
A Survey and Evaluation of Topology-Agnostic
Deterministic Routing Algorithms

José Flich, Member, IEEE, Tor Skeie, Andrés Mejı́a, Olav Lysne, Member, IEEE,

Pedro López, Member, IEEE Computer Society, Antonio Robles, Member, IEEE, José Duato,

Michihiro Koibuchi, Member, IEEE, Tomas Rokicki, and José Carlos Sancho

Abstract—Most standard cluster interconnect technologies are flexible with respect to network topology. This has spawned a

substantial amount of research on topology-agnostic routing algorithms, which make no assumption about the network structure, thus

providing the flexibility needed to route on irregular networks. Actually, such an irregularity should be often interpreted as minor

modifications of some regular interconnection pattern, such as those induced by faults. In fact, topology-agnostic routing algorithms

are also becoming increasingly useful for networks on chip (NoCs), where faults may make the preferred 2D mesh topology irregular.

Existing topology-agnostic routing algorithms were developed for varying purposes, giving them different and not always comparable

properties. Details are scattered among many papers, each with distinct conditions, making comparison difficult. This paper presents a

comprehensive overview of the known topology-agnostic routing algorithms. We classify these algorithms by their most important

properties, and evaluate them consistently. This provides significant insight into the algorithms and their appropriateness for different

on- and off-chip environments.

Index Terms—Interconnection networks, routing algorithms, topology-agnostic routing.

Ç

1 INTRODUCTION

CLUSTERS of PCs are often a cost-effective alternative to
small- and medium-scale parallel computing systems.

The performance of such clusters is closely related to the
advances in their interconnection network. Currently, there
are many proposals for high-performance clusters based on
interconnects such as Myrinet [1], Servernet II [2], Gigabit
Ethernet [3], InfiniBand [4], or Quadrics [5]. The size of
these clusters has increased dramatically. The November
2010 list of top 500 supercomputer sites [6] includes several
cluster-based machines with more than 100 K cores, some in
the 10 top positions.

Cluster interconnects are usually arranged as switch-
based networks whose topology is defined by the
customer. The topology can be either regular or irregular.
Regular topologies such as direct topologies and multistage

networks are often used when performance is the primary
concern. Many of the machines in the topmost positions of
the top 500 supercomputers list use a 3D torus or a fat-tree
topology. On the other hand, it makes no sense to use
totally arbitrary irregular topologies in high-performance
computing (HPC) systems. Although this was thought to
be a possibility in the mid 1990s with the emergence of
NOWs and COTS cluster systems, this never became a
reality. However, a more common and realistic scenario is
to consider regular patterns slightly modified by minor
irregularities, such as those caused by the occurrence of
failures. As the number of components increases, the
probability of faults also increases. In such expensive
HPC systems, it is often critical to keep the system running
even in the presence of faults.

In order to tolerate faults, different mechanisms have
been proposed. Unfortunately, most solutions either rely on
specific logic (i.e., adaptive routing) not present in current
cluster interconnects, or on disabling some regions of the
network and otherwise working nodes. Other solutions rely
on duplication of hardware, whereas others are based on
dynamic reconfiguration of routing tables. For more details
on these techniques, see [7]. Topology-agnostic routing
algorithms provide a promising solution to tolerating faults
by providing valid, deadlock-free routing no matter what
combination of faults exists. The large body of research on
routing algorithms for irregular networks may prove to be
extremely useful not only for large clusters with faults, but
also for on-chip networks.

The memory bandwidth requirements of massively
multicore chips are a tremendous challenge to designers.
A large shared multibank L2 cache on the chip can help
reduce these requirements. To keep the L1 caches of the
processors coherent, a high-speed, high-bandwidth on-chip

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012 405

. J. Flich, P. López, A. Robles, and J. Duato are with the DISCA, Universidat
Politècnica de València, Camino de Vera, s/n, Valencia 46022, Spain.
E-mail: {jflich, plopez, arobles, jduato}@disca.upv.es.

. T. Skeie and O. Lysne are with the Simula Research Laboratory and the
University of Oslo, PO Box 134, Lysaker 1325, Norway.
E-mail: {tskeie, olav.lysne}@simula.no.

. A. Mejı́a is with the Intel Corp, 2200 Mission College Blvd, SC12 3rd F2,
Santa Clara, CA 95054-1549. E-mail: andres.mejia@intel.com.

. M. Koibuchi is with the National Institute of Informatics, 2-1-2,
Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.
E-mail: koibuchi@nii.ac.jp.

. T. Rokicki is with Instantis, 725 B Loma Verde, Palo Alto, CA 94303.
E-mail: rokicki@instantis.com.

. J.C. Sancho is with the Barcelona Supercomputing Center, K2M Building,
Office 107, C/Jordi Girona, 1-3, Barcelona 08034, Spain.
E-mail: jose.sancho@bsc.es.

Manuscript received 31 July 2010; revised 4 Jan. 2011; accepted 8 June 2011;
published online 1 July 2011.
Recommended for acceptance by D. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2010-07-0457.
Digital Object Identifier no. 10.1109/TPDS.2011.190.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

network is required; with many cores, a shared bus is no
longer sufficient. Instead, direct networks such as the 2D
mesh topology are being proposed for these networks on
chip (NoCs). For some chips, such as those with hetero-
genous cores, a less regular topology may be used. In any
case, manufacturing defects or runtime failures can convert
the topology into an irregular one, requiring routing
algorithms that can handle such topologies.

Therefore, NoC designers are faced with the problem of
designing routing algorithms that deliver the lowest possible
communication latency and use the internal bandwidth as
efficiently as possible while being able to support irregular
topologies, and even adapt to new topologies when failures
occur. Topology-agnostic routing algorithms may provide a
solution to this nontrivial problem.

This rising importance of topology-agnostic routing
algorithms has led us to review the previous work in the
field, collecting and comparing the different algorithms in
the same context. This paper presents a taxonomy to
characterize the algorithms. Although they appear very
different, they have in common some fundamental char-
acteristics (e.g., all of them guarantee deadlock freedom).
We identify the main stages they have in common and
present a method to describe all of them in the same
framework, thus providing a global view.

These routing algorithms were developed for different
technologies and each evaluated with different assump-
tions, network conditions, and traffic patterns, making it
impossible to compare their performance. We have per-
formed a comprehensive performance evaluation of all of
these algorithms against the same set of topologies and
workloads, making it possible to finally compare them all
against each other.

Finally, we consider the relationship between current
technology and the abstract routing algorithms. We de-
scribe the limitations and capabilities of each technology
and discuss how this drives the selection of different
routing algorithms.

The paper is organized as follows: Section 2 introduces
some basic concepts regarding networks and routing
algorithms. Section 3 describes the surveyed routing
algorithms. Sections 4 and 5 present a taxonomy and a
formal and unified description of all the routing algorithms.
Section 6 gives an evaluation of all the routing algorithms.
Section 7 discusses our performance results in light of
present day technologies and scenarios. Finally, Section 8
summarizes our results.

2 BASIC CONCEPTS

Three issues dominate the design of an interconnection net-
work: topology, switching technique, and routing algorithm
[8]. The switching technique establishes how the network
resources are allocated to packets and what to do while
packets are waiting to acquire network resources. In lossless
networks, packets waiting for acquiring a network resource
are buffered. This buffering can be done either in units of
packets, as in store-and-forward and virtual cut-through, or in
smaller units of data commonly referred to as flits, as in
wormhole. Unlike store-and-forward, virtual cut-through
and wormhole allow transmission over each hop to be

started as soon as the required resources are allocated
without waiting for the entire packet to be received. Thus,
in the absence of blocking, packets are effectively pipelined
through the network. Several virtual channels multiplexed
across the physical channel can be used to decouple buffer
allocation from physical channel bandwidth. Each virtual
channel is implemented with an independently managed
buffer. This decoupling prevents a packet that is buffered
from holding channel bandwidth idle.

An issue closely associated with switching technique is
flow control. It is required in lossless networks to avoid
losing packets/flits in transit when buffers become full. In
general, flow control is a mechanism to report the
availability of buffers at the far end of the channel and to
allow the next packet/flit to be transmitted. When buffers
become full, the flow-control mechanism provides the
required backpressure to avoid packet/flit loss. If virtual
channels are used, flow control is applied on a per-virtual
channel basis. The flow-control mechanisms commonly
used by current network technologies are credit-based
(InfiniBand), stop&go (Myrinet), and ack/nack.

In order to efficiently route packets through a network, a
routing algorithm must be used. Routing algorithms can be
deterministic or adaptive. In deterministic routing, the path
followed between a given source-destination pair is always
the same. This is achieved by the switches providing only
one routing option for a packet. With adaptive routing, several
routing options may be provided by a switch to forward a
packet. The selection of the routing option is usually made
based on the current status of the links. Thus, with adaptive
routing, packets can avoid congested areas in the network.

Routing algorithms can be implemented in several ways.
Some routers use routing tables (also known as forwarding
tables) with a number of entries equal to the number of
destinations. These tables are associated with each network
switch, and contain the next link a packet destined to the
corresponding entry must follow. With a single entry per
destination, only deterministic routing is allowed. The main
advantage of table-based routing is that any topology and
any routing algorithm can be used in the network. However,
routing based on tables suffers from a lack of scalability, as
the size of the table grows linearly with network size. An
alternative is to place a specialized hardware at each node
implementing a logic circuit to compute the output port to
be used. This is the approach used in large parallel
computers and there are some proposals in the context of
irregular networks [9]. There are hybrid implementations,
such as the FIR [10] or LBDR [11] approaches, which define
the routing algorithm by programming a set of registers
associated with each output port.

Another key issue in the design of routing algorithms is
how to prevent deadlock and livelock. Deadlock occurs
when no packet can advance toward its destination because
the requested network resources (buffers/channels) are not
released by the packets possessing them. In a deadlock
situation, waiting packets are involved into a cycle of
resource dependencies.1 Deadlocks can be avoided by
eliminating cycles in the resource dependency graph. This

406 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

1. There exists a dependence from i to j if a packet possessing the
resource i requests the resource j.

can be achieved by imposing some restrictions on routing
(e.g., imposing an ordering in the allocation of the resources
[12] as in Dimension-Order Routing, DOR). Virtual chan-
nels are often used to allow this acyclic dependence graph
[12]. However, some adaptive routing schemes allow cycles
in their resource dependence graphs while still remaining
deadlock free [13]. Livelock occurs when packets are allowed
to advance, but they never reach their destination. Livelock
can arise when nonminimal routing is allowed. It can be
avoided by bounding the number of misroutings a packet is
allowed, thus ensuring eventual packet progression.

The irregularity of the topology (induced by one or some
faults or by the design of the topology) makes routing quite
complicated. For instance, DOR has been proposed for
meshes and tori networks. This routing algorithm forwards
every packet through one dimension at a time, following an
established order of dimensions. However, DOR is not able
to route packets even in the presence of a single fault.

3 SURVEYED ROUTING ALGORITHMS

Many routing strategies have been proposed over the past
decade for irregular networks, differing in goals and
approaches. Some focus on obtaining minimal paths; others
attempt to increase network bandwidth; yet others try to be
quick to compute. Some exploit virtual channels, while
others work on networks without this feature.

The first routing algorithm to appear was up�=down�

(UD) [14], and quickly gained popularity for its simplicity.
The algorithm performs a breadth-first search (BFS) from a
root node, assigning one direction of each link pair as up
(toward the root) and the other direction as down. The
uplinks form a directed tree toward the root, and the
downlinks form a directed tree away from the root. Routes
are chosen that traverse only a sequence of uplinks,
followed by a sequence of downlinks; cyclic dependencies
between links are avoided by forbidding any message to
traverse a downlink followed by an uplink. Further
refinements were proposed, such as the use of a depth-
first spanning (DFS) tree [15], and the Flexible Routing
scheme (FX) [39] which improved traffic balance by break-
ing cycles in each direction at different positions.

Another algorithm based on a BFS spanning tree, the
left-up-first turn routing algorithm (LTURN) [16], uses a
left to right directed graph, distributing the traffic around
the root node of the spanning tree and achieving better
network balance.

The Segment-based Routing (SR) algorithm [17] uses a
divide-and-conquer approach, partitioning a topology into
subnets, and subnets into segments, and placing bidirec-
tional turn restrictions locally within each segment. This
results in a larger degree of freedom when placing turn
restrictions compared to the previous routing strategies that
rely on heuristic rules.

Other routing algorithms, such as adaptive-trail [18],
minimal adaptive [19], and smart-routing (SMART) [20],
achieve performance improvements, but cannot be applied
to every network technology, because they require extra
functionality in the switches not usually present (for
instance, distributed adaptive routing for adaptive-trail

and minimal adaptive) or they have a very high computa-
tional cost (SMART).

Most of the above routing strategies (UD, DFS,
LTURN, SMART) do not guarantee that all packets will
be routed through minimal paths. This can lead to
increased packet latency, especially for short packets.
Use of nonminimal paths may also increase overall link
utilization. The decision to use nonminimal paths is a key
issue in selecting a routing algorithm. Some routing
algorithms focus traffic on some network links, such as
UD which forces a large percentage of the traffic to cross
the root node. Such traffic imbalance can lead to rapid
network congestion.

Several mechanisms have been proposed to achieve
minimal routing while still avoiding deadlock. One me-
chanism is the use of In-Transit Buffers (ITB) [21], where
packets are ejected from the network temporarily and
stored in intermediate hosts when necessary to avoid
deadlock. Other algorithms, such as Layered Shortest Path
(LASH) [22] (a recent approach in [23]) use virtual channels
to achieve deadlock-free minimal routing. The physical
network is divided into a set of virtual networks (layers)
using separate virtual channels; each layer is deadlock free
and handles a subset of the required minimal paths.

The Multiple UD (MUD) [24], [25], [26] algorithm makes
use of different virtual channels for multiple overlapping
up/down trees, eliminating much of the traffic congestion
around the root and using potentially fewer virtual
channels, but not guaranteeing minimal paths.

The Transition Oriented Routing (TOR) [27] algorithm
uses an underlying up/down tree, but permits otherwise
“forbidden” transitions by transitioning from one virtual
channel to the next. In order to guarantee minimal paths, a
large number of virtual channels may be required. The
Descending Layers (DL) algorithm [28] uses a similar
approach, but the underlying base algorithm can be
different (for instance, LTURN). In [29], the LASH and
TOR algorithms are combined into LASH-TOR, using
layers of differing base algorithms, with paths traversing
the different algorithms and virtual channels. The en-
hanced flexibility of the different base algorithms among
the virtual channel layers reduces the number of virtual
channels required.

Each of these routing algorithms has been proposed for
different network scenarios, relies on different mechanisms
in the network, and focuses on achieving particular benefits.
Some algorithms do not require virtual channels (UD, DFS,
FX, SMART, LTURN, SR). Some of the rest require only a
fixed number of virtual channels, while others require more
and more virtual channels as the network size grows.
Another distinction among them is how difficult they are to
compute; some attempt to balance the predicted traffic,
which can require excessive computation time for large
networks, especially when the topology arises as the result
of a fault and a new set of paths is required in short order.
Technology limitations may also constrain the set of
possible routing algorithms. Infiniband supports up to 15
virtual channels for routing purposes but real implementa-
tions may not implement virtual channels at all. The only
common property among all of these routing algorithms is
that they apply to any network topology.

FLICH ET AL.: A SURVEY AND EVALUATION OF TOPOLOGY-AGNOSTIC DETERMINISTIC ROUTING ALGORITHMS 407

Most of the routing algorithms are deterministic (e.g., FX,
SR, LASH, and LASH-TOR). Some of them optionally permit
distributed adaptive routing (e.g., UD, DFS, and MUD),
whereas others are adaptive by design (e.g., adaptive-trail
and minimal adaptive). However, current commercial net-
work technologies do not support adaptive routing. This is
mainly due to its higher implementation complexity (addi-
tional hardware support is often required) and its difficulties
to guarantee in-order packet delivery (costly reorder buffers
should be allocated at the NICs), which is required by many
applications. Therefore, we focus only on those routing
methods that are able to provide deterministic routing.

Recent work on routing of irregular topologies includes
minor modifications of the algorithms we have presented
above. For example, in [30], a variant of UD routing is
presented, and in [31], a general methodology encompass-
ing UD and LTURN is described. We have chosen to let UD
and LTURN represent these developments here. Regarding
efforts that specially target networks on chip, the develop-
ments most relevant to our work are the ACES approach
[32] and the ASPRA approach [33]. These do, however,
generate routing algorithms from the previous knowledge
of the communication graph of the application that runs on
the chip. Indeed, the topology is customized at design time,
and thus, the best set of paths are computed based on the
knowledge of the topology being designed. For this reason,
they do not fit into the general framework of this paper.

4 A ROUTING TAXONOMY

This section presents a taxonomy of all the deterministic
topology-agnostic routing algorithms, shown in Fig. 1. The
algorithms are separated by key objectives and required
resources; first, by whether they guarantee minimal routing,
then by their use of virtual channels, and finally by whether
the paths are derived from a spanning tree or not.

The taxonomy first classifies the routing algorithms by
whether or not they guarantee minimal routing. Only one of
the routing algorithms we consider, LASH, guarantees
minimal routing. While the others may well achieve
minimal routing for many topologies, it is not guaranteed
by design. LASH guarantees minimal routing only by
requiring an unbounded number of virtual channels.

The next classification of the routing algorithms is by
whether they need virtual channels or not. Notice that

virtual channel multiplexing can be applied to every
routing algorithm, but our distinction is made on whether
virtual channels are a requirement or not. In this sense, UD,
DFS, LTURN, FX, SR, and SMART do not require virtual
channels, while DL, TOR, LASH-TOR, MUD, and LASH
require at least two virtual channels. This distinction is
significant as some network technologies like Myrinet do
not support virtual channels. Notice as well that the use of
certain number vc of virtual channels for routing purposes
may reduce the QoS capabilities. However, it does not
prevent QoS from being provided because it is orthogonal
to routing. In this case, vc virtual channels should be
dedicated to each service class provided.

The next distinction is whether the number of required
virtual channels is bounded or not. Even those network
technologies that support virtual channels may not provide
very many virtual channels. Depending on network size and
topology, an unbounded approach may require more
virtual channels, and thus might not be suitable. Indeed,
even technologies that provide many virtual channels, such
as Infiniband, may not make them all available for just
routing; virtual channels are often reserved for providing
QoS, yielding only two or three effective virtual channels for
routing. Thus, MUD, DL, TOR, and LASH-TOR can always
be applied to a network with a limited set of virtual channels
(with the trade-off that they do not always guarantee
minimal paths, and that more virtual channels may provide
increased performance). LASH’s guarantee of minimal
routing comes at a cost of no bound on the number of
virtual channels that may be required.

The next characteristic used by the taxonomy is transi-
tions between virtual channels on a path. If all paths
generated by a routing algorithm lie within the same virtual
channel, this permits the use of more network technologies.
For instance, in InfiniBand, the selection logic of virtual
channels does not take into account the virtual channel used
at the previous switch; it only takes into account a packet
field fixed throughout the path (the service level field).
Thus, routing algorithms that require transitions between
virtual channels may generate routings incompatible with
Infiniband. The DL, TOR, and LASH-TOR algorithms
require the use of virtual channel transitions.

The final property used by the taxonomy is the use of a
spanning tree. UD, DFS, FX, LTURN, and MUD use a
spanning tree in order to compute their paths, permitting
very fast computation of routings. DL and TOR also use a
spanning tree, but only to determine where virtual channel
transitions must occur. On the other hand, SR, LASH-TOR,
and LASH do not use any spanning tree at all.

5 A FRAMEWORK FOR GENERIC ROUTING

This section unifies the routing algorithms within a frame-
work suitable for describing generic routing algorithms.
The purpose of this framework is to provide a context with
respect to how to derive the final set of paths from the initial
set of all network paths. This framework is outlined as a
sequence of functional and algorithm stages, as depicted in
Fig. 2. All the topology-agnostic routing methodologies can
be described based on how they approach the functional
stages shown. Moreover, the framework puts the routing

408 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

Fig. 1. Routing taxonomy.

taxonomy into perspective by reflecting the various design
options available when developing routing algorithms.

Fig. 2 consists of two parts. The upper part defines three
functional steps (FSi). Each step takes a set of paths and
produces a new (smaller) set, for instance, selecting a single
deterministic path among several candidate paths accord-
ing to some quality criterion, or providing deadlock
freedom by selecting a set of paths without cyclic
dependencies. Note that the initial set is the set of all
possible paths, both minimal and nonminimal, between
each source-destination pair.

The lower part of the figure sketches three alternative
ways of implementing the functional steps (rule-driven, path-
driven, and iteration-driven), defining three different cate-
gories of routing algorithms. Within each category, each of
the functional steps may be approached in various ways.
All of the analyzed algorithms fit into this framework, as
listed in Fig. 2.

Guaranteeing deadlock freedom and obtaining a good
traffic balance are the most important issues of generic
routing algorithms. These tasks can be managed at
different stages depending on whether virtual channels
are available or not and so forth. Fig. 2 illustrates how the
deadlock problem can be handled either in the first stage
(with rule-driven routings) or in the second stage (with
path-driven routings).

Though the framework is laid out as three main
sequential stages, some routing algorithms may integrate
two or more functional steps, or even repeat some of the
stages until a certain condition is met. This is, for example,
the case for SMART routing [20]. This type of algorithm is
referred to as iteration-driven routing. Below, we will
explore each functional step and introduce possible
approaches to their objective relative to the routing
algorithms surveyed in this paper.

5.1 Rule-Driven Algorithms

The first class of algorithms in the framework encourages
deadlock freedom in the first functional stage by imposing
routing rules in such a way that cyclic dependencies cannot

be formed. These rule-driven algorithms are UD, DFS,
LTURN, SR, MUD, and FX.

5.1.1 Providing Deadlock Freedom in Rule-Driven

Algorithms

Enforcing deadlock freedom through a simple rule on the
allowed paths is a compelling approach. These rules are
frequently based on a spanning tree of the network. Take,
for instance, up�=down�, first presented in connection with
Autonet [14] and later used in Myrinet [1]. After generating
a spanning tree, up directions are assigned to all links such
that any path following only links in the up direction ends
up at the root of the spanning tree. Routing is restricted so
that no packet can traverse a link in the up direction after
having traversed a link in the down direction; it is easy to
see that this prevents the occurrence of cyclic dependencies.
This technique has drawbacks; however, the root tends to
become a congested area and frequently nonminimal paths
must be used.

Several improvements to UD have been proposed. One
approach is to permit more turns (link-to-link transitions),
selecting carefully to avoid introducing cyclic dependen-
cies, as proposed by Koibuchi et al. [34]. Their method,
called L-turn routing (LTURN), relies on building a left-
right tree (directed graph), which extends the conventional
up-down tree by assigning directions to horizontal links
(links between nodes at the same level in the breadth-first
search). A second approach, proposed by Sancho and
Robles, computes the spanning tree based on a depth-first
search (called DFS), instead of breath-first search, yielding
fewer down-up restrictions [35]. By carefully selecting the
order of children to explore in the search, through the use of
some heuristics, more minimal paths are made available. In
addition, the algorithm considers all possible root nodes
and selects the best one based on behavioral metrics in
order to improve traffic balance. Fig. 3 shows the graphs
obtained by LTURN and DFS for a 2D mesh topology
whose nodes are consecutively numbered by rows (left to
right and top to bottom).

FLICH ET AL.: A SURVEY AND EVALUATION OF TOPOLOGY-AGNOSTIC DETERMINISTIC ROUTING ALGORITHMS 409

Fig. 2. A framework for deriving (describing) generic routing functionality.

Segment-Based Routing algorithm [17] is another routing
algorithm that eliminates deadlocks as its first step. The
idea behind SR is to form a spanning tree by dividing the
topology into subnets and subnets into segments. It finds a
first segment that forms a complete cycle, then it continues
looking for new segments or extensions to that cycle until it
covers the entire topology. Within each segment, a bidirec-
tional (or even two unidirectional) routing restriction is
introduced. The result is to break each cycle independently
while maintaining connectivity among the nodes. SR allows
great flexibility when placing routing restrictions and
increments fault tolerance capabilities for the topology, as
each segment is independent.

A significant difficulty with UD-based routings is that
breaking cycles at the same node in both directions can push
traffic away from that node and therefore onto other nodes.
This problem tends to occur on regular topologies, where
UD-based routings introduce an asymmetry leading to
traffic imbalance. The FX routing algorithm [39] attempts to
address this problem by formulating two rules for breaking
cyclic dependencies, one for each direction, on every four-
switch cycle in the network. A third rule is also devised
removing even more dependencies, in order to decrease the
maximum number of paths crossing each channel.

Virtual channels permit the traffic imbalance and
nonminimal path problems of spanning-tree-based routings
to be attacked further. Simply put, each virtual channel can
be assigned a distinct underlying UD-based routing, with
separate root nodes, and then each source-destination pair
can be assigned to virtual layers to obtain the shortest path.
This approach, which we refer to as Multiple UD, was
proposed in a number of papers [24], [25], [26].

5.1.2 Selecting Paths in Rule-Driven Algorithms

Once the rules are in place to ensure deadlock freedom, the
second functional step must select a single best path

between each source-destination pair to obtain a determi-
nistic routing with good traffic balance. Different polices
can be adopted for selecting a single best path. In this
section, we will discuss the selection strategies used by the
rule-driven algorithms. These same selection policies can
be applied to many routing algorithms, and have shown to
be effective [34].

The simplest path selection approach simply uses
random or round-robin selections. These approaches have
been used with classical UD [14] and LTURN routings.
However, random and round-robin selection may not
achieve sufficient traffic balance. The DFS algorithm
advocates a more sophisticated traffic balancing algorithm
[35] by repetitively removing routing paths from the link
having the largest number of crossing paths, so long as the
affected source-destination pairs have alternative paths.
This procedure terminates when the number of paths
between each pair of nodes is reduced to 1.

A similar approach was proposed in [36]. All the possible
minimal paths are computed for every source-destination
pair, after which only a single path is selected for every pair
of nodes, attempting to minimize the deviation in the
number of paths crossing each link (we will refer to it as
link weight).

Traffic balance comes in two flavors for the MUD
algorithms [25], [24], [26]. First, the selection of multiple
roots should be chosen carefully to alleviate the hot-spot
problem of a single root. In [25], [24], the authors choose
the root of a new layer in such a way that it maximizes
the minimal distance between the new root and any of the
existing roots. Second, since each of the separate UD
structures in MUD may offer several candidate paths
between each node pair, a single best deterministic path
must be selected; any of the traffic balancing approaches
discussed so far can be used.

5.2 Path-Driven Algorithms

New interconnect technologies, such as InfiniBand, provide
a certain number of virtual channels. This has led to new
routing algorithms that are able to guarantee minimal-path
routing while requiring a modest number of virtual
channels. These methods fall into the category called path-
driven algorithms, which we describe below.

5.2.1 Providing Paths in Path-Driven Algorithms

Because deadlock freedom can be guaranteed more easily
with virtual channels than without, the first step of path-
driven algorithms is to select a set of paths with minimal
length and good traffic balance. This set may be composed
of a single path for each source-destination pair, or multiple
paths, depending on the particular algorithm.

The TOR routing algorithm, as proposed by Sancho et al.,
guarantees minimal routing requiring only a modest
number of virtual channels [27]. This algorithm requires
all minimal paths available when executing the second
functional step, which we will explain below, so the first
functional step for TOR simply computes all possible
minimal paths for the next step. A similar approach is
taken by Koibuchi et al. in [28] in a method referred to as
DL. Unlike TOR, the underlying routing algorithm used by
DL can be different from UD (e.g., LTURN).

410 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

Fig. 3. Graphs obtained by L-TURN and DFS for a 3� 3 mesh.

The LASH [22] and LASH-TOR [29] algorithms take a
different approach, forwarding only a single path for each
source-destination pair to the succeeding deadlock freedom
step. Since just one single path will be passed to the next step,
the quality of this path has to be assessed; traffic balance
should be considered at this point. LASH and LASH-TOR
manage this issue by first computing all the minimal paths,
similar to the TOR algorithm, and then selecting among the
candidates. The versions of LASH and LASH-TOR evaluated
in this paper deploy random selection. However, other
selection policies can of course be applied.

5.2.2 Avoiding Deadlocks in Path-Driven Algorithms

The second functional step in path-driven algorithms
focuses on obtaining a deadlock-free set of paths through
the use of virtual channels. The algorithms use a variety of
techniques to accomplish this.

The TOR algorithm relies on an UD spanning tree of
the network and a set of virtual channels to break cyclic
path dependencies. Wherever one of the input paths
would require a down to up transition in the UD spanning
tree, TOR introduces a virtual channel transition to a
higher numbered virtual layer (where the virtual layers
are numbered from 1 to n). Every packet inserted into the
network will start in layer 1, and it will move to the next
virtual layer every time a forbidden transition is encoun-
tered. Notice that the path crossing the largest number of
forbidden transitions will determine the number of virtual
layers required to guarantee minimal routing.

The TOR algorithm considers all minimal paths between
each source-destination pair, selecting the one with the
fewest forbidden transitions, in order to minimize the
number of virtual layers required. In practice, the number
of virtual layers is modest [27]. Notice that after this selection
process, some pairs of nodes may still have more than one
single path (all of them being deadlock free). To generate a
deterministic, balanced routing, TOR adopts the generic DFS
traffic balancing algorithm to select among these paths.

The DL algorithm is similar to TOR, changing for-
bidden transitions into virtual layer transitions. DL uses a
bounded number of virtual channels, however, by follow-
ing the original underlying routing restrictions in the last
virtual layer.

LASH takes a different approach for guaranteeing
deadlock freedom [22], [23]. The idea behind LASH is that
each virtual layer in the network has a set of source-
destination pairs assigned to it, in such a way that all
source-destination pairs are assigned to exactly one virtual
layer. Thus, all packets assigned to a single virtual layer
stay in that virtual layer until they reach their destination.
LASH assigns paths to virtual layers one by one, always
assigning a path to the first virtual layer it can be added to
such that no cyclic dependencies would be introduced. This
may require the introduction of another virtual layer. Since
no path can transit virtual layers, and since each virtual
layer is deadlock free, the entire routing is deadlock free.
The need for virtual layers in order to guarantee minimal
routing follows a logarithmic curve as the size of the
network grows [22]. However, LASH demands more virtual
layers than the TOR algorithm to ensure minimal routing.

The LASH-TOR methodology is an extension of LASH
that reduces the number of required virtual layers by

allowing transitions between the layers. It is a hybrid
between the LASH and TOR algorithms [29]. Like LASH,
LASH-TOR assigns source-destination pairs (paths) onto
virtual layers, by ensuring that the path under assignment
does not introduce cycles. However, as in TOR, a path can
be split into several subpaths, each assigned to different
virtual layers. A path will be split at the point (switch)
where the next dependency associated with this path would
introduce a cycle in the dependency graph of the current
virtual layer. A transition will then be made to the next
virtual layer, where the path continues until it is completely
assigned or else has to make a transition to the following
virtual layer, and so forth.

LASH-TOR requires significantly fewer virtual layers
than LASH as the network size grows, and is comparable to
the TOR methodology [29]. On the other hand, unlike
LASH, LASH-TOR introduces transitions between layers
that can serve to spread congestion from one virtual layer
into another. Both LASH and LASH-TOR conduct physical
traffic balance in the first functional step, while TOR
performs traffic balance last.

5.2.3 Balancing Virtual Channels in Path-Driven

Algorithms

Virtual channels are implemented with a set of buffers that
are assigned to each virtual channel. It is important to
balance the use of these resources much like physical traffic
balancing balances the link utilization. Each of the path-
driven algorithms described assigns virtual layers greedily,
filling the first virtual layer with as many paths or subpaths
as possible, and only using subsequent layers as necessary.
This virtual layer imbalance must be corrected with a third
functional step.

For the TOR and LASH-TOR algorithms, most of the
paths assigned to the first virtual layer are complete paths.
One example 32-switch network assigns about 75 percent of
the total paths the first layer [27]. The TOR algorithm
addresses this imbalance by moving completely mapped
first-layer paths to the other virtual layers until a balancing
criterion is met. Since those candidate paths do not
introduce any forbidden down-up turns (since each virtual
layer uses the same UD tree), deadlock freedom continues
to be guaranteed. LASH-TOR approaches the virtual
balancing task similarly.

A slightly different selection policy can also be used.
Instead of selecting the virtual channel with the largest
number of paths in the procedure above, and removing
paths from this channel, one alternative is to pick the
virtual channel having the smallest number of crossing
paths and let those routing paths become fixed [34],
removing alternative paths for their corresponding
source-destination pairs. The motivation behind this strat-
egy is to avoid virtual channels with low utilization.
However, this policy has shown to be less effective than
DFS traffic balancing, which focuses on avoiding having
heavily congested links because, as shown in [35], they
noticeably penalize network throughput.

5.3 Iteration-Driven Algorithms

The iteration-driven algorithms integrate the traffic balancing
and deadlock avoidance functional steps in an attempt to
obtain good performance characteristics (Fig. 2), unlike the

FLICH ET AL.: A SURVEY AND EVALUATION OF TOPOLOGY-AGNOSTIC DETERMINISTIC ROUTING ALGORITHMS 411

modular approach used in the previously discussed
algorithms. The algorithm falling into the iteration-driven
category is SMART [20] routing. This routing algorithm
does not require the use of virtual channels.

The idea behind SMART routing is to break cyclic
dependencies at strategic points (that is, performing cuts in
the channel dependency graph). For each cycle in the
dependency graph, the SMART algorithm will break
the dependency that minimizes the average path length of
the topology. The procedure terminates when the channel
dependency graph has no cycles. Each time a cycle is found,
all possible cuts are considered and the average path length
after that cut is computed. Because of the removal of channel
dependencies, one cannot calculate minimal paths directly,
since the existence of a path from i to j and another from j to
k does not imply a path from i to k via j. Therefore, SMART
routing must use breadth-first search from every source to
all destinations in order to compute this path length.

This procedure is not guaranteed to yield a deadlock-
free routing function because one may have carried out
poor selection of previous cuts, such that one later possibly
encounters a cycle where breaking any dependency will
cause the routing function to be disconnected. In such
cases, SMART must be restarted in a tree mode by which a
spanning tree structure of the topology is computed (seen
as a “backbone” network), where the connecting links in
the tree are marked as essential and considered nonbreak-
able. The potential restart of SMART routing is also
captured by Fig. 2, shown as the backward arrow from
the functional stage FS2 to the initial stage. SMART routing
is rather complex, where the runtime is bounded by n9 (n is
the number of switches). Typically, the runtime is bounded
by n4 [20].

5.4 Computing Complexity of the Routing
Algorithms

All routing algorithms have at least a Oðn2Þ complexity, n
being the number of switches in the network, as they have
to compute all the paths for every source-destination pair.
Path-driven routing algorithms have to search for cycles,
increasing the computational complexity by an additional n.
Depending on the strategy used to balance traffic, comput-
ing complexity may increase even more. If random path
selection is used, their complexity remains the same (Oðn2Þ
or Oðn3Þ). However, with more sophisticated load-balan-
cing schemes, the computing complexity may strongly
increase. For instance, DFS balances traffic by computing
the spanning tree considering all the network nodes as
possible roots of the tree, selecting as the definitive root the
one that gives the lowest average number of paths per link.

Therefore, DFS increases complexity by another factor of n.
More complex schemes, as the heuristic used in SMART,
may strongly increase the computing complexity. Table 1
shows the computing complexity of each of the routing
algorithms analyzed in this paper, as stated in the original
papers describing them.

6 PERFORMANCE EVALUATION

This section presents a performance evaluation of all the
routing algorithms using the same scenarios and evaluation
environment. We present both an analysis of path lengths
and traffic balance, and a simulation-driven empirical
evaluation.

6.1 Simulation Environment

Our simulator models switch-based networks with point-
to-point links. Each switch uses virtual cut-through switch-
ing [37] and credit-based flow control. A full crossbar
configuration and a round-robin arbitration scheme are
used. The crossbar arbiter has one queue per output port,
and buffers of 1 KB at both the input and output sides. It is
based on FIFO request queues, and it is able to transmit
one byte per connection, per cycle. Routing decisions are
made at every switch by accessing the local routing table.
This table maps destinations to output ports, with one
mapping for each possible destination. We use a constant
packet size of 32 bytes, and a credit size of 32 bytes. The
routing time at each switch is assumed to be 100 ns (taken
from Myrinet). This includes the time to access the routing
table, the crossbar arbitration time, and the time to set up
the crossbar connections.

We also model the fly time, which depends on the link
length and the propagation delay of the cable. We model
12 m in length copper cables with a propagation delay of
5 ns/m, leading to 60 ns of fly time.2 Link bandwidth is
assumed to be 1 Gbps. The clock cycle is adjusted to the
time required to transfer one byte (10 ns at 1 Gbps with
8/10 coding).

We have evaluated 2D meshes and tori networks of sizes
4� 4, 8� 4, 8� 8, and 16� 8. Each switch has attached one
processing node. Additionally, we have modeled 240
different topologies derived from torus and meshes with 1,
3, and 5 percent of randomly injected link failures. Notice
that the simulated 2D topologies require the use of low-radix
switches. The availability of high-radix switches would
allow to attach more processing nodes to each switch, thus

412 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

2. Fly time was obtained from the maximum cable length in an example
system composed of 128 switches located in four racks, obtaining that using
a 12 m Myrinet cable length was enough to comfortably build the network.

TABLE 1
Computing Complexity of the Routing Algorithms

stressing the network more. It also allows meshes or tori with
a higher dimensionality, but these topologies are not used in
practice. Alternatively, high-radix switches allow increases
in network connectivity (for instance, by using express
channels [38]), therefore decreasing the average routing
distance (ARD) and reducing the differences among the
routing algorithms analyzed (see Section 6.4). We have not
evaluated fat trees as they have many alternative paths by
design. Therefore, it is somewhat easy to deal with faults in
fat trees without the need of using a topology-agnostic
routing. Moreover, the application of some of the analyzed
routing algorithms, in particular those based on a spanning
tree, would be equivalent to the up/down routing com-
monly used in fat trees. As a consequence, it is expected that
their behaviors are very similar.

For each simulation run, we assume the same constant
packet rate for each end node. We evaluate the full range of
loads, from low load to saturation, for uniform, bit-reversal,
and hot-spot traffic patterns. Each simulation is run until a
given number of messages (500,000) have been delivered to
the end nodes, ignoring the first 50,000 received ones
(warm-up period). On the other hand, we account for the
variability in simulation results due to the simulation tool
by executing the same simulation several times for each
network configuration using different random seeds and
calculating the 95 percent confidence interval for the results,
which are not shown in the plots because the size of error
bars was negligible. Regarding the variability due to the
network irregularity (induced through fault injection), we
have simulated, for each number of faults injected, 10
random fault configurations.

The evaluation of the routing algorithms will be
performed using the path balancing mechanism originally
suggested by each routing scheme. We will not separately
evaluate the influence of the additional path selection
mechanisms, but the routing algorithms as a whole.
However, there are some cases (DFS, SR, UD, LTURN, DL,
and FX, for networks with 128 nodes) where the paths have
been calculated using random path selection. In these cases,
we will label those routings with an asterisk and in bold face.

6.2 Average Routing Distance and Link Weight
Analysis

This section presents an analysis of all the topology-agnostic
routing methods considered in this paper. In particular, we
are interested in two main characteristics of each routing.
The first one is their ability to achieve shortest path for all
(or most) of the source-destination pairs. For this, we will
collect the average routing distance achieved by each
routing algorithm. ARD is computed as the sum of all path
lengths (measured as the number of visited switches)
divided by the number of paths.3 The second issue we are
interested on is their ability to achieve a good set of paths in
terms of traffic balance. For this, we will analyze the link
weight obtained by each routing algorithm. The weight of a
link is defined as the number of paths that cross that link. In
this study, we have differentiated each direction of the link.
In order to get representative numbers, we obtain the
average (Avg) link weight and its standard deviation (St.D)
for each routing algorithm.

We will group the routing algorithms in terms of
whether virtual channels are required or not. In a first set,
we group the routing algorithms that do not use any virtual
channel (UD, DFS, LTURN, SMART, FX, and SR), and in the
second set, we group the routing algorithms that require
virtual channels (MUD, DL-UD, DL-LTURN,4 LASH,
LASH-TOR, and TOR). In this case, we will bound the
number of virtual channels to two and three. For compar-
ison purposes, when analyzing regular networks without
faults, we will also show results for the DOR routing. When
evaluating DOR in mesh networks, we will use one and two
virtual channels. For torus networks, two virtual channels
will be used to avoid cycles along rings.

Table 2 shows the average routing distance for the
algorithms requiring no virtual channels in the different
topologies analyzed. For meshes, ARD for all algorithms is
the same and the minimum achievable, except for the
LTURN, where ARD is slightly higher for the largest
topology. However, for torus networks, despite the fact that
the achieved ARD values are lower than that achieved in
meshes thanks to the use of wrap-around links, the ARD
values achieved by most of the algorithms are higher than
the minimum achievable (indicated by DOR routing). As
can be observed, all the algorithms increase the average
path length as the network becomes larger. In fact, none of
the routing algorithms is able to achieve shortest paths for
the 8� 4 torus and upward. However, one of the best
routing methods in ARD terms is the FX routing, with a
very small increase in the ARD value. Notice that DOR
routing achieves the minimum ARD as it uses two virtual
channels to avoid cycles along each ring. However, the rest
of algorithms do not use virtual channels at all; thus, in
order to avoid deadlocks, some paths must be nonminimal.

Table 3 shows the average and standard deviation of link
weights for each routing algorithm with no virtual channel
requirements For meshes, as shown, link weights are not so
similar. Although UD achieves the highest standard
deviation, in some cases, DFS and LTURN algorithms
attain the highest number of paths crossing a link (max
values not shown but reflected in high St.D.). For UD and
LTURN concerning the 16� 8 mesh, the maximum link
weight is high. In the case of DFS, LTURN, and SR, the
original traffic balancing algorithm could not be used due to

FLICH ET AL.: A SURVEY AND EVALUATION OF TOPOLOGY-AGNOSTIC DETERMINISTIC ROUTING ALGORITHMS 413

3. In a system with N nodes, there are N2 paths. For paths with the same
source and destination, the path length is 1.

4. DL-LTURN is the DL routing when using LTURN as the underlying
algorithm to set the virtual channel transitions. The same applies to DL-UD.

TABLE 2
Average Routing Distance (Routing Algorithms

with No Virtual Channel Requirements)

DOR routing uses two VCs in tori to avoid cycles.

its extremely large computation time; thus, a random path
selection was performed. Although the random path
selection is also performed in other routing algorithms
(i.e., LASH, LASH-TOR, and TOR), in the case of UD and
LTURN, its impact is quite severe. The reason is that the
bad set of paths UD and LTURN are using regardless of the
path selection algorithm, because they are based on a
spanning tree. On the other hand, the minimum standard
deviation is achieved by DOR and FX. In fact, they present
the same values as the use of unidirectional restrictions
allows the FX algorithm to achieve the same set of paths
that DOR uses in regular meshes [39]. That is, the FX
algorithm resembles the DOR algorithm for mesh topolo-
gies. However, for most cases, SR, DFS, SMART, and FX
present roughly the same results, thus achieving a good
traffic balance in mesh networks.

For torus networks, we also observe here the DOR
mentioned capability to obtain the minimum ARD (not
shown but reflected in St.D.) and minimum standard
deviation in nearly all cases (remember DOR is using two
virtual channels to avoid cycles). However, SR, SMART,
LTURN, DFS, and FX continue to exhibit on average an
acceptable behavior, while UD achieves the worst figures in
all cases due to its well known tendency to concentrate
traffic around the root of the tree. It is also interesting to
note that SMART and FX obtain perfect and desired traffic
balancing for the torus 4� 4 topology.

Now, let us turn our attention to the routing algorithms
requiring several virtual channels. Table 5 shows the results
for routing algorithms using two virtual channels (also for
three VCs for LASH in torus networks). For fault-free meshes,
all the algorithms achieve the minimum possible ARD. This
was expected due to the use of virtual channels and their
ability to obtain shortest paths for every source-destination

pair. Also, all the routing algorithms achieve the minimum
ARD for a 4� 4 torus. However, for larger torus networks,
MUD and LASH routings experience higher ARD values.
This is due to the fact that both algorithms require more than
two virtual channels to achieve minimal paths for every
source-destination pair. In the case of MUD, the computation
of two different up�=down� trees is not enough to obtain a
minimal path for every pair of nodes. For LASH, instead, by
using a bounded number of separate virtual layers, some
minimal paths could lead to deadlock, thus requiring a
separate layer implementing up�=down� paths (thus, some
paths being nonminimal). For LASH with three VCs (shown
in table), the ARD is decreased. For 8� 4 torus, the ARD
achieved with three VCs is the minimum. However, as
network size increases, even with three VCs, LASH does not
guarantee minimal routing. Also, it is interesting to note that
TOR, LASH-TOR, and DL (either using UD or LTURN as
underlying routing algorithms) algorithms are able to get
minimal paths for every source-destination pair, even when
using only two virtual channels. Remember that these
algorithms allow the transition of virtual channels at the
packet level. On the contrary, neither LASH nor MUD allows
virtual channel transitions.

Table 4 shows that TOR, LASH-TOR, and DL achieve the
best traffic balance with just two VCs. Moreover, the use of a
third VC does not contribute to improve the traffic balance.
Note that, except in DL, this is achieved regardless of the
traffic balancing algorithm applied. In the case of DL, if a
random path selection is used in DL-UD�; and DL-LTURN�,
instead of the original traffic balancing scheme, a great
impact on traffic balance is observed. As it can be seen in the
table, DL-UD� and DL-LTURN� have some links crossed by
a very large number of paths, increasing the standard
deviation of the link weight. As it can be also observed,

414 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

TABLE 3
Analytical Results (Routing Algorithms with No Virtual Channel Requirements)

Mesh and torus networks.

TABLE 4
Analytical Results (Routing Algorithms with Virtual Channel Requirements)

Two/three VCs per physical link. Mesh and torus networks.

LASH routing achieves the highest standard deviation in
almost all the torus networks. This is due to the random path
selection policies used and, in some degree, to the need of an
additional virtual channel. This fact can be observed for
torus networks. With three VCs, maximum link weight is
decreased significantly (not shown but reflected in St.D.) for
8� 4 and 8� 8 torus networks. However, for a 16� 8 torus
network, a fourth virtual channel would be required.
Finally, for MUD, TOR, and LASH-TOR, the ARD value is
low regardless of the network topology, size, and number of
virtual channels. To be added here is that LASH-TOR (in this
evaluation) deploys a random path selection, contrary to the
other analyzed methods, which use more sophisticated
algorithms for path selection.

As a summary of the analytical evaluation, we can
conclude the following. First, using virtual channels is
necessary to achieve minimal routing for every pair of
nodes in torus networks. However, in meshes, almost all the
routing algorithms do achieve minimal routing. Also, when
using two virtual channels, allowing transitions between
them is necessary to achieve minimal paths. Second, tree-
based routings with no virtual channels (UD, DFS)
experience higher link weights, although the most notice-
able cases occur in torus networks. Finally, the path
balancing algorithm is key to reduce the link weight and
obtain good performance.

6.3 Performance Evaluation

We expect those routing algorithms that generate good
analytical results to also perform well in simulations (and
real life). Indeed, those routing algorithms with a low
standard deviation of link weights must achieve a good
performance under uniform traffic. However, they may
behave differently in other traffic situations. We will also
explore how they behave in regular networks with some
failures. In most cases, we plot the average packet latency5

versus the average accepted traffic6 measured in bytes/ns/
switch. We mainly use uniform and bit-reversal7 traffic
patterns. In addition, hot-spot traffic is eventually explored

for regular networks. In this case, 5 percent of messages are
directed to switch 0 and the remaining ones uniformly
distributed. In all the cases, packet size is 32 bytes.

6.4 Regular Topologies without Failures

Fig. 4 shows the performance results for all the routing
algorithms requiring no virtual channels at all (DOR,
LTURN, UD, FX, DFS, SMART, and SR) for a uniform
traffic pattern. The results show that the FX algorithm
always performs the best in meshes but not for tori. FX is
equivalent to the DOR algorithm in meshes as both of them
achieve roughly the same results. However, in torus
networks, the FX algorithm experiences worse behavior
with respect to DOR. This is because DOR uses two virtual
channels in order to avoid cycles whereas FX uses no virtual
channels, requiring longer paths.

Comparing DOR and FX in meshes, there is no clear
winner. It seems that SR achieves better behavior but in
larger mesh networks, DFS beats SR. Anyway, in general
terms, we can observe that SR and SMART tend to perform
better than UD, DFS, and LTURN in meshes. One important
observation is the degradation experienced by LTURN for
16� 8 mesh networks. The reason is that its path selection
algorithm could not be applied in such a network, due to its
high computation complexity. Thus, this phase is crucial for
LTURN to achieve acceptable performance levels.

In torus networks, we can see that the tree-based routing
algorithms (UD and DFS) experience low performance
numbers whereas the intensive path computation algo-
rithms (SMART and FX) achieve very good figures, close to
the DOR performance. Fig. 5 shows results for routing
algorithms requiring no virtual channels for the bit-reversal
traffic pattern. From the figures, we see a totally different
performance behavior. In particular, for meshes, SR routing
beats all the routing algorithms by far for 8� 4 and 8� 8
meshes. However, SR is beaten by SMART for 16� 8
meshes. In this case, SR performed a random path balancing
algorithm as its original path balancing algorithm exhibited
a high computation complexity. For the remaining algo-
rithms in meshes, all of them exhibit similar performance
levels, including DOR.

For tori, we can see that SMART is the winner for 8� 8
and 16� 8, but SR wins when it comes to the 8� 4
topology. The reason for the lower performance of SR in
larger torus networks is that its segmentation process has
been optimized for meshes. Anyway, its performance levels
are still acceptable. Also, we can see the varying perfor-
mance of FX and DFS. For DFS, its path selection algorithm
largely impacts the final performance.

Finally, Fig. 6 shows results for hot-spot traffic. In such
scenario, most of the routing algorithms collapse their
performance plot around the same region. Indeed, there is
no clear winner. The exception is for UD routing which
achieves half the performance in torus networks. The
behavior for this kind of traffic is related to the bottleneck
introduced by the traffic. The network saturates at lower
levels due to the traffic and not due to the different
performance levels of the algorithms.

For the routing methodologies with virtual channel
requirements, Fig. 7 shows the results for uniform traffic.
As it can be seen, differences among routing algorithms

FLICH ET AL.: A SURVEY AND EVALUATION OF TOPOLOGY-AGNOSTIC DETERMINISTIC ROUTING ALGORITHMS 415

5. Latency is the elapsed time between the injection of a packet at the
source host until it is delivered at the destination host.

6. Accepted traffic is the amount of information delivered per time unit.
7. In bit-reversal traffic, the node with binary coordinates

an�1; an�2; . . . ; a1; a0 communicates with the node a0; a1; . . . ; an�2; an�1.

TABLE 5
Average Routing Distance (Routing Algorithms

with Virtual Channel Requirements)

Two VCs per physical channel.

increase as network size become larger. In particular, the
routings with lower performance are LASH and MUD. In
both cases, as the network becomes larger, they have
problems in guaranteeing shortest paths. On the contrary,
the packet-based transition routings (TOR, LASH-TOR, and

DL) achieve much better performance results. Indeed, TOR
is the one with very remarkable results for all the
topologies. On the other hand, DL-UD and DL-LTURN
have performance problems in 16� 8 meshes and tori due
to its path balancing algorithm. This underlines the

416 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

Fig. 4. Average packet latency versus accepted traffic. One VC per physical channel. Packet length is 32 bytes. Uniform traffic pattern.

Fig. 5. Average packet latency versus accepted traffic. One VC per physical channel. Packet length is 32 bytes. Bit-reversal distribution of packet
destinations.

Fig. 6. Average packet latency versus accepted traffic. One VC per physical channel. Packet length is 32 bytes. Hot-spot distribution of packet
destinations.

importance of applying a good path selection algorithm
(recall that also LASH-TOR suffers from not having
implemented a proper path selection algorithm). For bit-
reversal traffic pattern (Fig. 8), slight differences appear.
However, in most of the topologies, the packet-based
transition algorithms (TOR, DL, and LASH-TOR) usually
perform better. This is the case of TOR, which achieves the
highest performance for the 8� 8 mesh, 8� 4 torus, and
8� 8 torus topologies.

Comparing the performance evaluation results with that
obtained by analyzing the link weight and ARD metrics
(Section 6.2), we observe that the lower the standard
deviation of link weight, the higher the performance
obtained under uniform traffic. However, this relation does
not hold when traffic is nonuniform. So, for routing
algorithms that use one VC, those that achieve higher
throughput (DOR, FX, and SMART) are those that exhibit

the lowest values for the standard deviation of the link
weight, both for meshes and tori. In general, these algorithms
are also the same as that obtaining the lowest value for ARD.
Indeed, this metric determines the latency for low and
medium traffic rates (not appreciated clearly in plots).
Similar conclusions are obtained for routing algorithms that
require virtual channels. In particular, TOR and DL achieve
higher throughput and at the same time exhibit the lowest
values for the standard deviation of the link weight.

Table 6 summarizes the throughput (maximum accepted
traffic rate) achieved by each routing algorithm for different
topologies and network sizes under uniform traffic.

6.5 Regular Topologies with Failures

In the previous section, we have evaluated the perfor-
mance of the topology-agnostic routings in regular
topologies. In these networks, the use of topology-agnostic

FLICH ET AL.: A SURVEY AND EVALUATION OF TOPOLOGY-AGNOSTIC DETERMINISTIC ROUTING ALGORITHMS 417

Fig. 7. Average packet latency versus accepted traffic. Two VCs per physical channel. Packet length is 32 bytes. Uniform traffic pattern.

Fig. 8. Average packet latency versus accepted traffic. Two VCs per physical channel. Packet length is 32 bytes. Bit-reversal traffic pattern.

routings is not a requirement since there are other
specialized routings (e.g., DOR) that achieve good perfor-
mance. The main motivation for using topology-agnostic
routings are those cases where regular networks experi-
ence some failures. In this section, we evaluate the routing
algorithms in such a scenario.

We evaluate some topologies derived from the previous
experiments. For each topology, we inject a certain number
of randomly generated link failures. In particular, we will
analyze topologies with 1, 3, and 5 percent of link failures,
rounding up the number of failures (e.g., in a 4� 4 network,
we set one, two, and three link failures for each percentage).
In order to get results independent of the failure location,
we evaluate 10 different topologies for each case. To
simplify the plotting of results, we will show results using
Kiviat diagrams, showing the relative throughput achieved
by each routing (the relative throughput will be computed
as the percentage of achieved throughput relative to the
maximum one) for each topology.

Fig. 9 shows the normalized throughput for the routing
algorithms with no virtual channel requirements under
uniform traffic. The first thing we can observe is the
remarkable good results achieved by SMART. In most
topologies, and regardless of the number of failures,
SMART achieves roughly the maximum throughput. Only
for 16� 8 networks, it loses some ground. The reason again
is its very good traffic balancing algorithm. When fully
deployed (up to 8� 8 networks), it allows achieving
maximum throughput with uniform traffic. For larger
networks (16� 8), SMART is beaten by LTURN. However,
LTURN does not behave as good for smaller networks.
Also, it is noticeable the progressive degradation of tree-
based routing algorithms (MUD, DFS) as network size
increases. The same happens with FX (that was a good
candidate for regular networks but no longer for irregular
networks). Finally, SR also experiences both good and bad
performance levels. For small networks, it achieves in most
cases maximum performance, whereas in larger networks

418 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

TABLE 6
Effectiveness of Each Routing Algorithm in Terms of Maximum Accepted

Traffic Rate for Different Topologies and Network Sizes

The considered traffic rates are relative to that achieved by the routing algorithm with the highest throughput. Empty cells mean that all routing
algorithms are effective for low traffic rates in 8� 4 and 8� 8 meshes.

Fig. 9. Normalized throughput for irregular topologies. For each topology, 10 random topologies analyzed. One VC. Uniform traffic pattern.

ð16� 8Þ, it achieves lower results (due to its impossibility to
apply its traffic balance algorithm).

For bit-reversal traffic (shown in Fig. 10), we can observe
similar results, but there is not a clear winner. Depending
on network size and the percentage of link failures (related
to the degree of irregularity), some routing algorithms
behave better. This is the case for SR in 4� 4 with 1 percent
failures and in 8� 8 with 1, 3, and 5 percent link failures
and for LTURN in 16� 8 networks with any percentage of
link failures. For tori networks with failures, similar results
were obtained for uniform and bit-reversal traffic. How-
ever, they are not shown due to lack of space.

Finally, let us focus our attention on the routing
algorithms with virtual channel requirements (Fig. 11)
under uniform traffic. In this case, more differences are
observed. First, transition packet-based routings (DL, TOR,
and LASH-TOR) are the clear winners for any topology. In
small- and medium-sized networks, DL achieves the high-
est performance. This is due to its traffic balancing
algorithm. Indeed, for the 16� 8 topologies, it looses
ground in benefit of TOR. Anyway, TOR routing achieves
very acceptable performance levels for any topology.
Regarding LASH-TOR, it exhibits varying results (mainly
because it here uses random paths selection), but otherwise
tending to achieve higher performance for larger networks.
On the other hand, LASH experiences very low perfor-
mance levels. This is because of its random traffic balancing
algorithm and its need of more virtual channels in order to
guarantee minimal routing. For MUD, it achieves accep-
table levels of performance but it is not able to achieve the
highest performance for any topology. For bit-reversal

traffic patterns and for torus networks with link failures,
similar results were obtained (not shown).

As a summary of the performance evaluation, we can
obtain the following conclusions. First, when not using
virtual channels, the SMART algorithm is the one that
achieves the highest performance in most of the topologies.
Remember, though, the high computational complexity of
this routing algorithm. When using two virtual channels,
the packet-transition-based routing algorithms (TOR,
LASH-TOR, and DL) are the ones that achieve the highest
performance. Thus, allowing transition among virtual
channels per-packet basis is also significant, as it allows
minimal paths. Also, the traffic balance algorithm is key to
allow high performance.

6.6 Impact of Path Selection

One thing that is hard to measure and control is the effect of
path selection. Because path selection for the different
methods works under different constraints, it is impossible
to devise a common path selection algorithm for all
methods. Ideally, we should have compared all methods
using the best possible path selection algorithm for that
particular method, but clearly the combinatorial explosion
of all possible strategies disallows us from following such
an approach. On the other hand, it is clear from our results
that the strategy for path selection is a very important factor
for the end performance of the methods. For example, in the
case of a fault-free mesh, we can make all path-driven
methods be equal to DOR (by choosing the DOR paths).

Let a configuration be a set of paths (with transitions
when applicable) from every source to every destination
(minimal or nonminimal). Then, the end result of any

FLICH ET AL.: A SURVEY AND EVALUATION OF TOPOLOGY-AGNOSTIC DETERMINISTIC ROUTING ALGORITHMS 419

Fig. 10. Normalized throughput for irregular topologies. For each topology, 10 random topologies analyzed. 1 VL. Bit-reversal traffic pattern.

routing method will be a configuration. It is then clear that
the routing method that provides the best configuration is
the one that will achieve the best overall performance. For
methods with only one virtual channel, this will be the
method that imposes the fewest and most flexible routing
restrictions. It is well known that LTURN introduces few
routing restrictions, and that SR, FX, and SMART introduce
the most flexible routing restrictions of the methods that
only require one virtual channel, so in this case, this is
compatible with our simulation results.

For the methods that require more than one virtual
channel, we make the following observations. First, the set of
configurations that would be allowed in DL-UD routing is
equal to the set that would be allowed in TOR. Whenever
our results are different for these two methods, this is due to
different path selection, not the routing method itself.
Regarding the relationship between TOR, DL, and LASH-
TOR, recall that they differ only in where transitions must be
carried out in order to avoid deadlock. The more transitions
they require, the less paths will be minimal and the more
dependencies will be introduced between the layers. TOR
and DL require a transition when the path violates a rule-
driven routing (UD or LTURN), and they do this regardless
of whether the current path could actually generate a
deadlock. LASH-TOR requires transitions if and only if the
path closes a deadlock cycle. Therefore, all configurations
that may come out of TOR and DL will also be valid for
LASH-TOR, and for that reason, we may conclude that
LASH-TOR with the best possible path selection should
perform at least as well as TOR and DL with the best
possible path selection algorithm. This is only partially

reflected in our results, something which underlines the

importance of path selection for any of these methods.

7 APPLYING THE RESULTS TO TECHNOLOGIES

In the previous text, we have discussed the routing methods

in an idealized way. This section analyzes the constraints

imposed by different network technologies on which

routing methods are implementable, which are summarized

in Table 7.

7.1 Myrinet

Myrinet [1] is a technology that is able to handle any

topology. Therefore, it has a flexible routing scheme that

420 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

TABLE 7
Applicability of the Algorithms to Different Technologies

For InfiniBand, three algorithms are usable partially due to the limited
size of the SLtoVL table. �indicates the routing algorithms are applicable
if Ethernet ultimately can work on a per-priority basis.

Fig. 11. Normalized throughput for irregular topologies. For each topology, 10 random topologies analyzed. 2 VL. Uniform traffic pattern.

does not restrict the way by which packets are forwarded.
On the other hand, it does not support virtual channels.
This means that for Myrinet, the routing algorithms that are
possible are DOR, UD, DFS, LTURN, SR, SMART, and FX.
Our results for these cases vary depending on the size of the
network and whether there are faults in the network. In
general, it can be said that as long as the network is fault
free, and thus regular, FX and SMART are the ones that
perform the best. In this case, however, there is no need for
topology-agnostic routing algorithms, so the more interest-
ing case is perhaps where there are faults in the network.
Here, it becomes clear that SMART, and in some cases SR
and LTURN, outcompetes the others.

7.2 Servernet II

Although the Servernet II [2] architecture allows virtual
channels, its current implementation does only have one
virtual channel. Thus, the same limitations apply as for
Myrinet.

7.3 InfiniBand

InfiniBand [4] provides flexible routing tables and supports
up to 16 virtual lanes, but current implementations
generally provide four or eight virtual lanes. There are
mechanisms that allow packets to transition between layers
in Infiniband. However, the flexibility of these mechanisms
is limited. For some of the routing methods that require
such transitions, it has, though, been shown that the
existing mechanism (SL to VL mapping tables) is sufficient
for networks of reasonable size.

Basically, this means that in this technology, there is a
choice of which resources to use for effective routing. One
may constrict oneself to methods that require only one
virtual channel (DOR, UD, DFS, LTURN, SR, SMART, and
FX) if virtual lanes are to be used for something else than
effective routing (e.g., QoS). On the other hand, if multiple
virtual lanes can be used, we can in addition use MUD and
LASH. In this case, our results show that MUD outperforms
LASH when the number of virtual channels is as low as 2. It
must, however, be noted that the full benefit of LASH will
not appear until one has more than two virtual channels. In
[24], it is reported that LASH outperforms MUD by far
when the number of virtual channels is sufficient to
guarantee shortest paths.

It will also be possible to use the existing mechanisms for
transitions between virtual channels, opening for TOR,
LASH-TOR, and DL. Our simulation results indicate that
TOR is the overall best one. However, we believe that this is
mainly due to the balancing effort we implemented for the
paths in TOR. If such balancing had been performed for
LASH-TOR and DL as well, there is every reason to believe
that the results would have been comparable for all three,
with a possible advantage for LASH-TOR. What is con-
sistent, however, is the fact that with few virtual channels
available, transitions between the virtual channels are
important to gain throughput.

7.4 Ethernet

Ethernet [3] is a technology that comes in many variants. In
its more pure form, the routing algorithm is already given. It
is based on a spanning tree protocol, and is independent of
topology. It is, however, well known that in many cases, the
spanning tree protocol leads to a massive underutilization

of network resources. In particular, it will disable a subset of
the links in the network in order to make the network free of
cycles. Therefore, the spanning tree protocol can be
bypassed in many commercial switches, and other routing
strategies can be implemented through upload of pregen-
erated routing tables.

In its basic version, Ethernet discards packets, and is
therefore not prone to deadlocks. These versions are out of
scope for the routing algorithms we discuss here, that
imposed deadlock freedom as one of their design criteria.
The flow-controlled version of Ethernet (802.1Q) may be run
in a modus where packets are not discarded, and delivery is
guaranteed. In this mode, Ethernet is prone to deadlocks,
and the routing algorithms discussed here are of interest.

The routing algorithms that are applicable in Ethernet
with flow control are the ones that do not require virtual
channels (DOR, UD, DFS, SR, LTURN, SMART, and FX). In
fact, in [40], SR tackles the described spanning tree
weakness. There is a mechanism in Ethernet called priority
tagging that supports different treatment of packets, and
that comes very close to virtual channels (version 802.1Q).
There are, however, two obstacles to this. The first is the
ability to treat the different packet priorities according to
different routing schemes. This problem can be circum-
vented by using VLAN tags [41]. The second obstacle is that
the flow control in Ethernet works on a per-link basis, not
on a per-priority basis. This means that deadlock freedom
cannot be treated separately for each priority; thus, the
different priorities cannot immediately be viewed as virtual
layers. A rather small modification in the Ethernet flow
control would, though, remedy this. Changing priorities on
the fly would, however, require a more profound change.
Therefore, the routing strategies that are available for
Ethernet as it is today are those that do not require virtual
channels. With a small change in the flow-control scheme,
MUD and LASH could be used as well.

7.5 Quadrics

Quadrics [5] is a source routed technology and supports two
virtual channels. It does, however, not support transitions
between virtual channels. This basically means that TOR,
LASH-TOR, and DL cannot be applied. The small number of
virtual channels makes LASH of limited value, meaning that
MUD is the best choice when both virtual channels may be
used for efficient routing. However, all the routings
requiring a single virtual channel could be applied to
Quadrics. Therefore, our comments for Myrinet are also
relevant for Quadrics.

7.6 Networks on Chip

Networks on chip are different from the above technologies
in that the set of features they will be able to support is not
fixed. First, we need to differentiate between application-
specific chip designs, usually found in the embedded
market, and chip multiprocessor (CMP) systems, usually
targeting high-performance computing. In the first case,
topology is usually totally irregular and fitted to the
running application. In that case, the routing algorithm is
set by the application at design time and there is no need to
use topology-agnostic routing algorithms. In the other case,
CMPs, the main topology is becoming the 2D mesh (e.g.,

FLICH ET AL.: A SURVEY AND EVALUATION OF TOPOLOGY-AGNOSTIC DETERMINISTIC ROUTING ALGORITHMS 421

Polaris chip [42] and SCC chip from Intel [43], Tilera
products [44]). However, during recent years, manufactur-
ing defects have been identified as a primary source of
failures for current and future NoCs. Indeed, recently, there
have been publications addressing this issue [11], [45] as
well as other sources that may induce irregularities in the
original design (e.g., heterogeneity of the multicore compo-
nents, variability [46], DVFS domains [47], and power
saving strategies [45]). In addition, as technology scales,
virtualization is appealing in order to get an efficient use of
all the computing resources within a chip. To maximize
chip utilization, the chip might require a partition into
irregular regions. In this scenario, CMPs with induced
irregularities, the use of topology-agnostic routing algo-
rithms makes sense and could fit the necessities.

Compared against macro multicomputer systems, the
design of scalable and reliable NoCs for CMPs exhibits some
different requirements; the primary consideration is to
minimize area and power dissipation, such limitations
impose the choice of topology, packetization, routing
algorithms, and architectural implementations. At first sight,
regular topologies combined with adaptive routing algo-
rithms and wormhole switching are the preferred choices.
Unfortunately, due to the aforementioned issues, the result-
ing interconnection topology is not longer regular prevent-
ing the use of traditional routing algorithms for regular
topologies. It is worth differentiating between the routing
algorithm and its implementation. In NoCs, this distinction is
fundamental as an efficient implementation will enable the
use of a routing algorithm (even if it is complex in its rules).
Incoming challenges and the way to implement topology-
agnostic routing algorithms are detailed in [48].

Basically, there are two factors that determine what
routing strategy is applicable: the availability of virtual
channels, and the ability to let packets transition between
them. For NoCs where the footprint of the chip disallows
the extra buffer space required for multiple virtual
channels, we are in the same situation as the one described
for Myrinet and Servernet above. In the cases where virtual
channels are there, but where the extra resources needed for
transitions between layers are prohibitive, the considera-
tions will be identical to those made for Quadrics. Finally, if
we allow both virtual channels and some resources for
making transitions between them, the above discussion for
Infiniband applies.

8 SUMMARY AND CONCLUSIONS

The increasing probability of failures and the flexibility
offered by interconnection networks for clusters may cause
their interconnection topologies to become irregular. In such
a situation, topology-agnostic routing algorithms may
become a simple and effective solution to keep the system
running even in the presence of failures. Also, irregular
networks may appear in on-chip systems due to fabrication
processes and heterogeneous IP nodes, thus obtaining
benefit from the use of topology-agnostic routing algorithms.

In this paper, we have put in the same context all the
topology-agnostic routing algorithms we are aware of. In a
first effort, we have classified them based on their
requirements and their foundations. Routings have been

classified primarily based on their requirements for virtual
channels and their capability to guarantee minimal routing.
As a second contribution, we have provided a unified
description of all the routing algorithms. This description
helped us to understand better the anatomy of each
topology-agnostic routing scheme.

As a third effort, we have evaluated all the routing
algorithms under the same traffic and network conditions.
Results have shown that using virtual channels helps in
achieving minimal paths for each pair of nodes. Also,
allowing virtual channel transitions reduces the required
number of virtual channels. However, for achieving
maximum network throughput, it is compulsory to use a
path balancing algorithm.

Finally, as a fourth and last contribution, we have
provided insights of application of the different routing
algorithms to current state-of-the-art interconnection net-
works for off-chip communication and for on-chip net-
works. We have shown that among the analyzed topology-
agnostic routings, we always can find enough candidates
able to fulfill the constraints imposed for each network
technology or application field.

ACKNOWLEDGMENTS

This work was supported by the Spanish MEC and

MICINN, as well as by the European Commission FEDER

funds, under Grants CSD2006-00046, TIN2009-14475-C04,

and RYC2009-03989.

REFERENCES

[1] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz,
J.N. Seizovic, and W.-K. Su, “Myrinet: A Gigabit-per-Second Local
Area Network,” IEEE Micro, vol. 15, no. 1, pp. 29-36, Feb. 1995.

[2] R.W. Horst, D.P. Sonnier, and W.J. Watson, “A Flexible Servernet-
based Fault-Tolerant Architecture,” Proc. 25th Int’l Symp. Fault-
Tolerant Computing (FTCS ’95), p. 2, 1995.

[3] R. Seifert, Gigabit Ethernet: Technology and Applications for High-
Speed LANs. Addison-Wesley Longman Publishing Co., Inc., 1998.

[4] I.T. Assoc. “Infiniband Architecture Specification Release 1.2.1,”
http://www.infinibandta.org/specs/register/publicspec/, Jan.
2008.

[5] F. Petrini, W.C. Feng, A. Hoisie, S. Coll, and E. Frachtenberg,
“The Quadrics Network (qsnet): High-Performance Clustering
Technology,” Proc. Ninth Symp. High Performance Interconnects
(HOTI ’01), p. 125, 2001.

[6] Top500 “Top500 Supercomputer List,” www.top500.org, 2011.
[7] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An

Engineering Approach. Morgan Kaufmann, 2003.
[8] W. Dally and B. Towles, Principles and Practices of Interconnection

Networks. Morgan Kaufmann Publishers, Inc., 2003.
[9] H.-C. Chi and C.-T. Tang, “A Deadlock-Free Routing Scheme for

Interconnection Networks with Irregular Topologies,” Proc. Int’l
Conf. Parallel and Distributed Systems, pp. 88-95, Dec. 1997.

[10] M.E. Gómez, P. López, and J. Duato, “A Memory-Effective Routing
Strategy for Regular Interconnection Networks,” Proc. 19th IEEE
Int’l Parallel and Distributed Processing Symp., p. 41b, 2005.

[11] S. Rodrigo, S. Medardoni, J. Flich, D. Bertozzi, and J. Duato,
“Efficient Implementation of Distributed Routing Algorithms for
NoCs,” IET Computers and Digital Techniques, vol. 3, pp. 460-475,
2009.

[12] W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,” IEEE Trans. Compu-
ters, vol. C-36, no. 5, pp. 547-553, May 1987.

[13] J. Duato, “A Necessary and Sufficient Condition for Deadlock-
Free Routing in Cut-Through and Store-and-Forward Networks,”
IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 8, pp. 841-
854, Aug. 1996.

422 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

[14] M.D. Schroeder, A.D. Birrell, M. Burrows, H. Murray, R.M.
Needham, and T.L. Rodeheffer, “Autonet: A High-Speed, Self-
Configuring Local Area Network Using Point-to-Point Links,”
IEEE J. Selected Areas in Comm., vol. 9, no. 8, pp. 1318-1335,
Oct. 1991.

[15] J.C. Sancho, A. Robles, and J. Duato, “A New Methodology to
Compute Deadlock-Free Routing Tables for Irregular Networks,”
Proc. Workshop Comm., Architecture and Applications for Network-
Based Parallel Computing (CANPC ’00), Jan. 2000.

[16] M. Koibuchi, A. Funahashi, A. Jouraku, and H. Amano, “L-Turn
Routing: An Adaptive Routing in Irregular Networks,” Proc. Int’l
Conf. Parallel Processing (ICPP ’01), pp. 383-392, 2001.

[17] A. Mejia, J. Flich, J. Duato, S.-A. Reinemo, and T. Skeie, “Segment-
Based Routing: An Efficient Fault-Tolerant Routing Algorithm for
Meshes and Tori,” Proc. 20th Int’l Parallel and Distributed Processing
Symp. (IPDPS ’06), Apr. 2006.

[18] W. Qiao and L.M. Ni, “Adaptive Routing in Irregular Networks
Using Cut-Through Switches,” Proc. Int’l Conf. Parallel Processing
(ICPP ’96), pp. 52-60, 1996.

[19] F. Silla and J. Duato, “Improving the Efficiency of Adaptive
Routing in Networks with Irregular Topology,” Proc. Fourth Int’l
Conf. High-Performance Computing (HIPC ’97), p. 330, 1997.

[20] L. Cherkasova, V. Kotov, and T. Rokicki, “Designing Fibre Channel
Fabrics,” Proc. IEEE Int’l Conf. Computer Design (ICCD ’95), pp. 346-
351, 1995.

[21] J. Flich, M.P. Malumbres, P. Lopez, and J. Duato, “Performance
Evaluation of a New Routing Strategy for Irregular Networks
with Source Routing,” Proc. Int’l Conf. Supercomputing (ICS ’00),
2000.

[22] T. Skeie, O. Lysne, and I. Theiss, “Layered Shortest Path (LASH)
Routing in Irregular System Area Networks,” Proc. Int’l Parallel
and Distributed Processing Symp. (IPDPS ’02), 2002.

[23] J. Domke, T. Hoefler, and W. Nagel, “Deadlock-Free Oblivious
Routing for Arbitrary Topologies,” Proc. 25th IEEE Int’l Parallel and
Distributed Processing Symp., May 2011.

[24] O. Lysne, T. Skeie, S.-A. Reinemo, and I. Theiss, “Layered Routing
in Irregular Networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 17, no. 1, pp. 51-65, Jan. 2006.

[25] I. Theiss and O. Lysne, “FROOTS - Fault Handling in Up�=Down�

Routed Networks with Multiple Roots,” Proc. Int’l Conf. High
Performance Computing (HiPC ’03), 2003.

[26] J. Flich, P. Lopez, J.C. Sancho, A. Robles, and J. Duato, “Improving
Infiniband Routing through Multiple Virtual Networks,” Proc.
Fourth Int’l Symp. High Performance Computing (ISHPC ’02), pp. 49-
63, 2002.

[27] J.C. Sancho, A. Robles, J. Flich, P. Lopez, and J. Duato, “Effective
Methodology for Deadlock-Free Minimal Routing in Infiniband
Networks,” Proc. Int’l Conf. Parallel Processing (ICPP ’02), pp. 409-
418, 2002.

[28] M. Koibuchi, A. Jouraku, K. Watanabe, and H. Amano, “Descend-
ing Layers Routing: A Deadlock-Free Deterministic Routing Using
Virtual Channels in System Area Networks with Irregular
Topologies,” Proc. Int’l Conf. Parallel Processing (ICPP ’03), Oct.
2003.

[29] T. Skeie, O. Lysne, J. Flich, P. Lopez, A. Robles, and J. Duato,
“Lash-Tor: A Generic Transition-Oriented Routing Algorithm,”
Proc. IEEE Int’l Conf. Parallel and Distributed Systems (ICPADS ’04),
pp. 595-604, 2004.

[30] Y. Liu, C. Dwyer, and A. Lebeck, “Routing in Self-Organizing
Nano-Scale Irregular Networks,” ACM J. Emerging Technologies in
Computing Systems, vol. 6, no. 1, pp. 1-21, 2010.

[31] R. Moraveji, H. Sarbazi-Azad, and A. Zomaya, “A General
Methodology for Direction-Based Irregular Routing Algorithms,”
J. Parallel and Distributed Computing, vol. 70, no. 4, pp. 363-370,
2010.

[32] J. Cong, C. Liu, and G. Reinman, “ACES: Application-Specific
Cycle Elimination and Splitting for Deadlock-Free Routing on
Irregular Network-on-Chip,” Proc. 47th ACM/IEEE Design Auto-
mation Conf. (DAC), pp. 443-448, 2010.

[33] R. Holsmark, M. Palesi, and S. Kumar, “Deadlock Free Routing
Algorithms for Irregular Mesh Topology NoC Systems with
Rectangular Regions,” J. Systems Architecture, vol. 54, nos. 3/4,
pp. 427-440, 2008.

[34] M. Koibuchi, A. Jouraku, and H. Amano, “Routing Algorithms
Based on 2D Turn Model for Irregular Networks,” Proc. Int’l Symp.
Parallel Architectures, Algorithms and Networks (ISPAN ’02), 2002.

[35] J.C. Sancho, A. Robles, and J. Duato, “An Effective Methodology
to Improve the Performance of the Up*/Down* Routing Algo-
rithm,” IEEE Trans. Parallel Distributed Systems, vol. 15, no. 8,
pp. 740-754, 2004.

[36] J. Flich, P. Lopez, M.P. Malumbres, J. Duato, and T. Rokicki,
“Combining In-Transit Buffers with Optimized Routing Schemes
to Boost the Performance of Networks with Source Routing,” Proc.
Third Int’l Symp. High Performance Computing (ISHPC ’00), pp. 300-
309, 2000.

[37] P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New
Computer Communication Switching Technique,” Computer Net-
works, vol. 3, no. 4, pp. 267-286, Sept. 1979.

[38] W.J. Dally, “Express Cubes: Improving the Performance of K-Ary
n-Cube Interconnection Networks,” IEEE Trans. Computers,
vol. 40, no. 9, pp. 1016-1023, Sept. 1991.

[39] J.C. Sancho, A. Robles, and J. Duato, “A Flexible Routing Scheme
for Networks of Workstations,” Proc. Third Int’l Symp. High
Performance Computing (ISHPC ’00), pp. 260-267, 2000.

[40] A. Mejia, J. Flich, J. Duato, S.-A. Reinemo, and T. Skeie, “Boosting
Ethernet Performance by Segment-Based Routing,” Proc. 15th
Euromicro Conf. Parallel, Distributed and Network-Based Processing
(PDP ’07), Feb. 2007.

[41] S.-A. Reinemo and T. Skeie, “Ethernet as a Lossless Deadlock Free
System Area Network,” Proc. Int’l Symp. Parallel and Distributed
Processing and Applications, Y. Pan, D. Chen, M. Guo, J. Cao, and J.
Dongarra, eds., pp. 901-914, 2005.

[42] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A
5-GHz Mesh Interconnect for a Teraflops Processor,” IEEE
Micro, vol. 27, no. 5, pp. 51-61, Sept. 2007.

[43] J. Rattner “Single-Chip Cloud Computer: An Experimental Many-
Core Processor from Intel Labs,” http://download.intel.com/
pressroom/pdf/rockcreek/SCC_Announcement_JustinRattner.
pdf, 2011.

[44] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C.
Ramey, M. Mattina, C. Miao, J.F. Brown III, and A. Agarwal, “On-
Chip Interconnection Architecture of the Tile Processor,” IEEE
Micro, vol. 27, no. 5, pp. 15-31, Sept./Oct. 2007.

[45] S. Rodrigo, J. Flich, A. Roca, S. Medardoni, D. Bertozzi, J.
Camacho, F. Silla, and J. Duato, “Addressing Manufacturing
Challenges with Cost-Efficient Fault Tolerant Routing,” Proc.
Fourth ACM/IEEE Int’l Symp. Networks-on-Chip, pp. 25-32, 2010.

[46] C. Hernández, A. Roca, F. Silla, J. Flich, and J. Duato, “Improving
the Performance of GALS-Based NoCs in the Presence of Process
Variation,” Proc. Fourth Int’l Symp. Networks-on-Chip, May 2010.

[47] U.Y. Ogras, R. Marculescu, P. Choudhary, and D. Marculescu,
“Voltage-Frequency Island Partitioning for GALS-Based Net-
works-on-Chip,” Proc. Design Automation Conf., pp. 110-115,
June 2007.

[48] J. Flich and D. Bertozzi, Designing Network On-Chip Architectures in
the Nanoscale Era. CRC Press, Taylor and Francis, 2010.

José Flich received the MS and PhD degrees
in computer science from the Technical Uni-
versity of Valencia, Spain, in 1994 and 2001,
respectively. He joined the Department of
Computer Engineering, Universidad Politécnica
de Valencia, in 1998, where he is currently an
associate professor of computer architecture
and technology with the Parallel Architectures
Group. He has published more than 100
papers in peer-reviewed conferences and

journals. His current research interests include high-performance
interconnection networks for multiprocessor systems, cluster of
workstations, and networks on chip. He has served as a program
committee member in different conferences, including NOCS, DATE,
ICPP, IPDPS, HiPC, SC, CAC, ICPADS, and ISCC. He is an
associate editor of the IEEE Transactions on Parallel and Distributed
Systems and currently the cochair of the CAC and INA-OCMC
workshops. He is the coordinator of the NaNoC FP7 EU-Funded
Project (http://www.nanoc-project.eu) and editor of the book Designing
Network On-Chip Architectures in the Nanoscale Era. He is a member
of the IEEE and the IEEE Computer Society.

FLICH ET AL.: A SURVEY AND EVALUATION OF TOPOLOGY-AGNOSTIC DETERMINISTIC ROUTING ALGORITHMS 423

Tor Skeie received the MS and PhD degrees in
computer science from the University of Oslo in
1993 and 1998, respectively. He is a professor
at the Simula Research Laboratory and the
University of Oslo. His work is mainly focused on
scalability, effective routing, fault tolerance, and
quality of service in switched network topologies.
He is also a researcher in the Industrial Ethernet
area. The key topics here have been the road to
deterministic Ethernet end to end and how

precise time synchronization can be achieved across switched Ethernet.
He has also contributed to wireless networking, hereunder quality of
service in WLAN, and cognitive radio.

Andrés Mejı́a received the PhD degree from
Technical University of Valencia, Spain, in 2008.
He is currently a senior research scientist at Intel
Research Labs in Santa Clara, California. His
research interests include different areas of
high-speed interconnects including power opti-
mization, performance modeling, analysis, and
validation.

Olav Lysne received the master’s degree in
1988 and the Dr. Scient. degree in 1992 from the
University of Oslo. He is the head of a research
department as well as professor in computer
science at Simula Research Laboratory and the
University of Oslo. His research interests are in
network architectures. In particular, he works on
how routing functions, network topologies, and
strategies for buffer management influence on
network performance, fault tolerance, and qual-

ity of service. He is the coinventor of LASH (Layered Shortest Path
Routing) that is implemented in the OpenFabrics Enterprise Distribution
(OFED), and is used in many high-performance compute clusters
around the world. In 2007, his research team was the first in the world to
demonstrate a working solution for IP-fast reroute. This is a technology
that provides recovery in IP-networks in less than 50 milliseconds after a
link or router has failed. He has more than 100 peer-reviewed
publications, and several patents. He is a member of the IEEE.

Pedro López received the BEng degree in
electrical engineering and the MS and PhD
degrees in computer engineering from the same
university in 1984, 1990, and 1995, respectively.
He is a full professor in computer architecture
and technology at the Department of Computer
Engineering (DISCA), Universitat Politècnica de
València, Spain. He has taught several courses
on computer organization and architecture. His
research interests include high-performance

interconnection networks for multiprocessor systems and clusters and
processor microarchitecture. He has published more than 100 refereed
conference and journal papers. He is a member of the editorial board of
Parallel Computing journal. He is a member of the IEEE Computer
Society.

Antonio Robles received the MS degree in
physics (electricity and electronics) from the
Universidad de Valencia, Spain, in 1984, and
the PhD degree in computer engineering from the
Universidat Politècnica de València in 1995. He
is currently a full professor in the Department of
Computer Engineering at the Universidat Poli-
tècnica de València, Spain. He has taught
several courses on computer organization and
architecture. His research interests include high-

performance interconnection networks for multiprocessor systems and
clusters, and scalable cache coherence protocols for SMP and CMP. He
has published more than 70 refereed conference and journal papers. He
has served on program committees for several major conferences. He is
a member of the IEEE and the IEEE Computer Society.

José Duato received the MS and PhD degrees
in electrical engineering from the Technical
University of Valencia, Spain, in 1981 and
1985, respectively. Currently, he is a professor
in the Department of Computer Engineering
(DISCA) at the same university, and a re-
searcher at Simula Research Laboratory, Oslo,
Norway. He was also an adjunct professor in
the Department of Computer and Information
Science, The Ohio State University. His current

research interests include interconnection networks and multiproces-
sor architectures. He has published more than 400 refereed papers.
He proposed a powerful theory of deadlock-free adaptive routing for
wormhole networks. Versions of this theory have been used in the
design of the routing algorithms for the MIT Reliable Router, the Cray
T3E supercomputer, the on-chip router of the Alpha 21364 micro-
processor, and the IBM BlueGene/L supercomputer. He also devel-
oped RECN, a scalable congestion management technique, and a
very efficient routing algorithm for fat trees that has been incorporated
into Sun Microsystem’s 3456-port InfiniBand Magnum switch. Cur-
rently, he leads the Advanced Technology Group in the HyperTran-
sport Consortium, whose main result to date has been the
development and standardization of an extension to HyperTransport
(High Node Count HyperTransport Specification 1.0). He is the first
author of the book Interconnection Networks: An Engineering
Approach. He served as a member of the editorial boards of IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions
on Computers, and IEEE Computer Architecture Letters. He has been
the general cochair for the 2001 International Conference on Parallel
Processing, the program committee chair for the 10th International
Symposium on High Performance Computer Architecture (HPCA-10),
and the program cochair for the 2005 International Conference on
Parallel Processing. Also, he served as the cochair, member of the
Steering Committee, vice chair, or member of the Program Committee
in more than 60 conferences, including the most prestigious
conferences in his area (HPCA, ISCA, IPPS/SPDP, IPDPS, ICPP,
ICDCS, Europar, and HiPC).

Michihiro Koibuchi received the BE, ME, and
PhD degrees from Keio University, Yokohama,
Japan, in 2000, 2002, and 2003, respectively.
He was a visiting researcher at the Technical
University of Valencia, Spain, in 2004, and a
visiting scholar at the University of Southern
California in 2006. He is currently an associate
professor in the Information Systems Architec-
ture Research Division, National Institute of
Informatics, Tokyo, and the Graduate University

for Advanced Studies, Japan. His research interests include the areas of
high-performance computing and interconnection networks. He is a
member of the IEEE and the IEEE Computer Society.

424 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012

Tomas Rokicki received the BS degree in
electrical engineering from Texas A&M Univer-
sity in 1985 and the PhD degree in computer
science from Stanford University in 1993. He
joined Hewlett-Packard Laboratories in 1993,
where he pursued his interests in computer
networking and architecture. In 1999, he
founded Instantis with a few colleagues, where
he is the director of technology.

José Carlos Sancho received the MS and PhD
degrees in computer science from the Technical
University of Valencia, Spain, in 1998 and 2002,
respectively. In 2003, he joined Los Alamos
National Laboratory, New Mexico, where he
participated on the performance characterization
of Roadrunner, the first supercomputer in the
world that achieved a petaflop. Since 2010, he
has been a senior researcher at the Barcelona
Supercomputing Center, Spain. His current

research interests include cost-effective interconnection networks and
dataflow parallel programming languages. Also, he served as a reviewer
of prestigious conferences in parallel computing (IPDPS, ICS, SC, ICPP,
Europar, and HiPC). Currently, he serves as a member of the Program
Committee of the International Conference on Parallel Processing. And
he has just received recognition for the best innovative idea of 2011 in
the Barcelona university campus.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FLICH ET AL.: A SURVEY AND EVALUATION OF TOPOLOGY-AGNOSTIC DETERMINISTIC ROUTING ALGORITHMS 425

