
Computers & Operations Research 40 (2013) 1564–1578
Contents lists available at SciVerse ScienceDirect
Computers & Operations Research
0305-05

doi:10.1

n Corr

E-m

albert.z
journal homepage: www.elsevier.com/locate/caor
A Bee Colony based optimization approach for simultaneous job
scheduling and data replication in grid environments
Javid Taheri a,n, Young Choon Lee a, Albert Y. Zomaya a, Howard Jay Siegel b,c

a Center for Distributed and High Performance Computing, School of Information Technologies, J12, The University of Sydney, Sydney, NSW 2006, Australia
b Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523-1373, USA
c Department of Computer Science, Colorado State University, Fort Collins, CO 80523-1373, USA
a r t i c l e i n f o

Available online 25 November 2011

Keywords:

Bee colony optimization

Data replication

Grid computing

Job scheduling

Resource allocation
48/$ - see front matter & 2011 Elsevier Ltd. A

016/j.cor.2011.11.012

esponding author.

ail addresses: javid.taheri@sydney.edu.au (J. T

omaya@sydney.edu.au (A.Y. Zomaya), hj@colo
a b s t r a c t

This paper presents a novel Bee Colony based optimization algorithm, named Job Data Scheduling using

Bee Colony (JDS-BC). JDS-BC consists of two collaborating mechanisms to efficiently schedule jobs onto

computational nodes and replicate datafiles on storage nodes in a system so that the two independent,

and in many cases conflicting, objectives (i.e., makespan and total datafile transfer time) of such

heterogeneous systems are concurrently minimized. Three benchmarks – varying from small- to large-

sized instances – are used to test the performance of JDS-BC. Results are compared against other

algorithms to show JDS-BC’s superiority under different operating scenarios. These results also provide

invaluable insights into data-centric job scheduling for grid environments.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Grid computing has matured into an essential technology that
enables the effective exploitation of diverse distributed comput-
ing resources to deal with large-scale and resource-intensive
applications, such as those found in science and engineering.
A grid usually consists of a large number of heterogeneous
resources spanning across multiple administrative domains. The
effective coordination of these heterogeneous resources plays a
vital key role in achieving performance objectives. Grids can be
broadly classified into two main categories, computational and
data, based on their application focus. In recent years, the
distinction between these two classes of grids is much blurred,
mainly due to the ever increasing data processing demand in
many scientific, engineering, and business applications, such as
drug discovery, economic forecasting, seismic analysis, back-
office data processing in support of e-commerce, Web services,
etc. [1].

In a typical scientific environment such as in High-Energy
Physics (HEP), hundreds of end-users may individually or collec-
tively submit thousands of jobs to access peta-bytes of distributed
HEP data. Given the large number of tasks resulting from splitting
these bulk submitted jobs and the amount of data being used
by them, their optimal scheduling along with allocating their
ll rights reserved.

aheri),

state.edu (H.J. Siegel).
demanding datafiles becomes a serious problem for grids—where
jobs compete for scarce compute and storage resources among
available nodes. The Compact Muon Solenoid (CMS) [2] and the
Large Hadron Collider (LHC) [3] are two well known case studies
for such applications and are used as a motivation to design many
systems including the algorithm in this article. Both systems
constantly submit thousands of parallel jobs to access many
shared datafiles. In such systems, each job is an acyclic data flow
of hundreds of tasks in which CMS/LHR executable modules must
run them in parallel [4]. Table 1 shows a typical number of jobs
from users and their computation and data related requirements
for CMS jobs [5].

Grid schedulers are mainly divided into two types: (1) job-
oriented and (2) data-oriented systems. In job-oriented systems,
datafiles are fixed in location and jobs are scheduled, usually
adhering to some objective such as power consumption [6,7]. In
this case, the goal is to schedule jobs among computational nodes
(CNs) to minimize the overall makespan of the whole system;
here, it also is assumed that the overall transfer time of all
datafiles are relatively negligible compare to executing jobs. The
speed and number of available computer resources in different
CNs and the network capacity between CNs and storage nodes
(SNs) are typical considerations taken into account in such
systems. For data-oriented systems, on the other hand, jobs are
fixed in location and datafiles are moved or replicated in the
system so that their accessibility by relevant jobs is increased. In
contrast to the previous mode, here it is assumed that transfer
time of all datafiles are much more time consuming than execut-
ing their dependent jobs. As a result, jobs will need less time to

www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2011.11.012
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2011.11.012&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2011.11.012&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2011.11.012&domain=pdf
mailto:javid.taheri@sydney.edu.au
mailto:albert.zomaya@sydney.edu.au
mailto:hj@colostate.edu
dx.doi.org/10.1016/j.cor.2011.11.012
dx.doi.org/10.1016/j.cor.2011.11.012

Table 1
Typical job characteristics in CMS [5].

Number of simultaneously active users 100–1000

Number of jobs submitted per day 250–10,000

Number of jobs being processed in parallel 50–1000

Job turnaround time for jobs 0.2 s–5 months

Number of datasets that serve as input to a sub job 0–50

Average number of datasets accessed by a job 250–10,000K

Average size of the dataset accessed by a job from 30 GB to 3 TB

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–1578 1565
download the associated datafiles to execute; and therefore, the
total execution time (i.e., makespan plus transfer time) of the
system is reduced. The available storage in SNs and the capacity
of interconnected network links between CNs and SNs are typical
considerations in such allocations. From a practical point of view,
neither of these two types of systems is adequate to deal with
cases in which both computational jobs and datafiles are equally
influential factors for efficient system utilization. Therefore,
inappropriate distribution of resources, large queues, reduced
performance, and throughput degradation for the remainder of
the jobs are some of the drawbacks of assuming systems fit into
just one of these two types.

There are three main phases of scheduling in such complex
systems [8]: (1) resource discovery, (2) matchmaking, and (3) job
execution. In the first phase, resource discovery, grid schedulers
conduct a global search to generate a list of all available resources
as well as their limitations and history profiles in a system. In the
second phase, matchmaking, schedulers try to determine best
choices for executing jobs and replicating datafiles. Capacities of
CNs/SNs as well as quality of the network connecting them are
among the basic characteristics that need to be considered by
schedulers to perform this phase. In the last phase, job execution,
schedulers produce commands for CNs and SNs to execute jobs
and replicate datafiles, respectively. Here, schedulers do not
interfere with details of such commands and leave CNs/SNs to
perform their allocated commands, including – but not limited to
– datafile staging or system cleanups.

In this work, the matchmaking process of schedulers was
targeted and our contribution is a holistic scheduling approach
to concurrently minimize two very important performance fac-
tors of a grid system, i.e., (1) makespan for executing all jobs, and
(2) transfer time of all datafiles. Our approach adopts two
collaborating mechanisms to schedule jobs and replicate datafiles
with respect to their inter-dependencies as well as network
bandwidth among CNs/SNs to host these jobs and datafiles.

The rest of this paper is organized as follows. Section 2 presents
related works. Section 3 overviews our proposed framework. Section
4 presents the problem statement. Section 5 briefly introduces the
Bee Colony optimization algorithm as well as our approach (JDS-BC).
Section 6 demonstrates the performance of our approach in com-
parison with other techniques. Discussion and analysis is presented
in Section 7, followed by conclusions in Section 8.
2. Related work

Several approaches already have been proposed to solve the bi-
objective scheduling problem that is the focus of this work. Most of
these methods make certain assumptions about the nature of jobs
and datafiles to present a specific real system. Their solutions can be
roughly categorized into two classes: online and batch [9]. In the
online methods, it is assumed that jobs arrive one-by-one, usually
following a predetermined distribution, and grid schedulers must
immediately dispatch these jobs upon receiving them. In the batch
methods (also known as batch-of-jobs or bulk) jobs are assumed to
be submitted in bulk; and thus, grid schedulers need to allocate
several jobs at the same time. Although the online mode can be a fair
representation of small grids, CMS and LHR as well as many other
massive systems always process the jobs in the batch mode. To date,
most approaches usually use only one mode (online or batch) and
only few exist that use both.

The European Data Grid (EDG) project was among the first that
has created a resource broker for its workload management system
based on an extended version of Condor [10]. The problem of bulk
scheduling also has been addressed through shared sandboxes in the
most recent versions of gLite from the EGEE project [11]. Never-
theless, these approaches only consider one of the priority and/or
policy controls rather than addressing the complete suite of co-
allocation and co-scheduling issues for bulk jobs. In another approach
for data intensive applications, data transfer time was considered in
the process of scheduling jobs [12]. This deadline based scheduling
approach however could not be extended to cover bulk scheduling. In
the Stork project [13], data placement activities in grids were
considered as important as computational jobs; therefore, data-
intensive jobs were automatically queued, scheduled, monitored,
managed, and even check-pointed in this system/approach. Condor
and Stork also were combined to handle both job and datafile
scheduling to cover a number of scheduling scenarios/policies. This
approach also lacks the ability to cover bulk scheduling. In another
approach [14], jobs and datafiles are linked together by binding CNs
and SNs into I/O communities. These communities then participate in
the wide-area system where the Class Ad framework is used to
express relationships among the stakeholders. This approach how-
ever does not consider policy issues in its optimization procedure.
Therefore, although it covers co-allocation and co-scheduling, it
cannot deal with bulk scheduling and its related managements issues
such as reservation, priority and policy. The approach presented in
[15] defines an execution framework to link CPUs and data resources
in grids for executing applications that require access to specific
datasets. Similar to Stork, bulk scheduling is also left uncovered in
this approach.

In more complete works such as the Maui Cluster Scheduler in
[16], all jobs are queued and scheduled based on their priorities.
In this approach, which is only applicable for local environments
(i.e., for clusters rather than grids), weights are assigned based on
various objectives to manipulate priorities in scheduling deci-
sions. The data aware approach of the MyGrid [17] project
schedules jobs close to the datafiles they require. However, this
traditional approach is not always very cost effective as the
amount of available bandwidths is rapidly increasing nowadays.
This approach also results in long job queues and adds undesired
load on sites even when several jobs are moved to other less
loaded sites. The GridWay scheduler [18] provides dynamic
scheduling and opportunistic migration through a rather simplis-
tic information collection and propagation mechanism. Further-
more, it has not been exposed to bulk scheduling of jobs yet.

The Gang scheduling [19] approach provides some sort of bulk
scheduling by allocating similar jobs to a single location; it is
specifically tailored toward parallel applications running in a
cluster. XSufferage designed as an extension to the well-known
Sufferage scheduling algorithm [20] to consider location of
datafiles during the scheduling process [21]. This algorithm
however only uses such information for better scheduling of jobs,
not to (re)allocate/replicate the datafiles. The work in [22]
proposes a framework based on GriPhyN [23] and used ChicSim
[22] to simulate it. In their framework, they assumed that (1) each
job only needs one processor and only one datafile to execute,
(2) each job’s execution time is linearly related to the size of its
requested datafile, and (3) network links between all sites are
identical. Based on their simplistic framework, they surprisingly
discovered that it is not always necessary to consider both jobs
and datafiles at the same time for a better scheduling.

Fig. 1. Framework or our model.

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–15781566
Another approach was presented in [24] for a real data
handling system called SAM [25] to help Condor-G in deciding
where data-intensive jobs, which need multiple datafiles and
probably on different SNs, should be executed. They were parti-
cularly interested to schedule jobs so that the minimum amount
of data is moved. A distributed and scalable replication and
scheduling approach, called DistReSS, was presented in [26].
Similar to [22], job execution times also were assumed propor-
tional to the datafiles they need. Here, they used a K-means
clustering algorithm to cluster sites and generate Virtual Clusters
(VCs). VC-core/heads were responsible to handle and schedule
jobs as well as replicate datafiles among their under control sites
upon receiving any job. They also assumed all network links are
identical and only a predefined number of datafiles exists in each
VC. Data Intensive and Network Aware (DIANA) scheduling [6,8]
is one of the complete approaches for simultaneous job and
datafile scheduling/replication based on the real GILDA [27] and
CMS [2] grid systems. In this approach, jobs are first assessed to
determine their execution class. For data-intensive applications,
jobs are migrated to the best available CN with minimum access
(download) time to their required datafiles. For computationally
intensive jobs, on the other hand, datafiles are migrated/repli-
cated to the best available SN with minimum access (upload) time
to their dependent jobs. In both cases, the decision is made based
on: (1) capacity of SNs, (2) speed and number of computers/
processors in CNs, and (3) network links connecting SNs and CNs.

Researchers in [9] assumed jobs to be moldable [28]; i.e., they
can run on a variable number of processors. Here, they classified
SNs and CNs as domains so that a replica is copied in each domain.
They also assumed that each CN has a data cache that is large
enough to contain all datafiles for the current run. They showed
that having local cache has a positive impact in reducing the
transfer time as almost half of the times CNs use/access their own
cache. Their replication policy is based on detecting the hot files
and only replicates those that are demanded more than the
average. Close-to-Files [29] is another approach that considered
both computation and transfer cost; but for one file only. Inte-
grated Replication and Scheduling Strategy (IRS) [30] is another
approach that decouples the replication and scheduling policies.
Once IRS schedules jobs and completes them, it calculates the
popularity of files and replicates them for the next batch of jobs,
which may have different characteristics. The work in [31] pro-
posed a bundle scheduler (HCSþHRS) that is primarily focused on
sending jobs to CNs that already have the datafiles and thus takes
less time to obtain them. They used a real Grid, Taiwan UniGrid
Environment [32], to evaluate their work in which jobs were
assumed to need a fixed number of 15 datafiles from a predeter-
mined set of 50 available job types with no datafile overlap.

The researchers in [33] employed some intelligence into their
decision making process to detect data types (physical, biology,
chemical, etc.) and group them for better replications. Here they
used an advanced metric, which includes the number of time a
datafile is requested as well as its size, to detect hot datafiles. They
also invented the notation of positive or negative distance between
SNs to distribute datafiles. Using this distances, they replicated
datafiles to achieve (1) the maximum distance among datafiles of
different types, and (2) minimum distance of datafiles of the
similar type. Unlike [31], the work in [34] assumed heterogeneous
datafiles in their framework with only five distinct job types. Here,
they scheduled jobs to minimize the amount of transferred data.

After close examination of all the aforementioned techniques,
we have realized that most of these systems are usually tailor-
made to either minimize makespan or transfer time of all datafiles
in a system—with very few exceptions that consider both. As a
result, most of these algorithms lack the potential to be extended
to other systems, and in many cases even impossible to generalize.
For example, algorithms designed for the online mode could rarely
be extended to the batch mode and vice versa. Therefore, in this
work, we tried to model our framework as generic as possible so
that (1) it can be easily extended to any real system—i.e., both
data- and job-oriented systems, (2) it can address the bulk
scheduling mode appropriate for considerably large systems, and
(3) it can support the general case of job to datafile dependency.
3. Framework

The different approaches in the literature make different assump-
tions to capture the complexity of solving this complicated scheduling
problem. In this work, we tried to encompass as many features
as possible from these approaches [1,6,8,9,22,24,26,31,33–36] and
design our framework (shown in Fig. 1) to consist of heterogeneous:
(1) CNs, (2) SNs, (3) interconnecting network, (4) schedulers, (5) users,
(6) jobs, and (7) datafiles.

3.1. Computational nodes

In this framework, computer centers with heterogeneous
computing elements are modeled as a collection of CNs; each
CN (1) consists of several homogenous processors with identical
characteristics, and (2) is equipped with a local storage capability.
Fig. 2 shows a sample computer center consisting of four CNs
with such storage capability. CNs are characterized by (1) their
processing speed, and (2) their number of processors. The proces-
sing speed for each CN is a relative number to reflect the
processing speed of a CN as compared with other CNs in the
system. The number of processors for each CN determines its
capability to execute moldable [28] jobs with certain degrees of
parallelism in a non-preemptive fashion; i.e., jobs cannot inter-
rupt execution of each other during their run-times.

3.2. Storage nodes

SNs are storage elements in the system that host datafiles
required by jobs. Two types of SNs exist in this framework:
isolated and attached. Isolated SNs are individual entities in the
system that are only responsible to host datafiles and deliver

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–1578 1567
them to requesting CNs. Attached SNs, on the other hand, are local
storage capacities of CNs to host their local datafiles as well as to
provide them to other CNs if requested. Although from the
optimization point of view there is no difference between the
two and they are treated equally in a grid system, isolated SNs
usually have more capacity than the attached ones; whereas,
attached SNs can upload datafiles to their associated CNs almost
instantly.

3.3. Interconnection network

CNs and SNs are connected through an interconnection net-
work that is comprised of individual links. Each link in this system
has its own characteristics and is modeled using two parameters:
delay and bandwidth. Delay is set based on the average waiting
time for a datafile to start flowing from one side of the link to the
other; bandwidth is set based on the average bandwidth between
two sides of the link. Although the above formulation differs from
reality in which delay and bandwidth among nodes significantly
varies based on system traffic, our extensive simulation showed
that this difference is negligible when the number of jobs and
datafiles increases in a system. Furthermore, the simulation time
is significantly decreased using the proposed simple link model as
it has also been endorsed by other works, such as DIANA [6,8]. In
our framework, we also assume that links between a CN/SN to
other CNs/SNs are independent; and thus, a CN/SN can use the full
capacity of each of its connected links and simultaneously
Fig. 2. A computer center example.

Fig. 3. Jobs’ shapes: (a) serious-parallel, (b) homogenous-p
download/upload datafiles to other CNs/SNs. We also assume
that download and upload streams are independent and cannot
delay each other, even for the same link.

3.4. Schedulers

Schedulers are independent entities in the system that accept
jobs and datafiles from users and schedule/assign/replicate them
to relevant CNs and SNs. Schedulers are in fact the decision
makers of the whole system that decide where each job and
datafile should be executed or stored/replicated, respectively.
Each individual scheduler can be connected to all CNs/SNs or
only to a subset of them. Schedulers can be either sub-entities of
CNs/SNs or individual job/datafile brokers that accept jobs and
datafiles from users. In this work, to cover both cases, the more
general case in which schedulers are treated as individual job/
datafile brokers is assumed.

3.5. Users

Users generate jobs with specific characteristics. Each user is
only connected to one scheduler to submit jobs. Although the
majority of users only use pre-existing datafiles in a system, they
also can generate their own datafiles should they want to.

3.6. Jobs

Jobs are generated by users and are submitted to schedulers to
be executed by CNs. Each job is assumed to be moldable [28] and
consists of several dependent tasks – described by a DAG – with
specific characteristics, i.e., (1) execution time, and (2) number of
processors. Execution time determines the number of seconds a
particular task needs to be executed/finalized in the slowest CN in
the system—the actual execution time of a task can be signifi-
cantly reduced if it is assigned to a faster CN instead; number of
processors determines a task’s degree of parallelism. Using this
factor, schedulers eliminate CNs that do not have enough pro-
cessors to execute specific jobs. Jobs are generated with different
shapes to reflect different classes of operations as outlined
by TGFF [37] and have the following characteristics: (1) width,
(2) height, (3) number of processors, (4) time to execute, (5) shape,
and (6) a list of required datafiles. Width is the maximum number
of tasks that can run concurrently inside a job; height is the
number of levels/stages a job has; number of processors is the
maximum number of processors any of the tasks in the job needs
to be run; time to execute specifies the minimum time a job can
arallel, (c) heterogeneous-parallel, and (d) single-task.

Table 2
Tasks’ characteristics for jobs is Fig. 3.

Shape Width Height Num. of

tasks

Num. of

processors

Time to

execute

Serious-parallel 6 12 62 7 491

Homogenous-parallel 7 12 53 8 260

Heterogeneous-parallel 9 14 65 6 470

Single-task 1 1 1 4 20

Table 3
Symbols summary.

NCN , NSN , NJ , ND
Total number of CNs, SNs, jobs, and datafiles in the

system.

CNspd
i , CNprcs

i

Relative speed and the total number of processors for the

CN # i.

SNsize
i

Size of the SN # i.

Jw
i , Jh

i , Jexe
i , Jprcs

i

Width, height, time to execute, and number of processors

required to execute job # i.

J
~T
i , J

~D
i

Set of tasks ð ~T Þ composing job # i and its dependent set of

datafiles ð ~DÞ to execute.

JST
i , JEX

i , JTT
i

Start, execution time and transfer time for all datafiles for

executing job # i.

JSetMS
i , JSetTT

i

Makespan and total transfer time of all datafiles

addressed by a collection of jobs described in JSeti to be

executed by CNi .

DSetsize
i

Total size of a collection of datafiles addressed by DSeti to

be hosted by SNi .

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–15781568
be run on the slowest CN in a system [6,8]; and list of required
datafiles determines a list of datafiles a CN must download before
executing this job. Data to execute each task is provided to it
through (1) previously existed datafiles listed by the list of
required datafiles and/or (2) output of the task’s immediate
predecessors in the DAG (either as local/temporary datafile or
inter-processing messages). Based on TGFF [37], jobs’ shapes are:
(1) serious-parallel, (2) homogenous-parallel, (3) heterogeneous-
parallel, and (4) single-task. Fig. 3 and Table 2 show sample jobs
and their characteristics.

3.7. Datafiles

Datafiles are assumed to be owned by SNs and are allowed to
have up to a predefined number of replicas in a system. Sche-
dulers can only delete or move replicas; i.e., the original copies
are always kept untouched.
4. Problem statement: Data Aware Job Scheduling

Data Aware Job Scheduling (DAJS) is a bi-objective optimiza-
tion problem and is defined as assigning jobs to CNs and
replicating datafiles on SNs to concurrently minimize (1) the
overall makespan of executing a batch of jobs as well as (2) the
transfer time of all datafiles to their dependent jobs. Here, it is
assumed that the makespan of executing a batch of jobs does not
include the transfer time of their requested datafiles. Because
these two objectives are usually interdependent, and in many
cases even conflicting, minimizing one objective usually results in
compromising the other. For example, achieving lower make-
spans requires scheduling jobs to powerful CNs; whereas, achiev-
ing lower transfer times requires using powerful links with higher
bandwidths in a system. Table 3 summarizes symbols we use to
mathematically formulate the DAJS problem.

To formulate this problem, assume jobs are partitioned into
several job-sets, fJSet1,JSet2,. . .,JSetNCN

g, to be executed by CNs, and
datafiles are partitioned into several datafile-sets, fDSet1,DSet2,
. . .,DSetNSN

g, to be replicated onto SNs. A partition of a set is defined
as decomposition of a set into disjoint subsets whose union is the
original set. For example, if NJ ¼ 9 and NCN ¼ 3, then JobSets¼

ff1,5,7g,f2,4,8,9g,f3,6gg means jobs fJ1,J5,J7g, fJ2,J4,J8,J9g, and fJ3,J6g

are assigned to CN1, CN2, and CN3, respectively.
Based on this model, DAJS is defined as finding elements of

job-sets and datafile-sets to minimize the following two objective
functions:

1: MIN MAXNCN

i ¼ 1JSetMS
i

2: MIN
XNCN

i ¼ 1

JSetTT
i

s:t:

1: JSetPrcs
i rCNPrcs

i ; i¼ 1,. . .,NCN

2: DSetsize
i rSNsize

i ; i¼ 1,. . .,NSN

8>>>>>>>>>><>>>>>>>>>>:
here, if JSeti ¼ fJ1,J2,. . .,JKg contains K jobs scheduled to be
executed by CNi, then makespan and total transfer time of this
job-set can be calculated as follows:

JSetMS
i ¼MAXK

k ¼ 1ðJ
ST
k þ JEX

k Þ

and

JSetTT
i ¼

XK

k ¼ 1

JTT
k

In the stated bi-objective formulation, the first constraint is to
guarantee that all CNs are capable of executing their assigned jobs,
while the second constraint is to guarantee that the total size of all
datafiles each SN hosts is less than its total capacity. Overall
makespan of executing a set of jobs greatly depends on each CN’s
local scheduling policy; extensive research however showed that
the local scheduling policy of First-Come-First-Served with back-
filling usually results in optimal deployment of CNs’ resources when
large number of jobs are submitted [38]. Therefore, we also adopt
this policy as the local scheduling policy for CNs in our framework.
5. Bee Colony algorithm for solving the DAJS problem

This section first overviews the Bee Colony Optimization (BCO)
method and then details how it is used to solve the DAJS problem.

5.1. Bee Colony Optimization (BCO)

The Bee Colony is an optimization procedure inspired by the
behavior of nectar collecting honeybees. This biologically inspired
approach has been employed to solve variety of optimization
problems, including but not limited to: training neural networks
[39], numerical function optimization [40], job shop scheduling
[41], Internet server optimization [42], the travelling salesman
problem [43], and many more. The algorithm is based on the
simple fact that honeybees report their findings – amount and
quality of their collected nectar as well as its collecting distance –
upon their return to the hive. Such information is conveyed
through a ‘‘waggle dance’’ on the hive’s dance floor: the better
the nectar, the higher the benefit, and consequently, the longer
the dance. In turn, other bees observe these waggle dances and
probabilistically follow one of these bees with respect to their
waggling times; this procedure is repeated during the whole
nectar collecting time. In the general form of BCO, there are three
different bee types: scouts, dancers, and followers [44]. Scouts
continuously search hive’s neighborhood to discover new sources
of nectars; dancers inform other bees of the current established
food sources (through their waggling dances); and, followers

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–1578 1569
probabilistically choose one of the dancers and follow its lead to a
food source.

5.2. Simultaneous job and data scheduling using Bee Colony

Optimization

The original BCO procedure is meticulously modified in this
work to match the special needs of the problem we address in this
work. Here, as the number of available CNs is always predefined
and limited, bees sometimes act in more than one role. Therefore,
in our approach (JDS-BC), every bee chooses its collecting nectar
source through two parallel procedures: (1) roughly searches its
neighborhood as a scout, and (2) pays attention to dancing bees
on the dance floor as a follower. At the end, upon choosing its food
source and after collecting its nectar, it reports its benefit from its
selection and may replace one of the dancing bees if it collects
more benefit than it.

Fig. 4 shows the overall flowchart of our approach in which
jobs and datafiles are disseminated within two correlated proce-
dures. We decided to design two independent correlated proce-
dures instead of one overall procedure as (1) it has been shown to
be more effective [22,30], and (2) it significantly reduces the
complexity of the problem and always results in a faster con-
vergence. Based on these findings, the first procedure adopts a
BCO-based approach to schedule jobs among CNs, considering
location of datafiles; and, the second procedure is to replicate
datafiles to provide faster uploads to their dependent jobs,
considering their already assigned CNs. This two-stage optimiza-
tion procedure is repeated for a limited number of iteration
ðMaxItrÞ; the best answer found during these iterations is
reported as the final answer. Below we explain some necessary
terminology before we elaborate the overall optimization process.

5.2.1. Benefit

This is the overall amount a job can achieve through selecting
a given CN. In JDS-BC, to simultaneously target both objectives of
the DAJS problem, such benefit consists of two parts: execution
benefit and transfer benefit. Execution benefit is designed to
motivate jobs in selecting less loaded CNs so that computation
load of all CNs in a system is effectively balanced. Transfer benefit
is designed to motivate jobs in choosing CNs that can download
their dependent datafiles faster. These objectives are defined as
Fig. 4. JDS-BC flowchart.
follows:

Benef itðJi,CNjÞ ¼ CNFrPrcs
j �

JExe
i

CNprcs
j

 !
þ a� exp

JTT
i

b

 ! !
where CNFrPrcs

j is total number of free processors CNj has up to the
current makespan of the system; a and b are two arbitrary
constants to adjust decreasing rate of the chosen exponential
function for downloading datafiles. In JDS-BC, these constants are
empirically set as: a¼b¼10.

5.3. Dance floor

The dance floor in JDS-BC is designed to host a limited number
of bees to represent heterogeneous CNs in a system. Here,
because CNs can have vastly different characteristics, the number
of bees to advertise each CN is designed to be relevant to its
overall capacity. As a result, powerful CNs that will eventually
execute a wider range of jobs will also have more bees to waggle
in their favor; it is captured by the following:

dance f loor ¼ [
NCN

i ¼ 0
fB1

i ,B2
i ,. . .,BMi

i g

Mi ¼ CNspd
i � CNprcs

i

8><>:
where ‘[’ is the union of sets, Bi is a dancing bee for CNi, and Mi

determined the maximum number of bees can waggle in favor
of CNi.

5.4. Similarity

Despite the original BCO algorithm in which all bees are
similar, jobs in our approach can have vastly different character-
istics; therefore, only jobs with similar characteristics can expect
achieving similar benefits if they follow each other. To define such
similarity in JDS-BC, five attributes of each job that can roughly
describe its characteristics are chosen to defined the similarity of
two jobs as follows:

SimðJx,JyÞ ¼ Average

MINðJw
x ,Jw

y Þ

MAXðJw
x ,Jw

y Þ
,

MINðJh
x ,Jh

y Þ

MAXðJh
x ,Jh

y Þ
,

MINðJprcs
x ,Jprcs

y Þ

MAXðJprcs
x ,Jprcs

y Þ
,

MINðJexe
x ,Jexe

y Þ

MAXðJexe
x ,Jexe

y Þ
,SIZEð\ðJ

~D
x ,J

~D
y ÞÞ

MAXðSIZEðJ
~D
x Þ,SIZEðJ

~D
y ÞÞ

8><>:
9>=>;

where ‘\’ is the intersection of sets, and SIZEðdÞ returns the size of
a set of datafiles.

5.5. Estimated-benefit

Each follower bee estimates a benefit for following a dancing
bee on the dance floor. It is worth mentioning that because the
actual benefit each bee can receive cannot be determined before
its actual trip to a flower, they estimate such benefits so that they
can probabilistically follow one of the dancing bees. In JDS-BC,
each bee estimates such benefit through two parallel procedures
(scouting and following) and chooses their maximum as its
estimated-benefit; it is calculated as follows:

B denef itðJi,CNjÞ ¼MAXfBenef itScoutðJi,CNjÞ,Benef itFollowerðJiÞg

where

Benef itScoutðJi,CNjÞ ¼
cCN

FrPrcs

j �
Jexe
i

CNprcs
j

and

Benef itFollowerðJiÞ ¼MAX [
Bw ADanceFloor

SimðJi,BwÞ � Bbnf t
w

� �
here, Bbnf t

w is the received benefit for Bw; and, cCN
FrPrcs

j is the
expected number of free processors for CNj up to the expected

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–15781570
makespan of the whole system upon scheduling Ji. Because the
actual makespan cannot be determined; it is estimated as follows:

dMkSpn¼MAXNCN

x ¼ 1 CNMS
x þ

Jexe
i

CNspd
x

()

5.6. Schedule jobs

To schedule jobs onto CNs, each job/bee is trying to maximize
its benefit by choosing the right CN/food-source. Here, as the
benefit of choosing a CN is estimated not guaranteed, each job/
bee probabilistically (thorough a Roulette Wheel) chooses its CN
based on the acquired estimated benefits. The following proce-
dure details this scheduling procedure:

Step 1: sort jobs according to a criterion.
Step 2: initialize the dance floor.

Step 3: for each job, Jx.
Calculate the estimated makespan upon scheduling Jx,
namely dMkSpn.
Calculate estimated benefit, B denef itðJi,CNjÞ, for all CNs and
save results into an Array called ArrEstBnfts.
Generate a Roulette Wheel with respect to ArrEstBnfts.
Choose CNy from the generated Roulette Wheel and sche-
dule/assign Jx to it.
Calculate the exact benefit of executing Jx on CNy, i.e.,
Benef itðJi,CNjÞ.
Update dance floor.
Step 4: repeat Step 3 until all jobs are scheduled.

In Step 1, jobs are sorted based on a criterion, such as Longest
Jobs First, before allocations; in Step 2, a predefined number of
positions are allocated for bees to advertise each CN; in part of
Step 3, the newly allocated job/bee returns to the dance floor and
replaces an older bee if its collected benefit is higher than it.
However, to prevent biasing all bees to a particular bee type (job
type), bees will be replaced if they have less than 80% similarity to
already dancing bees in the dance floor. For bees with more than
80% similarity in advertising a unique CN, only the bee with the
higher benefit is kept on the dance floor. As a result, different bee
types representing different job types will be on the dance floor to
advertise a CN for a more variety of jobs.
Table 4
Overall system characteristics.

System entity Attribute Mea

CN

Number of processors 32

Processors’ speed 4

Attached storage size (GByte) 5

SN Storage size (GByte) 100

Users Job generation 100

Datafile Size (MByte) 50

Network links
Link latency (s) 0.

Bandwidth (Mbit/s) 1.

Jobs: tasks
Execution time (s) 30

Processors’ dependency 2

Jobs: shape

Serious-parallel (30%)

Homogenous-parallel (30%)

Heterogeneous-parallel (20%)

Single-task (20%)

Width 4

Height 10

Jobs: datafiles Datafiles’ dependency 5
5.7. Replicate datafiles

In this procedure, jobs assumed scheduled to CNs and JDS-BC
is trying to provide better access to their dependent jobs. The
following procedure details such procedure:

Step 1: sort datafiles according to a criterion.
Step 2: for each datafile, Dx.

Find the total upload time of Dx to all its dependent jobs if it
is replicated on each SN; store these uploading times in an
array called ArrUpTimes.
Sort ArrUpTimes in ascending order.
For k¼ 1 to MaxNumReplicas.

IF
ArrUpTimesðkÞ

MinUpTimeðDxÞ
o2

� �
THEN, replicate Dx onto SNk:

Next k.
Step 3: repeat Step 2 until all datafiles are replicated.

In the above procedure, Step 1 sorts datafiles with respect to a
criterion – such as Largest datafiles first – to prioritize replication of
datafiles with respect to each other; in Step 2, MaxNumReplicas is the
maximum number of replicas each datafile can have in the system;
i.e., up to MaxNumReplicasþ1 instances of each datafile can exist in
a system: one non-removable original copy that is hosted by a
specific SN, and up to MaxNumReplicas removable replicas on other
SNs. The condition of ‘ArrUpTimesðkÞ=MinUpTimeðDxÞo2’ prevents
replicating datafiles that probably will not help reducing the total
transfer time of a datafile to its dependent jobs; MinUpTimeðDxÞ

returns the minimum uploading time of Dx replicated on any SN.
6. Simulation

To simulate the performance of JDS-BC three artificial grids are
generated by using exclusively designed simulator. These grids are
generated based on the direct observations from [2,3,6,8] where
other similar algorithms in this area, such as DIANA, are also made
for. Tables 4 and 5 show the general and specific characteristics of
these systems where jobs and datafiles are assumed generated by an
arbitrary number of 100–1000 users. Fig. 5 shows the overall
structure of the smallest test-grid in our system; overall shape of
the other two can be judiciously predicted.
n St. dev. Min Max

32 8 128

4 1 10

5 1 20

100 20 500

100 10 1000

50 1 200

2 0.2 0 1

024 1.024 0.128 12.8

30 10 1000

2 1 10

4 1 10

4 1 15

5 0 20

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–1578 1571
6.1. Comparing Algorithms

As was clearly mentioned in Section 2, most algorithms that
are intended to schedule jobs and replicate datafiles do not
support bulk scheduling; and thus, cannot be compared against
JDS-BC. However, a limited number of approaches could either
support both online and batch/bulk modes, or, could be easily
modified to support the batch mode. DIANA [6,8], Chameleon/
FLOP [45], MinTrans [9,22,24,34], and MinExe [9,22] are four
other approaches that also support the batch mode scheduling;
and thus, are selected to test the performance JDS-BC.

In summary, DIANA [6,8] categorizes the submitted jobs as
either computationally intensive or data intensive. For a compu-
tationally intensive job, DIANA migrates it to a CN with the lowest
execution time; and for a data intensive jobs DIANA either
migrates the job to a CN with the fastest datafile download time,
or, replicates the datafiles to SNs with higher upload times.
Chameleon [45], also known as FLOP, targets CNs that can start
executing jobs straight away; i.e., it always migrates jobs to CNs
that can start executing them faster than others. Although
Chameleon/FLOP does not initially consider datafiles download
times during it scheduling process, it always replicates datafiles
upon scheduling jobs to provide highest upload times to them.

MinTrans represent a collection of approaches that schedule
jobs to CNs with already cached datafiles; including: JobDataPre-
sent in [22], Data-Present in [9], TLSSþTLRS in [34], and an
extension made to SAMGrid using Condor-G in [24]. The above
approaches are motivated by the fact that obtaining datafiles are
usually the costlier portion of executing a job; and thus, if jobs are
sent to CNs with already cached datafiles, the overall performance
of a system must improve. MinExe represent another group of
approaches that schedule jobs to CNs that can execute them
faster; including: JobLeastLoaded in [22] and Shortest-Turn-
around-Time in [9]. Such approaches are motivated by the fact
that cache repositories of powerful CNs are gradually enriched as
more types of jobs are scheduled on them; and thus, it is the
running portion of jobs that would eventually dominate the
Table 5
Detailed characteristics of tailor-made grids.

Attributes Test-Grid-

Small

Test-Grid-

Medium

Test-Grid-

Large

Number of CNs 5 10 20

Number of SNs 10 20 40

Total number of computing

elements in all CNs

184 312 624

Total storage size in all SNs (GB) 12,672 79,872 127,872

Number of users 100 500 1000

Number of jobs 1068 5023 9652

Total number of tasks in all Jobs 26,427 119,042 231,360

Number of datafiles 70 435 731

Fig. 5. Test-Gr
overall performance of a system. Achieving lower makespans
and transfer-times are the second priority in MinTrans and
MinExe, respectively. Because MinTrans prioritize transfer-time
to makespan, we hypothetically assume that it can probably
achieve the lowest possible transfer-time of any algorithm, and
thus, its results are used as a benchmark to gauge performance of
other algorithms in this work; same argument is applied to
MinExe and using its makespan/resource-utilization as the
benchmark.

6.2. Measurement criteria

Several measurement criteria are already proposed in the litera-
ture to measure performance of such systems; the most common
ones are: (1) turnaround, (2) throughput, (3) slowdown, (4) fairness,
(5) makespan, (6) transfer-time, and (7) resource-utilization. The
first four criteria are intended to study a system’s behavior/dynamic
during the reception of jobs, while the latter three are used to study
the overall performance of a system. Although all criteria are
applicable for online approaches, only the latter three are mean-
ingful for bulk scheduling; mainly because, jobs are submitted as a
bulk and the system will not report any result unless all jobs are
finalized. Therefore, only the latter three criteria are used to
compare algorithms in this work. In summary, makespan reflects
the latest time all CNs finish their allocated/scheduled jobs; transfer-
time represents the total amount of uploading time to deliver all
datafiles to their relevant jobs; and, resource-utilization represents
how well CNs are deployed. Table 6 shows how resource-utilization
is calculated for the heterogeneous environment of our framework.
It is also worthwhile mentioning, similar to other approaches
[6,8,9,22,24,26,30,31,33–35,45], we also assumed that if several jobs
in a CN require the same datafile, the requested datafile will be
downloaded only once and then stored in a local repository (cache)
for further local requests.

6.3. Test grids

6.3.1. Test-Grid-Small

This is a small-sized grid with very limited number of jobs and
datafiles. Fig. 5 shows the overall configuration of this network
with 1068 jobs – consists of 26,427 tasks – and 70 datafiles.
id-Small.

Table 6
A sample calculation for resource-utilization.

Item Processors Makespan Num of used processors

up to time: makespan

All available

processors

CN1 16 95 1520 16�105¼1680

CN2 8 100 800 8�105¼840

CN3 4 105 420 4�105¼420

Res�util¼ 1520þ800þ420
1680þ840þ420 ¼ 93:2%

Table 7
Results for Test-Grid-Small for job sorting policy of LJF (a and b), SJF (c and d), and MIX (e and f), and datafile sorting policy of SIZE (a, c, and e) and POP (b, d, and f).

SIZE POP

LJF

(a) Makespan Trans-time Res-util (%) (b) Makespan Trans-time Res-util (%)

JDS-BC 2677 94.2 JDS-BC 2670 1290 93.2

DIANA 4202 1100 56.3 DIANA 3873 1190 64.5

FLOP 4365 1180 60.6 FLOP 4365 1320 60.6

MinTrans 4739 80 35.2 MinTrans 4748 100 35.4

MinExe 2625 1310 95.6 MinExe 2625 1470 95.6

SJF

(c) Makespan Trans-time Res-util (%) (d) Makespan Trans-time Res-util (%)

JDS-BC 2857 1260 87.3 JDS-BC 2863 1210 87.4

DIANA 3847 1170 65.7 DIANA 3294 1290 75.9

FLOP 4846 1140 55.4 FLOP 4846 1010 55.4

MinTrans 4977 80 32.5 MinTrans 4975 90 32.5

MinExe 2812 1160 87.2 MinExe 2812 1110 87.2

MIX

(e) Makespan Trans-time Res-util (%) (f) Makespan Trans-time Res-util (%)

JDS-BC 2846 1180 88.5 JDS-BC 2746 1070 91.0

DIANA 3607 1440 56.0 DIANA 3810 1130 53.7

FLOP 3258 1250 78.8 FLOP 3258 1220 78.8

MinTrans 4820 80 33.1 MinTrans 4805 90 34.1

MinExe 2715 1120 91.7 MinExe 2715 1180 91.7

Table 8
Results for Test-Grid-Medium for job sorting policy of LJF (a and b), SJF (c and d), and MIX (e and f), and datafile sorting policy of SIZE (a, c, and e) and POP (b, d, and f).

SIZE POP

LJF

(a) Makespan Trans-time Res-util (%) (b) Makespan Trans-time Res-util (%)

JDS-BC 6824 5845 86.3 JDS-BC 6584 5235 90.0

DIANA 11,234 5220 53.7 DIANA 10,642 4610 58.2

FLOP 10,921 5140 58.1 FLOP 10,921 4355 58.1

MinTrans 19,075 555 26.1 MinTrans 10,999 155 42.3

MinExe 6358 6355 96.0 MinExe 6358 5055 96.0

SJF

(c) Makespan Trans-time Res-util (%) (d) Makespan trans-time Res-util (%)

JDS-BC 7513 4625 76.5 JDS-BC 7296 3945 78.0

DIANA 10,360 5340 60.4 DIANA 17,035 4630 35.3

FLOP 13,023 5555 49.9 FLOP 13,023 4895 49.9

MinTrans 21,509 525 20.6 MinTrans 11,487 55 38.6

MinExe 6621 5795 89.8 MinExe 6621 5035 89.8

MIX

(e) Makespan Trans-time Res-util (%) (f) Makespan Trans-time Res-util (%)

JDS-BC 7269 4725 79.1 JDS-BC 7174 4135 80.3

DIANA 10,498 2435 43.1 DIANA 10,752 1740 42.0

FLOP 10,813 5730 58.5 FLOP 10,813 4705 58.5

MinTrans 21,134 480 21.2 MinTrans 11,181 245 40.7

MinExe 6405 7700 94.1 MinExe 6405 6065 94.1

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–15781572
Table 7 presents the performance of different algorithms for
scheduling jobs and replicating datafiles in this environment.
Here, jobs are sorted based on LJF: Longest Jobs First, SJF: Shortest
Jobs First, or MIX: mixture of them; and, datafiles are sorted based
on SIZE: size, or POP: popularity—datafiles are more popular if
more jobs are dependent on them.
6.3.2. Test-Grid-Medium

This test grid is to represent medium-sized grids with moder-
ate number of jobs and datafiles. Table 8 shows performance of
different algorithm on this system with 5023 jobs – consists of
11,9042 tasks – and 435 datafiles.
6.3.3. Test-Grid-Large

This test grid represents large-sized grids with very high
number of jobs and datafiles. Table 9 shows performance of
different algorithm on this system with 9652 jobs – consists of
231,360 tasks – and 731 datafiles.
7. Discussion and analysis

Tables 7–9 show the results of applying the algorithms to
minimize the overall makespan as well as transfer-time of the
whole system for these tailor-made grids. The following sections
explain more about different aspects of these results.

Table 9
Results for Test-Grid-Large for job sorting policy of LJF (a and b), SJF (c and d), and MIX (e and f), and datafile sorting policy of SIZE (a, c, and e) and POP (b, d, and f).

SIZE POP

LJF

(a) Makespan Trans-time Res-util (%) (b) Makespan Trans-time Res-util (%)

JDS-BC 6561 9966 90.7 JDS-BC 6594 8656 90.2

DIANA 17,202 8344 34.9 DIANA 15,482 6906 36.6

FLOP 11,971 8988 51.4 FLOP 11,971 8178 51.4

MinTrans 19,566 738 33.9 MinTrans 20,647 748 30.6

MinExe 6215 10,236 96.1 MinExe 6215 9064 96.1

SJF

(c) Makespan Trans-time Res-util (%) (d) Makespan Trans-time Res-util (%)

JDS-BC 6856 9436 85.5 JDS-BC 6878 8346 85.9

DIANA 15,262 7628 36.8 DIANA 15,192 6592 36.4

FLOP 11,731 9698 52.7 FLOP 11,731 8500 52.7

MinTrans 30,706 1042 21.6 MinTrans 22,281 664 26.3

MinExe 6642 10,294 88.9 MinExe 6642 8988 88.9

MIX

(e) Makespan Trans-time Res-util (%) (f) Makespan Trans-time Res-util (%)

JDS-BC 6797 9508 87.1 JDS-BC 6673 8178 89.4

DIANA 27,074 5070 17.4 DIANA 30,999 4268 14.8

FLOP 8913 9724 68.4 FLOP 8913 8614 68.4

MinTrans 18,460 754 30.3 MinTrans 21,147 712 29.1

MinExe 6333 12,542 94.1 MinExe 6333 10,886 94.1

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–1578 1573
7.1. Makespan

This criterion represents the time the latest CN in the system
finalizes its assigned jobs, which is one of the two objectives that
must be minimized in a system. For the small-sized grid (Table 7),
JDS-BC’s makespan was always 1–5% above the benchmark (MinE-
xe’s makespan) for all job sorting and datafile sorting policies.
DIANA’s makespan was more dynamic for different setups. For
different job sorting policies, it achieves 33–60% and 17–48% above
the benchmark for SIZE and POP datafile sorting methods, respec-
tively. FLOP’s makespan was always 20–72% above the benchmark
for all situations. MinTrans’ makespans were always 77–81% above
the benchmark. For the medium-sized grid (Table 8) where more
jobs and datafiles exist in the system, performance differences
between these algorithms become more distinguishable. Here,
JDS-BC could still continue its near optimal performance and
achieves makespans only 4–13% above the benchmark. DIANA’s
makespan became worse compare to its previous deployment; it
achieved makespans, 56–157% above the benchmark. FLOP also
slightly worsen its performance and achieved 69–97% above the
benchmark. MinTrans’ makespans were 73–230% above the bench-
mark; almost comparable to DIANA and FLOP sometimes. For the
large-sized grid (Table 9) where these algorithms are pushed to their
limits, their true performances are become very distinct. Here, JDS-
BC kept its superb performance and achieved makespans only 3–7%
above the benchmark. DIANA’s makespan became almost unaccep-
table as it achieved 29–389% above the benchmark. FLOP, however,
could retain its performance and achieved makespans only
41–93% above the benchmark. Not surprisingly, MinTrans’ make-
span were the absolute worse with 191–362% above the benchmark.
In summary, JDS-BC’s, DIANA’s and FLOP’s makespans were always
1–13%, 17–389%, and 20–93% above the benchmark (at all times),
respectively.

7.2. Transfer time

This criterion reflects the quality of the replication policy for
each of the aforementioned techniques. For the small-sized grid
(Table 7) the total transfer time for all techniques is almost similar
for all scheduling and replication policies; mainly because not
enough datafiles exist in the system to challenge these techniques.
MinTrans has managed to deliver all datafiles in this system
almost without any delay as the low number of datafiles in the
system allowed replication of all datafiles onto CNs’ attached SNs
to provide instant access to all jobs. For the medium-sized grid
(Table 8), DIANA shows its marginal better performance in
comparison to JDS-BC and FLOP; DIANA managed to deliver all
datafiles in almost 83% of the time the other two algorithms could.
For the large-sized grid (Table 9), however, DIANA’s performance
is more noticeable where it managed to deliver all datafiles in only
71% of the time the other three algorithms were able. For all
systems, MinTrans was able to deliver all datafiles in almost 1–
10% of the times the others could. This shows that although
enough space is available in SNs to replicate most datafiles, they
cannot be used; mainly because, it would result in unreasonably
under resource utilization of CNs in such systems.

7.3. Recourse Utilization

This criterion is to measure the microscopic behavior of
scheduling techniques in disseminating jobs. Despite the macro-
scopic criterion of makespan that only measures the overall
outcome of a system, resource-utilization reflects the exact
percentage of unused computing units during the whole process
of executing a bag-of-jobs. Resource-utilization has a direct
relation to the makespan of a system where lower makespan
usually means better resource-utilization and vice versa. For the
small-sized grid (Table 7), JDS-BC’s recourse-utilization was only
0.1–4% less than the benchmark (MinExe); DIANA’s and FLOP’s
recourse-utilization were 11–40% and 13–35% less than the
benchmark, respectively. For the medium-size grid (Table 8),
differences between these algorithms become more distinguish-
able. Here, JDS-BC almost kept it performance and managed to
utilize the system only 5–15% less than the benchmark. DIANA
and FLOP, however, showed more undesirable performance
where their resource-utilizations were dropped by 30–52% and
36–40% than the benchmark, respectively. For the large-sized grid
(Table 9) where these algorithms are pushed to their limits,

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–15781574
JDS-BC still managed to utilize the system only by 3–9% lower
than the benchmark. DIANA and FLOP, in this case, showed
absolutely unacceptable performances where their resource-uti-
lization severely dropped to 53–77% and 26–45%, lower than the
benchmark, respectively. In summary, JDS-BC’s resource-utiliza-
tion was never worse than 15% of the benchmark; whereas,
DIANA and FLOP could sometimes under utilize a system for up
to 77% and 45%, respectively.

7.4. Performance analysis of JDS-BC

Further analysis of Tables 7–9 shows that JDS-BC implicitly
adopts different strategies in solving the DAJS problem under
different conditions. For small-sized systems (Table 7) where
transfer time of datafiles is almost half of the jobs’ execution
times (makespan), JDS-BC leans more toward faster execution of
jobs and maximum utilization of CNs. A logical explanation for
such behavior relates to existence of a fairly small number of CNs
as well as datafiles in such systems. Therefore, all CNs are able to
either replicate the requested datafiles in their attached SNs or
cache them upon the first download. As a result, local depository
of all CNs are enriched very soon and the transfer time portion of
the stated DAJS become almost ineffective in further scheduling
decisions. For medium-size grids (Table 8), on the other hand,
existence of a larger number of datafiles does not allow all CNs to
replicate their requested datafiles or cache them. Here, JDS-BC
changed its strategy and tries to balance the transfer time and
makespan of such systems. This usually results in slight under
utilization of CNs (where better scheduling is still possible). Such
under utilization is however smart enough to have a very positive
impact in reducing transfer time of the system. In other words,
the amount of transfer time is saved as a result of such under
utilization is much better than the extra time JDS-BC spends to
execute jobs (makespan). For large-sized systems (Table 9) where
total size of datafiles is beyond capacity of any CN, JDS-BC is more
inclined toward reducing datafiles’ transfer time. Here, JDS-BC
Fig. 6. Overall execution time on Test-Grid-Small with job sorting policy of LJF (a and b

POP (b, d, and f).
implicitly acts like algorithms designed for data-intensive appli-
cations (such as DIANA). This imitation is however smart enough
to never allow heavy under utilization of a system at all times. As
a result, although JDS-BC is focused on reducing the transfer time,
it never allows recourse utilization below 85%.

In summary, JDS-BC’s definition of benefit that consists of both
objectives of the stated problem allows it to efficiently adapt to
both computational-intensive and data-intensive applications as
well as any other scenarios in between. In all situations, JDC-BC
can detect the dominant objective of a system and automatically
allocates more weight to minimizing it. Nevertheless, JDS-BC’s
optimization process is balanced enough to never allow a heavy
negative impact from any of the stated two objectives. As a result,
the amount JDS-BC loses by relaxing one of its objectives (e.g.,
transfer time) is always much lower than the amount it gains
through optimizing the other one (e.g., makespan).
7.5. Comparing all the methods

Each of the methods has its own pros and cons. The two
extreme approaches, MinTrans and MinExe, demonstrate the true
nature of this bi-objective optimization problem and confirmed
that reducing makespan and transfer-time cannot be concurrently
achieved. As it could be seen in Tables 7–9, MinTrans and MinExe
always result in the lowest transfer-time and makespan for all
cases, respectively. They however showed unacceptable perfor-
mance in reducing the objective they were not initially targeted.
For example, MinTrans’s makespan was always 4–5 times than
that of MinExe’s and MinExe’s transfer-time was always much
higher than that of MinTrans. Figs. 6–8 show a better neck-to-
neck comparison of all these techniques for these test grids under
different simulation setups. As can be seen in all these figures,
JDS-BC always achieved the lowest makespan plus transfer-time,
DIANA – the best approach in the literature – achieved the second
overall performance, and FLOP was the worse.
), SJF (c and d), and MIX (e and f), and datafile sorting policy of SIZE (a, c, and e) and

Fig. 7. Overall execution time on Test-Grid-Medium with job sorting policy of LJF (a and b), SJF (c and d), and MIX (e and f), and datafile sorting policy of SIZE (a, c, and e)

and POP (b, d, and f).

Fig. 8. Overall execution time on Test-Grid-Large with job sorting policy of LJF (a and b), SJF (c and d), and MIX (e and f), and datafile sorting policy of SIZE (a, c, and e) and

POP (b, d, and f).

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–1578 1575
In summary, FLOP with its greedy approach, which starts to
execute jobs without considering the location of the relevant
datafiles ranked the least favorite. DIANA shows reasonable results
in reducing transfer-time, while its makespan and resource-utili-
zation proves its incompetency for deployment in medium- to
large-sized systems. DIANA’s overall performance proves that
(1) migrating jobs to CN with better access to datafiles or (2) pre-
venting replication of datafiles only because they have large sizes
usually results in heavy system’s under utilizations. JDS-BC showed
the best performance among the three for all systems. Its make-
span and resource-utilization was always closest to the bench-
mark, while its transfer-time was always less than 33% worse than

Fig. 9. Effect of the number of replicas on performance of JDS-BC (a), DIANA (b), FLOP (c), MinTrans (d), and MinExe (e).

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–15781576
DIANA. JDS-BC’s strategy in scheduling jobs and replicating data-
files proves the fact that sending similar jobs to a CN while
replicating their similar dependent datafiles on a SN is most
probably the best strategy to concurrently reduce both equally
important objectives of the stated DAJS problem. In other words,
approaches that try to group similar jobs/datafiles to be scheduled/
replicated on a CN/SN would probably result in better system
utilizations as well as transfer-times; Gang scheduling [16] also
hypothesized this fact in scheduling its jobs and datafiles.

7.6. The effect of number of replicas

For all simulations, datafiles were limited to have at most four
instances in a system (one original and three replicas). In this
section, this limitation is relaxed to study the effect of number of
replicas on the overall performance of the aforementioned tech-
niques. To this end, Test-Grid-Medium is selected again and
performance of different techniques for up to 0–7 number of
replicas – i.e., up to 1–8 instances for each datafile – is measured.
Fig. 9 shows the overall makespan, transfer-time and resource-
utilization when jobs and datafiles are prioritized based on their
executing time (LJF) and size (SIZE), respectively. Results of the
other two test grids with different combination of job and datafile
sorting were not reflected here as they were very similar to the
presented one. Fig. 9 shows that despite the general impression
that more replicas should result in reducing the overall transfer-
time and consequently better utilization of a system, more
replicas can in fact waste some precious resources in a system
and result in under utilization sometimes! This figure also
showed that high and low number of replicas always result in
system under utilization; therefore, setting a proper number for
replicating datafiles can be as important as efficiently scheduling
jobs and/or replicating datafiles.
7.7. Convergence time

Table 10 shows the convergence time, for a single iteration of
each algorithm. The actual number of iterations that each of these
algorithms needs to converge to a solution greatly depends on the
problem size as well as the capability of the computer running the
algorithm. Nevertheless, just to provide an overview of their
convergence speeds for the presented test grids in this work, all
algorithms managed to converge to their final solution in less
than five iteration at all times on a dual core 2.1 MHz desktop
with 4G RAM running Windows XP. This table clearly shows that
JDC-BC requires the least amount of time to converge to a
solution; whereas, DIANA, FLOP, and MinExe usually needed 4–
14 times more computing time to converge; MinTrans needs 2–6
times more computing time to converge.

Table 10
Convergence speed for one iteration of each algorithm.

JDS-BC DIANA FLOP MinTrans MinExe

Test-Grid-Small
18 74 73 41 69

(00 h:00 min:18 s) (00 h:01 min:14 s) (00 h:01 min:13 s) (00 h:00 min:41 s) (00 h:01 min:09 s)

Test-Grid-Medium
255 1787 1673 822 1302

(00 h:04 min:15 s) (00 h:29 min:47 s) (00 h:27 min:53 s) (00 h:13 min:42 s) (00 h:21 min:42 s)

Test-Grid-Large
295 4036 3405 1845 3219

(00 h:04 min:55 s) (01 h:07 min:16 s) (00 h:56 min:45 s) (00 h:30 min:45 s) (00 h:53 min:39 s)

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–1578 1577
8. Conclusion and future works

This paper presented a novel BCO based approach, namely
JDS-BC, to schedule jobs to CNs and replicate datafiles in SNs. JDS-
BC focuses on the matchmaking process where two independent
and in many cases even conflicting objectives in such systems
(makespan and total transfer time) must be concurrently mini-
mized. Three tailor-made test grids varying from small to large
are used to study the performance of JDS-BC and compare it with
other algorithms in the field. Results showed that JDS-BC is able
to efficiently adapt itself to both computational and data-inten-
sive grids as well as other systems in between. JDS-BC can
automatically favor the optimization of the dominant objective
and implicitly prioritizes it in its optimization process. JDS-BC
also showed a balanced decision making behavior, where it
sometimes relaxes one of its objectives (e.g., transfer time) to
gain more from optimizing the other one (e.g., makespan).

The results presented here also pave the path to new research
that can be targeted in the future. For example, the DAJS problem
in this work is defined as a bi-objective problem in which both
makespan and transfer time of a batch of jobs (bulk) must be
concurrently minimized. Recent studies however show that other
criteria such as energy efficiency of grid resources or the cost of
system maintenance can become important factors for future
systems; and thus, a natural extension to our work would be
adding extra criteria to the DAJS problem to address these issues
as well. Another avenue to extent result of our work is to modify
the proposed solutions to clouds where major service providers
need to concurrently minimize execution of their jobs as well as
downloading/accessing time of datafiles by users. For clouds in
particular, security issues and jobs priority as well as other
criteria must be added to the DAJS problem so that service
providers can satisfy many Service Level Agreements of the
submitted jobs through maximizing system utilization.
Acknowledgements

Professor A.Y. Zomaya’s work is supported by an Australian
Research Council Grant LP0884070.

Professor H.J. Siegel’s work is supported by the United States
National Science Foundation (NSF) Grant CNS-0905399, and by
the Colorado State University George T. Abell Endowment.

References

[1] Berman F, Fox G, Hey AJG. Grid computing: making the global infrastructure a
reality. New York: John Wiley and Sons; 2003.

[2] CERN. Compact muon solenoid (CMS). /http://public.web.cern.ch/public/en/
lhc/CMS-en.htmlS; 2011 [visited].

[3] CERN. Large hadron collider (LHC). /http://public.web.cern.ch/public/en/lhc/
lhc-en.htmlS; 2011 [visited].

[4] Holtman K. CMS data grid system overview and requirements. The compact
muon solenoid (CMS) experiment note 2001/037. Switzerland: CERN; 2001.

[5] Holtman K. HEPGRID2001: a model of a virtual data grid application. In:
Hertzberger LO, Hoekstra AG, Williams R, editors. HPCN Europe 2001:
Proceedings of the ninth international conference on high-performance
computing and networking. London, UK: Springer-Verlag; 2001, p. 711–20.

[6] Anjum A, McClatchey R, Ali A, Willers I. Bulk scheduling with the DIANA
scheduler. IEEE Transactions on Nuclear Science 2006;53:3818–29.

[7] Subrata R, Zomaya AY, Landfeldt B. Cooperative power-aware scheduling in
grid computing environments. Journal of Parallel and Distributed Computing
2010;70:84–91.

[8] McClatchey R, Anjum A, Stockinger H, Ali A, Willers I, Thomas M. Data
intensive and network aware (DIANA) grid scheduling. Journal of Grid
Computing 2007;5:43–64.

[9] Tang M, Lee B-S, Tang X, Yeo C-K. The impact of data replication on job
scheduling performance in the data grid. Future Generation Computer
Systems 2006;22:254–68.

[10] Frey J, Tannenbaum T, Livny M, Foster I, Tuecke S. Condor-G: a computation
management agent for multi-institutional grids. Cluster Computing
2002;5:237–46.

[11] Andreetto P, Borgia S, Dorigo A, Gianelle A, Mordacchini M, Sgaravatto M
et al. Practical approaches to grid workload and resource management in the
EGEE project. In: Proceedings of the conference on computing in high energy
and nuclear physics (CHEP’04); 2004. p. 899–902.

[12] Jin H, Shi X, Qiang W, Zou D. An adaptive meta-scheduler for data-intensive
applications. International Journal of Grid and Utility Computing 2005;1:32–7.

[13] Kosar T, Livny M. A framework for reliable and efficient data placement in
distributed computing systems. Journal of Parallel and Distributed Comput-
ing 2005;65:1146–57.

[14] Thain D, Bent J, Arpaci-Dusseau A, Arpaci-Dusseau R, Livny M. Gathering at
the well: creating communities for grid I/O. In: Proceedings of the 2001 ACM/
IEEE conference on supercomputing; 2001. p. 58–78.

[15] Basney J, Livny M, Mazzanti P. Utilizing widely distributed computational
resources efficiently with execution domains. Computer Physics Commu-
nications 2001;140:246–52.

[16] Bode B, Halstead DM, Kendall R, Lei Z, Jackson D. The portable batch
scheduler and the maui scheduler on linux clusters. In: Proceedings of the
fourth annual showcase and conference (LINUX-00); 2000. p. 217–24.

[17] Cirne W, Da Silva DP, Costa L, Santos-Neto E, Brasileiro FV, Sauve J et al.
Running bag-of-tasks applications on computational grids: the MyGrid
approach. In: Proceedings of the 2003 international conference on parallel
processing (ICPP’03); 2003. p. 407–16.

[18] Huedo E, Montero ReS, Llorente IMi. The GridWay framework for adaptive
scheduling and execution on grids. Scalable Computing: Practice and Experi-
ence 2005;6:1–8.

[19] Strazdins PE Uhlmann J. A comparison of local and gang scheduling on a
beowulf cluster. In: Proceedings of 2004 IEEE international conference on
cluster computing (CLUSTER’04); 2004. p. 55–62.

[20] Maheswaran M, Ali S, Siegel HJ, Hensgen D, Freund RF. Dynamic mapping of a
class of independent tasks onto heterogeneous computing systems. Journal of
Parallel and Distributed Computing, Special Issue on Software Support for
Distributed Computing 1999;59:107–31.

[21] Casanova H, Zagorodnov D, Berman F, Legrand A. Heuristics for scheduling
parameter sweep applications in grid environments. In: Proceedings of the
ninth heterogeneous computing workshop; 2000. p. 349–63.

[22] Ranganathan K Foster I. Decoupling computation and data scheduling in
distributed data-intensive applications. In: Proceedings of 11th IEEE inter-
national symposium on high performance distributed computing (HPDC’02);
2002. p. 352–8.

[23] GriPhyN. Grid physics network in ATLAS. /http://www.usatlas.bnl.gov/com
puting/grid/griphyn/S; 2011 [visited].

[24] Hoschek W, Jaen-Martinez J, Samar A, Stockinger H, Stockinger K. Data manage-
ment in an international data grid project. In: Buyya R, Baker M, editors. Grid
computing, vol. 1971. New York: Springer-Verlag; 2000. p. 77–90.

[25] SAM. /http://projects.fnal.gov/samgrid/S; 2011 [visited].
[26] Chakrabarti A, Sengupta S. Scalable and distributed mechanisms for inte-

grated scheduling and replication in data grids. In: Rao S, Chatterjee M,
Jayanti P, Murthy C, Saha S, editors. Distributed computing and networking,
vol. 4904. Berlin/Heidelberg: Springer; 2008. p. 227–38.

[27] GILDA. /https://gilda.ct.infn.it/S; 2011 [visited].
[28] Feitelson D, Rudolph L, Schwiegelshohn U, Sevcik K, Wong P. Theory and

practice in parallel job scheduling. In: Feitelson D, Rudolph L, editors. Job
scheduling strategies for parallel processing, vol. 1291. Berlin/Heidelberg:
Springer; 1997. p. 1–34.

http://public.web.cern.ch/public/en/lhc/CMS-en.html
http://public.web.cern.ch/public/en/lhc/CMS-en.html
http://public.web.cern.ch/public/en/lhc/lhc-en.html
http://public.web.cern.ch/public/en/lhc/lhc-en.html
http://www.usatlas.bnl.gov/computing/grid/griphyn/
http://www.usatlas.bnl.gov/computing/grid/griphyn/
http://projects.fnal.gov/samgrid/
https://gilda.ct.infn.it/

J. Taheri et al. / Computers & Operations Research 40 (2013) 1564–15781578
[29] Mohamed HH, Epema DHJ. An evaluation of the close-to-files processor and
data co-allocation policy in multiclusters. In: Proceedings of 2004 IEEE
international conference on cluster computing; 2004. p. 287–98.

[30] Chakrabarti A, Dheepak R, Sengupta S. Integration of scheduling and replication in
data grids. In: Bougé L, Prasanna V, editors. High performance computing—

HiPC, vol. 3296. Berlin/Heidelberg: Springer; 2004. p. 85–101. In: Bougé L,
Prasanna V, editors. High performance computing—HiPC, vol. 3296. Berlin/
Heidelberg: Springer; 2005. p. 85–101.

[31] Chang R-S, Chang J-S, Lin S-Y. Job scheduling and data replication on data
grids. Future Generation Computer Systems 2007;23:846–60.

[32] UniGrid. Taiwan unigrid environment. /http://www.unigrid.org.twS; 2011
[visited].

[33] Dang NN, Lim SB. Combination of replication and scheduling in data grids.
International Journal of Computer Science and Network Security (IJCSNS)
2007;7:304–8.

[34] Abdi S, Mohamadi S. Two level job scheduling and data replication in data
grid. International Journal of Grid Computing and Applications (IJGCA)
2010;1:23–37.

[35] Bell WH, Cameron DG, Capozza L, Millar AP, Stockinger K, Zini F. OptorSim: a
grid simulator for studying dynamic data replication strategies. The Interna-
tional Journal of High Performance Computing Applications 2003;17:403–16.

[36] Subrata R, Zomaya AY, Landfeldt B. A cooperative game framework for QoS
guided job allocation schemes in grids. IEEE Transactions on Computers
2008;57:1413–22.

[37] Dick RP, Rhodes DL, Wolf W. TGFF: task graphs for free. In: Proceedings of the
sixth international workshop on hardware/software codesign; 1998. p. 97–101.
[38] Hongzhang S, Oliker L, Biswas R. Job superscheduler architecture and
performance in computational grid environments. In: Proceedings of the
ACM/IEEE SC2003 conference (SC’03); 2003. p. 44–58.

[39] Karaboga D, Akay B, Ozturk C. Artificial bee colony (ABC) optimization
algorithm for training feed-forward neural networks. In: Proceedings of the
fourth international conference on modeling decisions for artificial intelli-
gence; 2007. p. 318–29.

[40] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. Journal of Global
Optimization 2007;39:459–71.

[41] Chin Soon C, Hean L Malcolm Yoke, Iyer S Appa, Leng G Kheng. A bee colony
optimization algorithm to Job shop scheduling. In: Proceedings of the winter
simulation conference (WSC 06); 2006. p. 1954–61.

[42] Tovey C. The honey bee algorithm: a biological inspired approach to internet
server optimization. The alumni magazine for ISyE at Georgia Institute of
technology; 2004. p. 13–5.

[43] Wong L-P, Low MYH, Chong CS. Bee colony optimization with local search for
traveling salesman problem. International Journal on Artificial Intelligence
Tools 2010;19:305–34.

[44] Bitam S, Batouche M, Talbi EG. A survey on bee colony algorithms. In:
Proceedings of 2010 IEEE international symposium on parallel and distrib-
uted processing, workshops and Ph.D. forum (IPDPSW); 2010. p. 1–8.

[45] Sang-Min P, Jair-Hoom K. Chameleon: a resource scheduler in a data grid
environment. In: Proceedings of third IEEE international symposium on
cluster computing and the grid (CCGRID’03); 2003. p. 258–65.

http://www.unigrid.org.tw

	A Bee Colony based optimization approach for simultaneous job scheduling and data replication in grid environments
	Introduction
	Related work
	Framework
	Computational nodes
	Storage nodes
	Interconnection network
	Schedulers
	Users
	Jobs
	Datafiles

	Problem statement: Data Aware Job Scheduling
	Bee Colony algorithm for solving the DAJS problem
	Bee Colony Optimization (BCO)
	Simultaneous job and data scheduling using Bee Colony Optimization
	Benefit

	Dance floor
	Similarity
	Estimated-benefit
	Schedule jobs
	Replicate datafiles

	Simulation
	Comparing Algorithms
	Measurement criteria
	Test grids
	Test-Grid-Small
	Test-Grid-Medium
	Test-Grid-Large

	Discussion and analysis
	Makespan
	Transfer time
	Recourse Utilization
	Performance analysis of JDS-BC
	Comparing all the methods
	The effect of number of replicas
	Convergence time

	Conclusion and future works
	Acknowledgements
	References

