is an essential
mechanism for providing resources flexibly to each user and isolat-
ing security and stability issues from other users. Clouds allow the
dynamic scaling of users applications by the provisioning of com-
puting resources via machine images, or VMs. In addition, users
can customize the execution environments or installed software
in the VMs according to the needs of their experiments.

Virtualization technologies allows a Cloud infrastructure to
remap VMs to physical resources according to the change in
resources load [43]. In order to achieve good performance, VMs
have to fully utilize its services and resources by adapting to the
Cloud Computing environment dynamically. Proper allocation of
resources must be guaranteed in order to improve resource utility
[14].

A Cloud offer its services according to three fundamental mod-
els [49] as shown in Fig. 1: Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS), and Software as a Service (SaaS). IaaS is
the most basic but at the same time ubiquitous model in which
an IT infrastructure is deployed in a datacenter as VMs. With the
growing popularity of IaaS Clouds, many tools and technologies
are emerging, which can transform an organization’s existing infra-
structure into a private (intra-datacenter) or hybrid Cloud. An IaaS
Cloud enables on-demand provisioning of computational resources
in the form of VMs deployed in a datacenter, minimizing or even
eliminating associated capital costs for Cloud consumers, and let-
ting those consumers add or remove capacity from their IT infra-
structure to meet peak or fluctuating service demands. Moreover,
PaaS implementations supply users with an application framework
and APIs that can be used to program or compose applications for
the Cloud. Finally, SaaS is a software delivery model that provides
end users with an integrated service comprising hardware, devel-
opment platforms, and applications. Users are not allowed to cus-
tomize the service but to get access to a specific application hosted
in the Cloud.

On an IaaS environment, unlike traditional job scheduling (e.g.,
on clusters) where the executing units are mapped directly to
physical resources at one level (execution middleware), resources
are scheduled at two levels (Fig. 2): Cloud-wide or Infrastruc-
ture-level, and VM-level. At the Cloud-wide level, one or more
Cloud infrastructures are created and through a VM scheduler
the VMs are allocated into real hardware. Then, at the VM-level,
by using job scheduling techniques, jobs are assigned for execution
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Fig. 1. Cloud computing offerings by services.
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into virtual resources. Broadly, job scheduling is a mechanism that
maps jobs to appropriate resources to execute, and the delivered
efficiency will directly affect the performance of the whole distrib-
uted environment. Furthermore, Fig. 2 illustrates a Cloud where
one or more scientific users are connected via a network and
require the creation of a number of VMs for executing their exper-
iments (a set of jobs).

For scientific applications in general, virtualization has shown
to provide many useful benefits, including user-customization of
system software and services, check-pointing and migration, better
reproducibility of scientific analyses, and enhanced support for leg-
acy applications [25]. The value of Cloud Computing as a tool to
execute complex scientific applications in general [50,51] has been
already recognized within the scientific community. Although the
use of Cloud infrastructures helps scientific users to run complex
applications, job and VM management is a key concern that must
be addressed. Particularly, in this work we focus on the Infrastruc-
ture-level in order to more efficiently solve the allocation of VMs to
physical resources in an online, multi-user Cloud. However, job
scheduling is NP-complete [52], and therefore approximation heu-
ristics are necessary.

2.2. Swarm Intelligence (SI) techniques for Cloud scheduling

SI techniques [10] are increasingly used to solve optimization
problems, and thus they result good alternatives to achieve the
goals proposed in this work. SI is a discipline that deals with
natural and artificial systems composed of many individuals that
coordinate themselves using decentralized control and self-
organization. In particular, SI focuses on the collective behaviors
that result from the local interactions of the individuals with each
other and with their environment. Examples of systems studied by
SI are ants colonies, fish schools, flocks of birds, and herds of land
animals, where the whole group of agents perform a desired task
(i.e. feeding), which might not be made individually. The advantage
of these techniques derives from their ability to explore solutions
in large search spaces in a very efficient way along with little initial
information. Moreover, using SI techniques is an interesting
approach to cope in practice with the NP-completeness of job
scheduling [35,46]. In particular, the great performance of Ant
Colony Optimization (ACO) algorithms for job scheduling problems
was first shown in [33].

ACO [16] arises from the way real ants behave in nature. Real
ants initially wander randomly, and upon finding food return to
their colony while laying down pheromone trails. If other ants find
such a path, they are likely not to keep traveling at random, but to
follow the trail instead, returning and reinforcing it if they eventu-
ally find food. Thus, when one ant finds a short path from the col-
ony to a food source, other ants are more likely to follow that path,
and positive feedback eventually leaves all the ants following a sin-
gle path. However, if over time ants do not visit a certain path,
pheromone trails start to evaporate, thus reducing their attractive
strength. The more the time an ant needs to travel down the path
and back again, the less the pheromone trails are reinforced. From
an algorithmic point of view, the pheromone evaporation process
is useful for avoiding the convergence to a local optimum solution.

Fig. 3 shows two possible paths from the nest to the food
source, but one of them is longer than the other one. Fig. 3(a)
shows how ants will start moving randomly at the beginning to
explore the ground and then choose one of two paths. The ants that
follow the shorter path will naturally reach the food source before
the others ants, and in doing so the former group of ants will leave
behind them a pheromone trail. After reaching the food, the ants
will turn back and try to find the nest. Moreover, the ants that per-
form the round trip faster, strengthen more quickly the quantity of
pheromone in the shorter path, as shown in Fig. 3(b). The ants that
onse time in online scientific Clouds via Ant Colony Optimization (SP2013/
5.01.005
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reach the food source through the slower path will find attractive
to return to the nest using the shortest path. Eventually, most ants
will choose the left path as shown in Fig. 3(c).

The above behavior of real ants has inspired ACO. One of its
main ideas is exploiting the indirect communication among the
individuals of an ant colony. Intuitively, this mechanism is based
on an analogy with the above mentioned trails of pheromone
which real ants use for communication. ACO employs pheromone
trails as a kind of distributed numerical information which is mod-
ified by ants to reflect their accumulated experience while solving
Please cite this article in press as: Pacini E et al. Balancing throughput and resp
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a particular problem. At each execution step, ants compute a set of
feasible moves and select the best one (according to some probabi-
listic rules) to carry out all the tour. The transition probability for
moving from a place to another is based on the heuristic informa-
tion and pheromone trail level of the move. The higher the value of
the pheromone and the heuristic information, the more profitable
it is to select this move and resume the search.

All ACO algorithms adapt the algorithm scheme explained next.
After initializing the pheromone trails and control parameters, a
main loop is repeated until a stopping criterion is met (e.g., a
onse time in online scientific Clouds via Ant Colony Optimization (SP2013/
5.01.005
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certain number of iterations to perform or a given time limit with-
out improving the result). In this loop, ants construct feasible solu-
tions and update the associated pheromone trails. Furthermore,
partial problem solutions are seen as nodes (an abstraction for
the location of an ant): each ant starts to travel from a random
node and moves from a node i to another node j of the partial solu-
tion. At each step, the ant k computes a set of feasible solutions to
its current node and moves according to a probability distribution.
For an ant k the probability pk

ij to move from a node i to a node j is:

pk
ij ¼

sij �gijP
q2allowedksiqgiq

if j 2 allowedk

pk
ij ¼ 0 otherwise

8<
: ð1Þ

where gij is the attractiveness of the move as computed by some
heuristic information indicating a prior desirability of that move.
sij is the pheromone trail level of the move, indicating how profit-
able it has been in the past to make that particular move (it repre-
sents therefore a posterior indication of the desirability of that
move). Finally, allowedk is the set of remaining feasible nodes.

The higher the pheromone value and the heuristic information,
the more profitable it is to include j in the partial solution. The ini-
tial pheromone level is a positive integer s0. In nature, there is not
any pheromone on the ground at the beginning (i.e., s0 ¼ 0). How-
ever, the ACO algorithm requires s0 > 0, otherwise the probability
to chose the next state would be pk

ij ¼ 0 and the search process
would stop from the beginning. Furthermore, the pheromone level
of the elements of the solutions is changed by applying the follow-
ing update rule:

sij  q:sij þ Dsij ð2Þ

where 0 < q < 1 models pheromone evaporation and Dsij

represents additional added pheromone. Normally, the quantity of
the added pheromone depends on the quality of the solution.

2.3. Computational Mechanics Parameter Sweep Experiments (PSEs)

From the seminal paper on Computational Mechanics due to
Bathe and Oden [34], many advances can indeed be addressed.
Non linear solid mechanics in general, and Finite Strain Plasticity
in particular, have been benefited from the works of Simo and Ortiz
[40–42]. In the literature different problems can be found where it
is important to study the sensitivity of results in terms of changes
of variable data. For instance, García Garino et al. [20] have dis-
cussed the sensitivity of results of the necking problem of circular
cylindrical bars in terms of applied imperfections.

A concrete example of a PSE is the one presented by Careglio
et al. [13], which consists in analyzing the influence of size and
type of geometric imperfections in the response of a simple tensile
test on steel bars subject to large deformations. To conduct the
study, the authors numerically simulate the test by varying some
parameters of interest, namely using different sizes and types of
geometric imperfections. By varying these parameters, several
study cases were obtained, which was necessary to analyze and
run on different machines in parallel. More recently, García Garino
et al. [21] have discussed a large strain viscoplastic constitutive
model. A plane strain plate with a central circular hole under
imposed displacements stretching the plate has been studied. Dif-
ferent values were considered for viscosity and other constitutive
model parameters in order to adjust the model response. As can
be seen in Fig. 4 rather different deformation patterns have been
found for different values of viscosity g.

Consequently, different results can be expected for the different
values of constitutive parameters considered, which in practice can
led to significantly different CPU times in order to complete the
execution of the associated numerical simulations. Even in the case
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of static assignation of computing resources [19,30], a rather com-
plex scheduling problem has to be solved. Particularly, the simula-
tions in this work are based on a large strain elastoplastic/
elastoviscoplastic constitutive model written in terms of internal
variables theory and a hyperelastic free energy function [18,21],
following the ideas of Simo, Ortiz and co-authors [40–42]. It is
important to mention that only few works devoted to Finite
Elements on Cloud Computing infrastructures can be found in
the literature [3,19,30,36,55].

3. Proposed scheduler

Our scheduler deals with the problem described next. A number
of users are connected to the Cloud at different times to execute
their PSEs, and each user requests to the Cloud the creation of v
VMs. A PSE is formally defined as a set of N ¼ 1;2; . . . ;n indepen-
dent jobs, where each job corresponds to a particular value for a
variable of the model being studied by the PSE. The jobs are distrib-
uted and executed on the v VMs created by the corresponding user.
Since the total number of VMs required by all users is usually
greater than the number of Cloud physical resources (i.e., hosts),
a strategy that achieves a good use of these physical resources is
needed. This strategy is implemented at the Infrastructure-level
by means of a support that allocates user VMs to hosts. Moreover,
a strategy for assigning user jobs to allocated VMs is also necessary
(currently we use FIFO).

To implement the Infrastructure-level strategy, AntZ, the algo-
rithm proposed in [29] to solve the problem of load balancing in
Grid environments has been adapted to be used in Clouds (see
Algorithm 1). AntZ combines the idea of how ants cluster objects
with their ability to leave pheromone trails on their paths so that
it can be a guide for other ants passing their way.

Algorithm 1. ACO-based allocation algorithm for individual VMs
on
5

Procedure ACOallocationPolicy (vm,hostList)
Begin

initializeLoadTable()
ant = getAntPool(vm)
if (ant==null) then

suitableHosts = getSuitableHostsForVm(hostList,vm)
ant = new Ant(vm,suitableHosts)
antPool.add(vm,ant)

end if
repeat

ant.AntAlgorithm()
until ant.isFinish()
allocatedHost = hostList.get(ant.getHost())
if (!allocatedHost.allocateVM(ant.getVM()))

repeat
ACOallocationPolicy(ant.getVM(),hostList)
numberOfRetries—

until successful or numberOfRetries==0
End
In our adapted algorithm (see Algorithm 1), each ant works
independently and represents a VM ‘‘looking’’ for the best host to
which it can be allocated. When a VM is created, an ant is initial-
ized. A master table containing information on the load of each
host is initialized (initializeLoadTable()). Subsequently, if
an ant associated to the VM that is executing the algorithm already
exists, the ant is obtained from a pool of ants through the getAnt-
Pool(vm) method. If the VM does not exist in the ant pool, then a
se time in online scientific Clouds via Ant Colony Optimization (SP2013/
.01.005
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new ant is created. To do this, first, a list of all suitable hosts in
which can be allocated the VM is obtained. A host is suitable if it
has an amount of processing power, memory and bandwidth
greater than or equal to that of required by the unallocated VM.
Algorithm 2. ACO-specific logic: Core logic
Procedure AntAlgorithm()
Begin

step = 1
networkMessages = 0
initialize()
While (step < maxSteps) do

currentLoad = getHostLoadInformation()
AntHistory.add(currentLoad)
localLoadTable.update()
if (currentLoad = 0.0)

break
else
if (random() < mutationRate) then

nextHost = randomlyChooseNextStep()
else

nextHost = chooseNextStep()
end if
mutationRate = mutationRate-decayRate
networkMessages = networkMessages + 1
step = step + 1
moveTo(nextHost)

end while
deliverVMtoHost()

End

Each working ant and its associated VM are added to the ant
pool (antPool.add(vm,ant)) and the ACO-specific mechanism
starts to operate (see Algorithm 2). In each iteration of the sub-
algorithm, the ant collects the load information of the host that
is visiting and adds this information to its private load history.
The ant then updates a load information table of visited hosts
(localLoadTable.update()), which is maintained in each host.
This table contains information of the own load of an ant, as well as
load information of other hosts, which were added to the table
when other ants visited the host. Here, load refers to the total
CPU utilization within a host and is calculated taking into account
the number of VMs that are executing at a given time in each phys-
ical host. To calculate the load, the original AntZ algorithm receives
the number of jobs that are executing in the resource in which the
Please cite this article in press as: Pacini E et al. Balancing throughput and resp
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load is being calculated, and it is calculated taking into account the
amount available of million instructions per second (MIPS) in each
CPU. MIPS is a metric that indicates how fast a computer processor
runs. In our scheduler, the load is calculated on each host taking
into account the CPU utilization made by all the VMs that are exe-
cuting on each host. This metric is useful for an ant to choose the
least loaded host to allocate its VM.

When an ant moves from one host to another it has two
choices: moving to a random host using a constant probability
or mutation rate, or using the load table information of the cur-
rent host (chooseNextStep()). The mutation rate decreases
with a decay ratefactor as time passes, thus, the ant will be
more dependent on load information than to random choice.
This process is repeated until the finishing criterion is met.
The completion criterion is equal to a predefined number of
steps (maxSteps). Finally, the ant delivers its VM to the current
host and finishes its task. Due to the fact that each step per-
formed by an ant involves moving through the network, we
have added a control to minimize the number of steps that an
ant performs: every time an ant visits a host that has not
yet allocated VMs, then the ant allocates its associated VM to
it directly without performing further steps. The number of
messages sent over the network by an ant to hosts to obtain
information regarding their availability is accumulated every
time an ant takes a step.

When the ant has not completed its work, i.e., the ant can-
not allocate its associated VM to a host, then an exponential
back-off strategy may be activated. The allocation of each fail-
ing VM in the queue is re-attempted every s seconds and
retried n times.

Algorithm 3. ACO-specific logic: The ChooseNextStep procedure

Procedure ChooseNextStep()
Begin

bestHost = currentHost
bestLoad = currentLoad
for each entry in hostList

if (entry.load < bestLoad) then
bestHost = entry.host

else if (entry.load = bestLoad) then
if (random.next < probability) then

bestHost = entry.host
end if

end if
end for

End
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Every time an ant visits a host, it updates the host load informa-
tion table with the information of other hosts, but at the same time

 

the ant collects the information already provided by the table of
that host, if any. The load information table acts as a pheromone
trail that an ant leaves while it is moving, to guide other ants to
choose better paths rather than wandering randomly in the Cloud.
Entries of each local table represent the hosts that ants have visited
on their way to deliver their VMs together with load information.

When an ant processes the information from a load table in a
host via the Algorithm 3, the ant selects the lightest loaded host
in the table, i.e., each entry of the load information table is evalu-
ated and compared with the current load of the visited host. If the
load of the visited host is smaller than any other host stored in the
load information table, the ant chooses the host with the smallest
load. On the other hand, if the load of the visited host is equal to
any host in the load information table, the ant chooses any of these
hosts randomly.

Algorithm 4. The SubmitJobsToVMs procedure

E. Pacini et al. / Advances in Engin 

 

Procedure SubmitJobsToVMs(jobList)
Begin

vmIndex = 0
while (jobList.size() > 0)

job = jobList.getNextJob()
vm = getVMsList(vmIndex)
vm.scheduleJobToVM(job)
totalVMs = getVMsList().size()
vmIndex = Mod(vmIndex + 1,totalVMs)
jobList.remove(job)

end while
End

Once the VMs have been allocated to physical resources, the
scheduler proceeds to assign the jobs to these VMs. To do this, jobs
are assigned to VMs according to the Algorithm 4. This represents
the second scheduling level of the scheduler proposed as a whole.
This sub-algorithm uses two lists, one containing the jobs that have
been sent by the user, i.e., a PSE, and the other list contains all user
VMs that are already allocated to a physical resource and hence are
ready to execute jobs. The algorithm iterates the list of all jobs –
jobList – and then, through getNextJob() method retrieves
jobs by a FIFO policy. Each time a job is obtained from jobList,
it is submitted to be executed in a VM in a round robin fashion.
The VM where the job is executed is obtained through the method
getVMsList(vmIndex). Internally, the algorithm maintains a
queue for each VM that contains its list of jobs to be executed.
The procedure is repeated until all jobs have been submitted for
execution, i.e., when the jobList is empty.
Fig. 5. Plane strain plate: Finite element mesh of 1152 elements.
4. Evaluation

To assess the effectiveness of our proposal in a non-batch Cloud
environment where multiple users dynamically connect to request
VMs, we processed a real case study for solving a well-known
benchmark problem discussed for instance in [21]. Methodologi-
cally, we first executed the problem in a real single machine by
varying an individual problem parameter by using a finite element
solver, called SOGDE [18], in order to gather real job processing
times and input/output data sizes. By means of the generated job
data, we performed the experimental setup by configuring the
CloudSim simulation toolkit. Details on the experimental method-
ology are provided in Section 4.1. After that, we compared our
Please cite this article in press as: Pacini E et al. Balancing throughput and resp
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proposal with some Cloud scheduling alternatives in terms of the
metrics of interest. The results are explained in Section 4.4.

4.1. Experimental methodology

A classical benchmark problem cited in the literature, see [2]
for instance, involves studying a plane strain plate with a central
circular hole (see Fig. 5). The dimensions of the plate were
18 � 10 m, with R ¼ 5 m. On the other hand, material constants
considered were E ¼ 2:1� 105 Mpa, m ¼ 0:3; ry ¼ 240 Mpa and
H ¼ 0. A linear Perzyna viscoplastic model with m ¼ 1 and
n ¼ 1 was considered. The 3D finite element mesh used had
1152 elements and H1/P0 elements were chosen. Imposed dis-
placements (at y ¼ 18 m) were applied until a final displacement
of 2000 mm was reached in 400 equal time steps of 0.05 mm
each. Lastly, Dt ¼ 1 has been set for all the time steps. Unlike
previous studies of our own [13], in which a geometry parameter
– particularly imperfection – was chosen to generate the PSE jobs,
in this case a material parameter was selected as the variation
parameter. Then, 25 different viscosity values for the g parameter
were considered, namely x � 10y Mpa, with x ¼ 1–5 and 7 and
y ¼ 4–7, plus 1 � 108 Mpa. Useful and introductory details on
viscoplastic theory and numerical implementation can be found
in [21]. The tests were solved using the SOGDE 3D finite element
solver software [18].

After that, we employed a single real machine to run the
parameter sweep experiment by varying the viscosity parameter
g as indicated and measuring the execution time for the 25 dif-
ferent experiments, which resulted in 25 input files with differ-
ent input configurations and 25 output files. The experiment
were processed using an AMD Athlon(tm) 64 X2 Dual Core Pro-
cessor 3600+ machine, 2 GB of RAM, equipped with the Ubuntu
12.04 operating system. The information regarding machine pro-
cessing power was obtained from the native benchmarking sup-
port of Linux and is expressed in MIPS. The machine has 4008.64
MIPS. It is worth noting that only one core was used during the
experiments, since SOGDE supports sequential program
execution.
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Once the execution times were obtained from the real machine,
we approximated for each experiment the number of executed
instructions by the following formula NIi ¼ mipsCPU � Ti, where
NIi is the number of million instructions associated to job i,
mipsCPU is the processing power of the CPU of our real machine
measured in MIPS, and Ti is the time that took to run jobi on the
real machine. For example, for a job taking 539 s to execute, the
approximated number of instructions for the job was 2,160,657
MI (Million Instructions). Resulting jobs execution times and
lengths are shown in Table 1.

After gathering real job data, the CloudSim simulation toolkit
[12] was configured with a Cloud composed of a single machine
(‘‘host’’ in CloudSim terminology) with similar characteristics as
the real machine where the above experiments were performed.
We used more cores (‘‘processing elements’’ or ‘‘PEs’’ in CloudSim),
each one with the same processing power than the real machine,
and more memory capacity. Table 2 shows the characteristics of
the configured host and virtual machine. Once configured, we
checked that the execution times obtained by the simulation coin-
cided or were close to real times for each independent job per-
formed on the real machine. The results were successful in the
sense that one experiment (i.e., a variation in the value of g) took
539 s to be solved in the real machine, while in the simulated
machine the elapsed time was 539.086 s. The range of differences

 

 

Table 1
Real jobs execution times and lengths.

Parameter g Execution time (s) Length (MI)

1:104 539 2,160,657

2:104 458 1,835,957

3:104 454 1,819,923

4:104 436 1,747,767

5:104 399 1,599,447

7:104 395 1,583,413

1:105 401 1,607,465

2:105 356 1,427,076

3:105 365 1,463,154

4:105 361 1,447,119

5:105 381 1,527,292

7:105 375 1,503,240

1:106 379 1,495,223

2:106 340 1,362,938

3:106 342 1,370,955

4:106 344 1,378,972

5:106 367 1,471,171

7:106 357 1,431,084

1:107 359 1,439,102

2:107 354 1,419,059

3:107 350 1,403,024

4:107 351 1,407,033

5:107 351 1,407,033

7:107 355 1,423,067

1:108 354 1,419,059

Table 2
Simulated Cloud machines characteristics. Host parameters (left) and VM parameters
(right).

Host parameters Value VM parameters Value

Processing power 4008 MIPS Processing power 4008 MIPS
RAM 4 Gbytes RAM 512 Mbytes
Storage 400 Gbytes Machine image Size 100 Gbytes
Bandwidth 100 Mbps Bandwidth 25 Mbps
PEs 4 PEs 1

VMM (Virtual Machine Monitor) Xen
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between simulated times and real times for all jobs was [0.054–
0.086]. Once the execution times have been validated for a single
machine on CloudSim, a new simulation scenario was set. This
new scenario consisted of a datacenter with 10 hosts, where each
had the same hardware capabilities as the host in Table 2. Then,
each user connecting to the Cloud requests v VMs to execute their
PSE. Each VM has the characteristics specified in Table 2. This is a
moderately-sized, homogeneous datacenter likely to be found in
many real scenarios [30].

To evaluate the performance in the simulated Cloud we have
modeled an online Cloud scenario in which new users connect
to the Cloud every 600 s. We have set to 600 s the connection
gap of users to have an approximate time to the longest job
execution time which was 539 s (see Table 1, first job). The
aim was to establish a time that does not completely saturate
the system with the load, and further that the load is manage-
able. Furthermore, each user requires the creation of 10 VMs in
which they run their PSE –a set of 10 * 25 jobs–. This is, the
real base job set comprising 25 jobs that was obtained by vary-
ing the value of g was cloned to obtain more jobs. The number
of users who connect to the Cloud varies as u ¼ 10, 20, . . . , 120,
and since each user executes one PSE –100 jobs–, the total
number of jobs to execute is n ¼ 100 � u at each time. Like-
wise, the total number of requested VMs is m ¼ 10 � u at each
time.

Each job, called Cloudlet by CloudSim, had the characteristics
shown in Table 3, where the Length parameter is the number of
instructions to be executed by a Cloudlet, which varied between
1,362,938 and 2,160,657 MIPS (see Table 1). Each Cloudlet required
only one PE since as explained above real jobs are not multi-
threaded. Input size and Output size are the input file size and out-
put file size, respectively, measured in bytes.

4.2. Alternative schedulers considered

Here, we report the results when executing PSEs submitted by
multiple users in the simulated Cloud using our two-level sched-
uler and alternative Cloud scheduling policies for assigning VMs
to hosts. Due to their high CPU requirements, and the fact that each
VM requires only one PE, we assumed a 1–1 job-VM execution
model, i.e., jobs within a VM waiting queue are executed one at a
time by competing for CPU time with other jobs from other VMs
in the same hosts. In other words, a time-shared CPU scheduling
policy was used, which ensures fairness. Although our scheduler
is independent from the SI technique exploited at the Infrastruc-
ture-level, it will be referred as ‘‘ACO’’ for simplicity. Moreover,
our proposed algorithm is compared against another three
schedulers:

� Random allocation, a scheduling algorithm in which the VMs
requested by the different users are assigned randomly to
different physical resources. Although this algorithm does
not provide an elaborated criterion to allocate the VMs to
physical resources, it provides a good benchmark to evaluate
how our scheduler performs compared to random
assignment.
Table 3
Cloudlet configuration used in the experiments.

Cloudlet parameters Value

Length (MIPS) 1,362,938–2,160,657
PEs 1
Input size (bytes) 291,738
Output size (bytes) 5,662,310
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Fig. 6. Genetic encoding of VM scheduling to physical hosts.
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� A Cloud scheduler based on Genetic Algorithm (GA) proposed in
[1], in which the population structure is represented as the set
of physical resources that compose a datacenter, as illustrated
in Fig. 6. Each chromosome is an individual in the population
that represents a part of the searching space. Each gene (field
in a chromosome) is a host in the Cloud, and the last field in this
structure is the fitness field, which is updated in each chromo-
some for each VM allocation request. The fitness field indicates
the result of the fitness function and it is calculated as the
inverse of the accumulated load of all hosts composing the
chromosome. The load in each is host is calculated taking into
account the number of VMs that are executing in it. A chromo-
some with higher fitness indicates that its associated set of
hosts has the most free CPUs to perform the current allocation.
Each chromosome keeps combinations of hosts and the fitness
of the current allocation.

Algorithm 5. Genetic algorithm pseudo-code
Procedure GAalgorithm()
Begin

generation = 1
P = createPopulation(sizePopulation)
evaluatePopulation(P)
While (generation < maxGenerations) do

P2 = select(P)
reproduce(P2)
evaluate(P2)
P = renewPopulation(P,P2)
generation = generation + 1

end while
i = 1
While (i < sizePopulation) do

localSort(P)
end while
j = 1
While (j < sizePopulation) do

globalSort(P)
end while

End

The Algorithm 5 shows the pseudo-code of this scheduler. The
initiation step of the population (createPopulation(size))

outputs the set of hosts available in the Cloud. This is, as illus-
trated in Fig. 6, the population is represented as a set of hosts.
Each chromosome keeps combinations of hosts and its associ-
Please cite this article in press as: Pacini E et al. Balancing throughput and resp
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ated fitness. This fitness value is updated every time a VM is
requested by an user to indicate the suitability of the hosts in
each chromosome (evaluatePopulation(P)). In each gener-
ation, a new population P2 originated from the initial population
P is formed by selecting chromosomes using a Roulette method
[27] (select(P)), given a probability of selection proportional
to the chromosome fitness. This P2 population is recombined
using a uniform crossover (reproduce(P2)) with the aim of
exploring more possible hosts with better fitness than the cur-
rent allocation. The evaluation step (evaluate(P2)) is done
over the P2 population to update the fitness field of this new
recombined population. Chromosomes with low fitness in P
are replaced by the better individuals in P2 (renewPopula-
tion(P,P2)). Thus, the algorithm preserves the best individuals
to increase the probability of a better allocation. At the end of
generations, two sorting steps are done: one local (local-
Sort(P)) to provide a sorted list of hosts in the chromosome
with higher fitness, and a global sort (globalSort(P)), to pro-
vide a sorted list of individuals with better fitness. The allocation
of VMs will begin in the first host of the first chromosome. If this
host is not able to perform this operation, the next host in the
chromosome with better fitness is selected.
In our experiments, the GA-specific parameters were set to the
following values: chromosome size = 8, population size = 10 and
number of iterations = 10. In [1] the authors have set the chromo-
some size equal to the number of available hosts, but in this
paper we have reduced this number in order to reduce the net-
work consumption, and because in a population of size 10 still
almost all chromosomes are reached to consider all available
hosts.

� An ideal scheduler, which achieves the best possible allocation
of VMs to physical resources in terms of the studied metrics.
To allocate all the VMs, the scheduler uses a back-off strategy
until it is able to serve all users. The number of enough retries
to serve all users and create all requested VMs was 20. This
scheduler has been implemented in this way to obtain the ideal
values to which all its competitors, including ACO, should be
compared against.

In our ACO scheduler, we have set the ACO-specific parameters
– i.e., mutation rate, decay rate and maximum steps – with values
within the range of values studied in [29]: mutation rate = 0.6,
decay rate = 0.1 and maximum steps = 8. In all cases, the considered
algorithms use the same policy for handling jobs within VMs (i.e.,
FIFO with round robin), and the VMs allocated to a single host (i.e.,
time-shared [37]). Using time-shared means there is not limit on
the number of VMs a host can handle in terms of CPU time. A host
can, however, reject the creation of a new VM because of insuffi-
cient RAM or disk space.
4.3. Evaluation metrics

In our previous works [19,30], a batch scenario was considered
and the goal was minimizing the flowtime and makespan of all
jobs submitted by one user. Flowtime is the sum of job finish times
minus job start times of a set of jobs. Makespan is the maximum
execution time of a set of jobs. Here, an online Cloud [36] scenario
is employed. An online Cloud is a Cloud which is available all the
time and to which different users connect at different times to sub-
mit their experiments. The experiments have been performed with
the aim of measuring the trade-off between the number of serviced
users by the Cloud – among all users that are connected to the
Cloud – and the total number of created VMs among all users.
The basis for these metrics is that the more the number of serviced
users, the higher the end-user throughput, and the greater the
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number of created VMs, the greater the parallelism and therefore
the lower the flowtime [30]. The number of serviced users
increases every time the scheduler successfully allocates any of
the requested VMs. A user is considered ‘‘serviced’’ if the scheduler
can create at least one VM from its requirement jobs.

Based on these two metrics, we derived a weighted metric, by
which the results obtained from the different algorithms have been
normalized and weighted with numerical weights. The normalized
values for each metric and each user group U connected to the
Cloud are computed as:

NormalValueUi¼10;20;...;120 ¼ 1� MaxðvalueUiÞ � valueUi

MaxðvalueUiÞ �MinðvalueUiÞ

� �

ð3Þ

where valueU represents the obtained value for each one of the
basic metrics – serviced users and created VMs – and for each user
group connected to the Cloud, Max(valueU)and Min(valueU) are the
maximum and minimum values, respectively, for each basic metric
among all the algorithms – ACO, Random, GA, Ideal – and for each
user group connected to the Cloud. Moreover, the weighted metric
is computed as:

WeightedMetricUi¼10;...;120 ¼ ðweightSU � NormalSUi

þweightVMs � NormalVMsUiÞ ð4Þ

where weightSU is the weight applied to the number of serviced
users by the Cloud (NormalSU) and weightVMs weighs the total
number of created VMs (NormalVMs). Based on these, three weights
combinations have been used. Each pair of weight combinations
(weightSU, weightVMs) represent a different scenario. We evaluate
pure HTC/HPC scenarios by assigning the weight combinations (1,
0)/(0, 1) (Sections 4.4.1 and 4.4.2, respectively), and a mixed sce-
nario by assigning the weights (0.50, 0.50) with the aim of achieving
a balance between the number of serviced users and the number of
created VMs (Section 4.4.3).

Finally, we study in more detail how the number of serviced
users and the number of created VMs behaves when using the
exponential back-off strategy to retry the allocation of failing
VMs. The back-off strategy is activated every time a VM fails in
their first attempt to creation, and retries allocating the VM based
on an exponential function. The number of retries is equal to 3. In
our previous work [36] we determined that 3 retries is a reason-
able number when reallocating VMs. More retries does not lead
to more successful VM allocations, and the schedulers become
more inefficient.

 

 

4.4. Experimental results

Irrespective of the metric, in this work we show average results,
which arise from averaging 20 times the execution of each algo-
rithm. Previously, to select the appropriate number of executions
for reporting the results, experiments were performed with differ-
ent numbers of executions: 15, 20, 25 and 30. Although the more
the number of executions, the more accurate the obtained results,
deviations in the order of 1/10,000 were obtained in the results
when the number of executions increased between 15 and 30.
For example, with 15 executions, the standard deviation with
respect to the average results of 30 executions (the most accurate
results) for the metric serviced users varied between 0 and 0.13, and
for 20 executions varied between 0 and 0.06. On the other hand, for
the metric created VMs the standard deviation varied between 0.02
and 1.56 for 15 executions, and between 0.26 and 1.40 for 20
executions.
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4.4.1. Pure HTC scenario – weight combination (1, 0)
In HTC [8] environments, the main challenge is how to

maximize the amount of resources accessible to its users. These
computing paradigm is more suited for running multiple indepen-
dent jobs on multiple computing resources at the same time. The
HTC field is more interested in how many jobs can be completed
over a long period of time (throughput) instead of how fast an indi-
vidual job can complete. In this sense, we consider a pure HTC sce-
nario as the one that prioritizes to serve as many users as possible,
i.e., the number of users that can be actually serviced from those
connected to the Cloud. In this context, ‘‘serviced’’ means those
users for which at least one VM can be allocated. Moreover, the
reason that the schedulers cannot serve some users that connect
to the Cloud is because the attempt to create all VMs requested
by certain users fail. This means that, if the scheduler fails to create
any VMs requested by an user, then this user is considered not
served.

Table 4 shows the weighted metric for the different algo-
rithms. We have assigned the weights combinations (weightSU,
weightVMs) = (1, 0). First column illustrate the number of user
trying to connect to the Cloud, and moreover, each row repre-
sents a different scenario. Specifically, the first row represents
the situation where up to 10 users are connected but not all
can be serviced. In the second row up to 20 users are connected,
whereas in the third row up to 30 users connect, and so on.
Then, the second column indicates the range of times, in min-
utes, between each user connects to the Cloud and actually
issues the creation of their VMs. For example, in the first row,
the range of connection times [0–90] represents the scenario
in which the first user connects to the Cloud at time 0, the sec-
ond user connects 10 min after, and so on until the last user is
connected (90 min after the first one). Finally, the last four col-
umns shows the results of the weighted metric for each one of
the algorithms.

As shown in Table 4, among all approaches, Random is the algo-
rithm that serves more users with respect ACO and GA. However,
as we will show in the next subsection, Random is the algorithm
that creates less VMs. It is important to note that, while Random
serves many users, it is in general not fair with the response times
for users, producing a very large flowtime [30]. The reason behind
this is that the Random algorithm assigns the VMs to physical
resources randomly, and many of the creations of the VMs
requested by users might fail. There are situations where for a sin-
gle user Random is able to create only one VM where all jobs of the
user are executed. This situation means that the user must wait too
long to complete their jobs and thus loses the benefit of using a
Cloud. Note that the weighted metric is always zero for GA because
it is the less efficient algorithm in the number of users that
achieves to serve.

Then, we evaluated the different algorithms when the back-off
strategy is used. Table 5 shows again the weighted metric for this
experiment. As shown, Random again is the scheduler that serve
more users. Note that the values of the weighted metric for the
number of serviced users are lower when using the back-off strat-
egy. This happens because the back-off strategy starts to try re-
allocating VMs from the first VM that failed in their first attempt
to creation. Moreover, generally, the VMs that failed correspond
to the first users connected to the Cloud. The back-off strategy
serves fewer users but with a greater number of VMs for each
one of them (see Section 4.4.2). The reason is because when the
schedulers are able to create a greater number of VMs for the first
users connected to the Cloud, the availability of physical resources
decreases earlier, and as a consequence, fewer users can be
serviced.

Table 6 shows the gains obtained in the number of serviced
users using the back-off strategy for each algorithm with respect
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Table 4
Weighted metric with weight combinations (1,0).

Users connected to the Cloud Range of connection times (min) Without retries of VM creation

ACO GA Random Ideal

10 [0–90] 0.62 0 0.84 1
20 [0–190] 0.55 0 0.58 1
30 [0–290] 0.37 0 0.56 1
40 [0–390] 0.33 0 0.45 1
50 [0–490] 0.32 0 0.39 1
60 [0–590] 0.31 0 0.38 1
70 [0–690] 0.29 0 0.33 1
80 [0–790] 0.25 0 0.31 1
90 [0–890] 0.22 0 0.28 1

100 [0–990] 0.20 0 0.26 1
110 [0–1090] 0.20 0 0.25 1
120 [0–1190] 0.19 0 0.24 1

Table 5
Weighted metric with weight combinations (1,0) and back-off strategy.

Users connected to the Cloud Range of connection times (min) With 3 retries of VM creation

ACO GA Random Ideal

10 [0 – 90] 0.43 0 0.43 1
20 [0 – 190] 0.43 0 0.36 1
30 [0 – 290] 0.25 0 0.26 1
40 [0 – 390] 0.25 0 0.23 1
50 [0 – 490] 0.20 0 0.25 1
60 [0 – 590] 0.18 0 0.19 1
70 [0 – 690] 0.19 0 0.20 1
80 [0 – 790] 0.15 0 0.17 1
90 [0 – 890] 0.15 0 0.16 1

100 [0 – 990] 0.13 0 0.16 1
110 [0 – 1090] 0.10 0 0.16 1
120 [0 – 1190] 0.12 0 0.16 1

Table 6
Serviced users: % Gain when using the back-off strategy.

Users connected to the Cloud % Gain ACO % Gain GA % Gain random % Gain ideal

10 �8.09 �3.57 �15.52 N/A
20 �8.00 �5.65 �12.70 N/A
30 �8.74 �4.13 �18.54 N/A
40 �6.43 �3.32 �14.18 N/A
50 �8.73 �2.39 �9.58 N/A
60 �8.74 �0.98 �11.93 N/A
70 �7.51 �1.74 �9.09 N/A
80 �6.64 �1.07 �9.36 N/A
90 �5.17 �1.15 �8.40 N/A

100 �6.11 �1.47 �7.55 N/A
110 �7.26 �1.26 �7.22 N/A
120 �5.67 �1.01 �6.43 N/A

%GainUsersu¼10;20;...;120 ¼ 100� ðnumberServicedUsersWithoutRetriesuðACO;GA;RandomÞ � 100Þ
ðnumberServ icedUsersWithRetriesuðACO;GA;RandomÞÞ ð5Þ
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to not using it. The gains are calculated considering the number
of serviced users using the back-off strategy and for each group
of users u ¼ 10, 20, . . . , 120:
As shown in Table 6 all gains are negative numbers, which means
that instead of gains, losses are obtained in the number of serviced
users when the back-off strategy is used. Some observations are
that, when 10 users join to the Cloud the loss of ACO to use retries
Please cite this article in press as: Pacini E et al. Balancing throughput and resp
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of VM creation is 8.09%, the loss of GA is 3.57% and the loss of
Random is 15.52%. For the ideal scheduler, gains are not shown as
the algorithm already reached the best possible values without
the strategy. The highest losses in terms of number of serviced users
for all algorithms were obtained when the numbers of users that try
to connect to the Cloud were from 10 to 60 users. Random and GA
present the higher and the lower losses, respectively, in the number
onse time in online scientific Clouds via Ant Colony Optimization (SP2013/
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of serviced users. In the next subsection, it can be seen that though
the strategy of back-off serves fewer users, it is able to create more
VMs.

4.4.2. Pure HPC scenario – weight combination (0, 1)
HPC [8] environments are those who are evaluated in terms of

executed floating-point operations per seconds, and hence their
most important goal is to achieve the greater performance. There-
fore, in this work we consider that the greater number of VMs, the
greater number of operations per second that can be executed for
PSEs, achieving better response times. Then, in this subsection we
evaluate the performance of a pure HPC scenario which only gives
importance to the number of created VMs. This is equivalent to
assign the weights combinations of the weighted metric such as
(weightSU, weightVMs) = (0, 1).

As shown in Table 7, among all approaches, excluding the ideal
scheduler, GA is the algorithm that creates more VMs. This is
because the population size is equal to 10, and each chromosome
contains 7 different hosts, so after 10 iterations GA always finds
the hosts with better fitness, and can thus allocate more VMs to
the first users who connect to the Cloud. However, as we shown
in previous subsection, GA is the algorithm that serves the smaller
number of users. Note that the weighted metric is always zero for
Random because it is the less efficient algorithm in the number of
VMs that achieves to create.

The creation of some VMs fails at the moment an user issues the
creation, due to all physical resources are already fully busy with
VMs belonging to other users, i.e., because the scheduler not found
an available resource where allocate the VM. Depending on the
algorithm and according to the results, some schedulers are able
to find to some extent a host with free resources to which at least
one VM per user is allocated. It is for this reason that in this work
we have also incorporated the back-off mechanism that attempts
to improve the number of VMs that are created for each user.

Next, we evaluate the impact of the back-off strategy for each
algorithm in the number of VMs that each one is able to allocate.
Table 8 shows the same weighted metric values for each algorithm.
Again, GA is the scheduler that achieves to create more VMs, but
GA is not the algorithm that achieves greater improvement levels
when using the back-off strategy. Table 9 shows the gains obtained

 

 

%GainVMsu¼10;20;...;120 ¼ 100� ðnumberCreatedVMsWithoutRetriesuðACO;GA;RandomÞ � 100Þ
ðnumberCreatedVMsWithRetriesuðACO;GA;RandomÞÞ ð6Þ
in the number of created VMs using the back-off strategy for each
algorithm with respect not using it. The gain is calculated consid-
ering the number of created VMs for each algorithm using back-
Table 7
Weighted metric with weight combinations (0,1).

Users connected to the Cloud Range of connection times (min)

10 [0–90]
20 [0–190]
30 [0–290]
40 [0–390]
50 [0–490]
60 [0–590]
70 [0–690]
80 [0–790]
90 [0–890]

100 [0–990]
110 [0–1090]
120 [0–1190]
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off strategy and for each group of users u ¼ 10, 20, . . . , 120:
As shown in Table 9, when the first 10 users join the Cloud the gain
of ACO due to using the back-off strategy is 3.50%, the gain of GA is
0.93% and the gain of Random is 12.15%. The highest gains in terms
of the number of created VMs for all algorithms were achieved
when the number of users connected to the Cloud were in the
range of 60–120. Random presents higher gains since it was the
algorithm that created a lower number of VMs than ACO and GA
without using retries. It is for this reason that by using the strategy
the algorithm has more chances of finding a free host to assign a
VM. However, the number of created VMs by Random is quite
lower compared to ACO and GA. The second position of gains is
presented by ACO and GA remains in the last place, but it is impor-
tant to note that GA is the algorithm that achieves to create more
VMs, and therefore, the best scheduler to use in a pure HPC Cloud
environment, at least under the experimental conditions described
so far.

4.4.3. Mixed HTC/HPC scenario – the weight combination (0.50, 0.50)
Since throughput is often the primary limiting factor in many

scientific and engineering efforts, and moreover, many scientists
and engineers are interested in obtaining their results as soon as
possible, it is important to achieve the best possible balance
between the two previous scenarios, i.e., HTC and HPC. In this sub-
section we evaluate the performance of a mixed computing sce-
nario with the weights combinations (weightSU, weightVMs) =
(0.50, 0.50). The higher the value of the weighted metric, the better
the balance provided by an algorithm with respect to its competi-
tors. Some observations are that when the VMs are created without
retries as in Table 10, in all cases the weighted metric is more
favorable to ACO, resulting in better values with respect to Random
and GA.

As shown in previous subsections, ACO achieves to serve a
greater number of users than GA, and create a greater number of
VMs with respect to Random. But, as can be seen in this scenario,
our ACO scheduler offers the best balance with respect to the num-
ber of serviced users and the total number of created VMs than GA
and Random. Regardless of the weighted metric, a greater through-
put in terms of serviced users and a greater number of created VMs
involves greater parallelism, and therefore, a greater rate of jobs
per unit time can be executed. Again, the Ideal scheduler has only
been treated in these experiments as a fictitious algorithm that
Without retrying VM creation

ACO GA Random Ideal

0.28 0.32 0 1
0.32 0.33 0 1
0.28 0.34 0 1
0.28 0.35 0 1
0.26 0.35 0 1
0.27 0.39 0 1
0.28 0.36 0 1
0.26 0.38 0 1
0.30 0.38 0 1
0.27 0.39 0 1
0.26 0.39 0 1
0.26 0.38 0 1
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Table 8
Weighted metric with weight combinations (0,1) and back-off strategy.

Users connected to the Cloud Range of connection times (min) With 3 retries of VM creation

ACO GA Random Ideal

10 [0–90] 0.20 0.20 0 1
20 [0–190] 0.29 0.30 0 1
30 [0–290] 0.26 0.29 0 1
40 [0–390] 0.30 0.32 0 1
50 [0–490] 0.27 0.32 0 1
60 [0–590] 0.29 0.36 0 1
70 [0–690] 0.30 0.32 0 1
80 [0–790] 0.31 0.36 0 1
90 [0–890] 0.34 0.36 0 1

100 [0–990] 0.31 0.36 0 1
110 [0–1090] 0.31 0.37 0 1
120 [0–1190] 0.34 0.36 0 1

Table 9
Number of VMs: % Gain when using the back-off strategy.

Users connected to the Cloud % Gain ACO % Gain GA % Gain random % Gain ideal

10 3.50 0.93 12.15 N/A
20 8.31 9.17 21.27 N/A
30 10.67 6.08 22.93 N/A
40 15.18 8.45 26.63 N/A
50 15.85 8.38 28.42 N/A
60 18.22 8.19 31.14 N/A
70 18.57 8.56 33.33 N/A
80 19.87 8.97 30.42 N/A
90 19.94 9.56 34.59 N/A

100 21.16 8.75 35.90 N/A
110 22.35 8.48 35.80 N/A
120 24.35 8.09 33.50 N/A

Table 10
Weighted metric with weight combinations (0.50,0.50).

Users connected to the Cloud Range of connection times (min) Without retries of VM creation

ACO GA Random Ideal

10 [0 – 90] 0.45 0.16 0.42 1
20 [0 – 190] 0.44 0.16 0.29 1
30 [0 – 290] 0.32 0.17 0.28 1
40 [0 – 390] 0.30 0.18 0.22 1
50 [0 – 490] 0.29 0.18 0.19 1
60 [0 – 590] 0.29 0.19 0.19 1
70 [0 – 690] 0.28 0.18 0.17 1
80 [0 – 790] 0.25 0.19 0.15 1
90 [0 – 890] 0.26 0.19 0.14 1

100 [0 – 990] 0.24 0.19 0.13 1
110 [0 – 1090] 0.23 0.20 0.13 1
120 [0 – 1190] 0.23 0.19 0.12 1
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gets ideal results, but is taken as a reference to determine how far
each competitor is from the former.

Next, and as in previous subsections, we aggregately evaluate
the number of serviced users and the number of created VMs
reached by the algorithms when using the back-off strategy.
Table 11 shows that ACO again achieves the best balance with
respect to its competitors in all cases. Although none of the sched-
ulers were able to improve the number of serviced users (see
Table 6), all of them were able to improve the number of created
VMs (see Table 9). Due to the fact that ACO is in the second place
in both gain tables, the weighted metric makes ACO the algorithm
that achieves the best balance of the proposed metrics, and also
turns it in the best approach to use for mixed high-computing
Cloud scenarios, at least under the discussed experimental
conditions.
Please cite this article in press as: Pacini E et al. Balancing throughput and resp
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4.4.4. Evaluation of the number of network messages sent and
conclusions

In this subsection we summarize the results obtained in the
previous scenarios, and evaluate the number of network messages
sent by each one of the studied schedulers. To achieve allocate the
VMs into hosts, each scheduler must make a different number of
‘‘queries’’ to hosts to determine their availability upon each VM
allocation attempt. These queries are performed through messages
sent to hosts over the network to obtain information regarding
their availability. This process has been modeled in CloudSim by
counting the number of messages sent to hosts every time an user
request the allocation of a VM.

Fig. 7 illustrates the number of network messages sent to hosts
by each algorithm to allocate the VMs. The Ideal scheduler needs to
send messages to hosts every time a VM is allocated to know the
hosts states and to decide where to allocate the VM. Moreover,
onse time in online scientific Clouds via Ant Colony Optimization (SP2013/
5.01.005
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Table 11
Weighted metric with weight combinations (0.50,0.50) and back-off strategy.

Users connected to the Cloud Range of connection times (min) With 3 retries of VM creation

ACO GA Random Ideal

10 [0 – 90] 0.31 0.10 0.21 1
20 [0 – 190] 0.36 0.15 0.18 1
30 [0 – 290] 0.26 0.15 0.13 1
40 [0 – 390] 0.27 0.16 0.11 1
50 [0 – 490] 0.24 0.16 0.13 1
60 [0 – 590] 0.24 0.18 0.09 1
70 [0 – 690] 0.24 0.16 0.10 1
80 [0 – 790] 0.23 0.18 0.09 1
90 [0 – 890] 0.25 0.18 0.08 1

100 [0 – 990] 0.22 0.18 0.08 1
110 [0 – 1090] 0.21 0.18 0.08 1
120 [0 – 1190] 0.23 0.18 0.08 1
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as mentioned earlier, Ideal always performs a number of creation
retries until all users are served, which makes the number of mes-
sages sent even higher. It is important to note, however, that the
Ideal algorithm implementation was executed using the back-off
strategy with a number of retries equal to 20 to obtain the ideal
values to reach. The number of network messages sent to hosts
rose from 3800 to 69,500 when the number of users connected
to the Cloud went from 10 to 120.

On the other hand, since the GA algorithm contains a popula-
tion size of 10 and chromosome sizes of 8 (7 genes for hosts plus
one gene for the fitness value), to calculate the fitness function,
the algorithm sends one message for each host of the chromosome
to know its availability and obtain the chromosome containing the
best fitness value. This is, the VM is allocated to a host belonging to
the chromosome with the best fitness value. The number of mes-
sages to send is equal to the number of host within each chromo-
some multiplied by the population size. As shown in Fig. 7, GA is
the algorithm that makes greater use of network resources in
respect to the other algorithms. The number of network messages
sent to hosts varied from 8497.50 to 125897.50 when the number
of connected users was increased from 10 to 120.

The last competitor in this work is Random, which sends only
one network message to a random host for each attempt of VM cre-
ation and is the algorithm that makes the lowest network resource
usage. The number of network messages rose from 100 to 1200
when the number of connected users to the Cloud went from 10
to 120.
Please cite this article in press as: Pacini E et al. Balancing throughput and resp
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Our ACO algorithm, however, makes less use of the network
resources than GA and the Ideal scheduler. Due to the fact that
we configure the maximum number of steps that an ant carries
out to allocate a single VM to 8, ACO sends a maximum of 8 mes-
sages per VM allocation. Moreover, when ACO finds an unloaded
host, it allocates the current VM and does not perform any further
step. This reduces the total number of network messages to send.
The number of network messages sent by ACO to hosts rose from
730 to 9524.70 when the number of users connected to the Cloud
went from 10 to 120. One point in favor is that, unlike Ideal and GA,
ACO sent messages in the order of 100–1000 as Random did. Fur-
thermore, the time taken to allocate 10 user VMs (i.e., sending at
most 80 network messages) represents a very small fraction of
the time each user PSE took, which was around 158 min of effec-
tive computing time. This fraction would be even smaller in Clouds
with high-speed network connections.

Finally, when we configured the schedulers to operate with the
back-off strategy the number of network messages increased. This
happens because for each VM that failed in their first attempt to
creation, the schedulers must be reactivated to allocate these
VMs for a maximum of 3 times. Fig. 8 illustrates the number of net-
work messages sent by each algorithm using the back-off mecha-
nism. The number of network messages sent by GA to hosts
varied from 22,782.80 to 376,585.80 when the number of con-
nected users was increased from 10 to 120. In the case of Random
the number of network messages also increased from [211.00–
3476.60] when the number of users connected to the Cloud varied
from 10 to 120. Finally, our ACO algorithm makes again less use of
messages.

onse time in online scientific Clouds via Ant Colony Optimization (SP2013/
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the network resources than GA and the Ideal scheduler when using
back-off strategy. The network messages rose from 2150.1 to
29,848.6 when the number of user connected to the Cloud went
from 10 to 120.

To conclude, it is important to note that GA makes a greater use
of network resources than ACO, being ACO the scheduler that
achieves the best balance for the mixed environment proposed.
Furthermore, an important consideration is that although Random
sends few network messages, and the use of the network can be
very important in some distributed environments, in most Clouds
network interconnections are fast. Moreover, as we shown previ-
ously, Random is a very inefficient algorithm in terms of perfor-
mance because it creates few VMs, and moreover, as we
described in our previous work [30], Random gets the worse per-
formance in terms of makespan and flowtime in batch scenarios.
These results are encouraging because they indicate that ACO is
close to obtaining the best possible solution balancing all the
employed evaluation metrics and making a reasonable use of the
network resources.

 

 

5. Related work

Studying SI techniques, specially ACO [39], has been the focus of
a lot of research in the last ten years. A recent work [46] describes
how ACO has been exploited to solve classical industrial schedul-
ing problems. In this work the authors conclude and suggest, based
on the basis of the literature reviewed, that ACO is a very viable
approach to solve scheduling problems in general. Moreover, the
authors were able to derive certain guidelines for the implementa-
tion of ACO algorithms. Furthermore, as evidenced by other sur-
veys [54,47], these techniques have been applied to distributed
job scheduling.

However, with regard to scheduling in Cloud environments,
very few works can be found to date [35]. Moreover, to the best
of our knowledge, no effort aimed to job scheduling based on SI
for online Clouds where a large number of users are connected to
submit their experiments has been proposed. By online we mean
non-batch scenarios, i.e., where the jobs to be executed in the
Cloud is not available beforehand. In these related works, it is
important to note that, the most SI techniques are used to solve
the job scheduling problem, i.e., determining how the jobs are
assigned to VMs, and few efforts have aimed to solve VM schedul-
ing problems, or how to allocate VMs to physical resources. Among
them we can mention a recent survey from Huang et al. [24], which
summarizes different methods to improve job execution perfor-
mance, including dynamic resource allocation strategies based on
the law of failure, dynamic resource assignment on the basis of
credibility, Ant Colony Optimization algorithms for resource allo-
cation, optimized genetic algorithm with dual fitness, among oth-
ers. On the other hand, the objectives to optimize considered by
the authors are suitable when the execution of a set of jobs belong
to the same user, but when a large number of users make requests
to the Cloud, fair mechanisms and normalized evaluation metrics
such as those discussed in this work are not considered.

Moreover, the works in [6,56] propose ACO-based Cloud sched-
ulers minimizing makespan and maximizing load balancing,
respectively. An interesting aspect of [6] is that it was evaluated
using real Cloud platforms (Google App Engine and Microsoft Live
Mesh), whereas the other work was evaluated through simula-
tions. During the experiments, [6] used only 25 jobs and a Cloud
comprising 5 machines, while in [56] despite to be simulated the
authors have not provided all the information needed to reproduce
their experiments. Interestingly, like our work, these two efforts
support dynamic resource allocation, i.e., the scheduler does not
Please cite this article in press as: Pacini E et al. Balancing throughput and resp
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need to know the details of the jobs to allocate and the available
resources.

An approach based on Particle Swarm Optimization (PSO),
another popular SI technique, is proposed in [38]. PSO is inspired
by the behavior of bird flocks, bee swarms and fish schools. Con-
trary to [6,56] and our scheduler, the approach is based on static
resource allocation, which forces users to feed the scheduler with
the estimated running times of jobs on the set of Cloud resources
to be used. [38] is on the other hand targeted at paid Clouds, where
users pay for the physical resources they use. As such, the work
only minimizes monetary cost, and does not consider other metrics
throughput or response time metrics.

Following to the above discussed approaches, another type of SI
technique found in the literature is honey bee or bee colonies
[15,45]. The work proposed in [15] aims to achieve load balancing
across virtual machines of a Cloud for maximizing throughput.
Also, this algorithm balances the priorities of jobs on the machines
in such a way that the amount of waiting time of the jobs in the
queue is minimal. On the other hand, the work in [45] proposes
a mechanism to efficiently schedule data-oriented jobs onto Grid
nodes and replicate data files on storage nodes with the objectives
of minimizing both the makespan and the total datafile transfer
time.

Finally, the works in [26,22] address the problem of job sched-
uling in Clouds while reducing energy consumption, which is a cru-
cial problem [28] mainly because the environmental impact in
terms of carbon dioxide (CO2) emissions caused by high energy
consumption. [26] focuses however only on achieving competitive
makespan. On the other hand, in [22] a new scheduling policy that
models and manages a virtualized datacenter is proposed. It
focuses on the allocation of VMs in datacenter nodes according
to multiple facets to optimize the provider’s profit. In particular,
it considers energy efficiency, virtualization overheads, and SLA
violation penalties, and supports the outsourcing to external
providers.

It is worth noting that all the mentioned works ignore multiple
users, rendering difficult their applicability to execute scientific
experiments in online, shared Cloud environments.
6. Conclusions

Supporting experiments in engineering and scientific groups
usually involves running a large amount of independent jobs,
which requires a lot of computing power. These jobs must be effi-
ciently processed in the different computing resources of a distrib-
uted environment such as the ones provided by Cloud.
Consequently, job scheduling in this context indeed plays a funda-
mental role.

In recent years, SI has been received increasing attention in the
research community. SI refers to the collective behavior that
emerges from a swarm of social insects, which helps in solving
complex combinatorial optimization problems. Particularly, ACO
is an heuristic algorithm inspired by the behavior of real ants for
solving such problems, which can be reduced to find good paths
through graphs. Moreover, Cloud job scheduling is an NP-complete
optimization problem, and many schedulers based on SI have been
proposed. Basically, researchers have introduced changes to the
traditional bio-inspired techniques to achieve different Cloud
scheduling goals [35].

However, existing efforts do not address in general online envi-
ronments where multiple users connect to scientific Clouds to exe-
cute their scientific experiments. On the other hand, to the best of
our knowledge, no effort aimed at balancing the number of ser-
viced users in a Cloud and the total number of created VMs by
the scheduler exists. Indeed, the greater the number of serviced
onse time in online scientific Clouds via Ant Colony Optimization (SP2013/
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users, the better the throughput, and the more the created VMs,
the higher the achieved parallelism. More parallelism means exe-
cuting a greater number of jobs, and hence a more agile human
processing of PSE job results. More serviced users means a more
fair assignment of Cloud computing resources.

In this work, we have described a two-level Cloud scheduler
based on SI, particularly Ant Colony Optimization, that operates
under the IaaS model and pays special attention to the balance
both throughput and response time – a mixed HTC–HPC scenario
– in an online Cloud, i.e., a scenario in which several users are con-
nected to the Cloud at different times. Moreover, both the number
of serviced users and the total number of created VMs are
important.

By means of simulated experiments performed with the Cloud-
Sim simulation toolkit and real PSE job data, we have evaluated
three different scenarios through the use of a weighted metric by
assigning different weights combinations. We evaluated two pure
HTC and HPC scenarios by assigning the weights combinations
(1, 0)/(0, 1) respectively, and a mixed scenario by assigning the
weights (0.50, 0.50) with the aim of reaching a balance between
the number of serviced users and the number of created VMs.

Depending on the scenario, the different algorithms behave bet-
ter or worse. For example, when a pure HTC scenario is considered,
Random is the algorithm that achieves the best performance in
terms of throughput (serviced users), but as we have shown in
our previous work [30], Random accomplishes in general very poor
performance in terms of flowtime and makespan. On the other
hand, when a pure HPC scenario is considered, GA proves to be
the algorithm that achieves better performance in terms of
response time. This happens because GA is the algorithm that cre-
ates a larger number of VMs. However, we also shown that GA
serves the least number of users. Finally, when we evaluated the
performance for a mixed HTC–HPC scenario with the aim to bal-
ance both the number of serviced users and the number of created
VMs, our ACO algorithm is the one that best balances these two
metrics with respect to Random and GA. Moreover, another obser-
vation from the experimental results is that by the use of a back-off
strategy that retries the creation of VMs that have failed in their
first attempt to creation, improvements in the number of created
VMs were obtained.

In this paper, we have also evaluated the number of network
messages sent to the host by each one of the studied schedulers
to allocate the VMs. Results have shown that GA makes the highest
use of network resources. Random sends less network messages
than ACO, but this latter is the scheduler that achieves the best bal-
ance for the mixed environment proposed in this paper. Moreover,
although Random is the algorithm which sends the least amount of
network messages, it is a very inefficient algorithm in terms of per-
formance because it creates few VMs and gets the worse perfor-
mance in terms of makespan and flowtime in batch scenarios
[30]. Nevertheless, we will in the future focus on heuristics for
ACO to further reduce network consumption.

We are currently implementing another scheduler based on SI,
specifically an adaptation of the Particle Swarm Optimization Gri-
rd scheduler proposed in [29], to explore the ideas exposed in this
paper. Second, we plan to materialize the resulting schedulers on
top of a real Cloud platform, such as OpenNebula (http://openne-
bula.org/), which is designed for extensibility. Third, we will
consider other Cloud scenarios, e.g., federated Clouds with heter-
ogeneous physical resources belong to different Cloud providers
devoted to create an uniform Cloud resource interface to users.
Moreover, an interesting research line in federated domains is
the study of interconnection capacities – network links – among
the domains. Indeed, in [1] a GA-based solution for the problem
has been proposed, and therefore we aim at studying the useful-
ness of ACO and PSO in this context. Finally, we will evaluate and
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measure how the variation of the parameters of each algorithm
(e.g., maxSteps, mutation rate and decay rate in ACO, chromo-
some size, population size and number of iterations in GA) influ-
ence the performance and network consumption. For instance,
the more the maxSteps in our ACO scheduler, the more the
‘‘migrations’’ of ants among Cloud hosts, which increases network
consumption.

Since our work is focused on the IaaS model where custom VMs
are launched to be executed in the hosts available in a datacenter,
energy consumption is another important issue. When simpler
scheduling policies are used, e.g., Random, the balance between
throughput and response time suffers, but CPU usage, access to
memory and transfer through the network are less compared to
that of more complex policies such as ACO or GA. For example,
to maintain the load tables information for ants in ACO, or to main-
tain the chromosomes for populations in GA, we need those
resources. Therefore, to execute many jobs or create a large num-
ber of VMs, the accumulated resource usage overhead may be sig-
nificant, resulting in higher demands for energy. Then, we plan to
quantify the trade-off between algorithm performance (as mea-
sured by the weighted metric) and energy consumption.

Lastly, an aspect to further explore is solution quality. SI algo-
rithms in general, and ACO in particular, use indirect communica-
tion mechanisms to exchange information between entities. These
mechanisms – e.g., pheromone update – usually lead to an undesir-
able ‘‘stagnation’’ effect [31], whereby entities explore the same
solution paths from early stages. This, in turn, produces locally
optimal solutions and hence overall performance is suboptimal.
To deal with this problem, some direct communication mecha-
nisms between entities have been studied [31,9]. For example, in
[31] a direct communication for ACO algorithms in which near ants
can exchange information is proposed. We will explore these
mechanisms in the context of our ACO scheduler. We then expect
to increase solution quality and therefore performance in terms of
serviced users and created VMs.
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