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A novel ant-based clustering algorithm integrated with the kernel (ACK) method is pro-
posed. There are two aspects to the integration. First, kernel principal component analysis
(KPCA) is applied to modify the random projection of objects when the algorithm is run ini-
tially. This projection can create rough clusters and improve the algorithm’s efficiency. Sec-
ond, ant-based clustering is performed in the feature space rather than in the input space.
The distance between the objects in the feature space, which is calculated by the kernel
function of the object vectors in the input space, is applied as a similarity measure. The
algorithm uses an ant movement model in which each object is viewed as an ant. The
ant determines its movement according to the fitness of its local neighbourhood. The pro-
posed algorithm incorporates the merits of kernel-based clustering into ant-based cluster-
ing. Comparisons with other classic algorithms using several synthetic and real datasets
demonstrate that ACK method exhibits high performance in terms of efficiency and clus-
tering quality.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Clustering is a method that divides a dataset into groups of similar objects, thereby minimizing the similarities between
different clusters and maximizing the similarities between objects in the same cluster. Clustering is widely applied in data
mining, such as in document clustering and Web analysis. Classic clustering approaches include partition-based methods,
such as K-means, K-medoids, and K-prototypes [20,22]; hierarchy-based methods, such as BIRCH [44]; density-based meth-
ods [1,10]; grid-based methods [43]; and model-based methods, such as neural networks and self-organizing map (SOM)
[4,30].

Recently, ant-based clustering, which is a type of clustering algorithm that imitates the behaviour of ants, has earned
researchers’ attention. Ant-based clustering can be divided into two classes. The first class imitates the ant’s foraging behav-
iour, which involves finding the shortest route between a food source and the nest. This intelligent behaviour is achieved by
means of pheromone trails and information exchange between ants. Shelokar et al. [34] and Chen et al.’s [5] proposed algo-
rithms belong to this class. These algorithms treat clustering as an optimization task and utilize ant colony optimization
(ACO) methods to obtain optimal clusters. An extension of ACO, called constrained ACO (C-ACO) [6], was suggested to cluster
data involving arbitrary shapes or outliers. A variant of ACO, called the aggregation pheromone density-based clustering
algorithm (APC), was also suggested [12,13]. Similar to ACO, APC is based on the aggregation pheromones found in ants.
The advantage of these methods is that the objective function is explicit. The key elements of these algorithms are the pher-
omone matrix updating rule and the heuristic function.

The second class imitates ants’ behaviour of clustering their corpses and forming cemeteries. Some ants can pick up dead
bodies randomly distributed in the nest and group them into different sizes. The large group of bodies attracts the ants to
. All rights reserved.
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deposit more dead bodies and becomes larger and larger. The essence of this phenomenon is positive feedback [25]. One of
the first studies related to this domain is the work of Deneubourg [9], who came up with the basic model (BM) to explain the
ants’ movement. In the BM, the ants move randomly and pick up or drop objects according to the number of similar sur-
rounding objects to cluster them. Lumer and Faieta [24] extended the model and applied it to data analysis (they called this
the LF algorithm). In their analysis, an object with n attributes can be viewed as a point in the Rn space. The point is projected
into a low-dimensional space (often a two-dimensional plane). The similarity of the object with those in the local neighbour-
hood is calculated to determine whether the object should be picked up or dropped by ants. As a basic algorithm, LF was
followed and improved by a number of modified algorithms in different applications. Wu et al. [37,38] further explained
the idea of the similarity coefficient and suggested a more simple probability conversion function. Ramos and Merelo
[29] studied ant-based clustering with different ant speeds to cluster text documents. Yan et al. [40,41] suggested multiple
ant colonies consisting of independent colonies and a queen ant agent. Each ant colony had a different moving speed and
probability conversion function. The hypergraph model was used to combine the results of all parallel ant colonies.

In addition to the above-mentioned studies, a series of research by Handl deserves special attention. She came up with a
set of strategies for increasing the robustness of the LF algorithm and applying it to document retrieval [15]. She performed a
comparative study of ant-based clustering with K-means, average links, and 1d-SOM [16,17]. An improved version, ATTA,
which incorporates adaptive and heterogeneous ants and time-dependent transporting activity, was proposed in her latest
paper [18]. The main feature of this kind of algorithm is that the algorithm directly imitates the ant’s behaviour to cluster
data and the clustering objective is implicitly defined [19].

Beyond the two classes of ant-based clustering, Tsang and Kwong [36] proposed ant colony clustering for anomaly intru-
sion detection. This method integrates the characteristics of the two above-mentioned classes. Specifically, cluster formation
and searching for an object are regarded as nest building and food foraging, respectively. The ants exhibit picking up and
dropping behaviours while simultaneously depositing cluster-pheromones on the grid. Xu et al. [39] suggested a novel
ant movement model wherein each object was viewed as an ant. The ant determines its behaviour according to the fitness
of its local neighbourhood. Essentially, this model is similar to that in the second class of ant-based clustering.

Combinations of ant-based clustering with other clustering methods can also be found. For example, ant-based clustering
has been combined with K-means [26] and with K-harmonic means [21]; ant colonies have been hybridized with fuzzy
C-means [28,42]; fuzzy ants have been endowed with intelligence in the form of IF–THEN rules [23]; and the hybrid
approach has been generated based on particle swarm optimization (PSO), ACO, and K-means [27]. In these methods, the
role of ant-based clustering is mainly to create initial clusters for other clustering algorithms.

A general simulation of swarm and collective intelligence has been described [33] as well as a comprehensive overview of
ant-based and swarm-based clustering [19].

Our particular interest is in the second kind of ant-based clustering discussed above. Although ant-based clustering has
been modified gradually, it still needs improvement in terms of its applications. The focus of our work is on the following two
important problems:

� Improving the algorithm’s efficiency
Ant-based clustering can be implemented through the parallel computing of each ant [7], which may lead to the devel-
opment of an efficient algorithm. However, it is not highly efficient because of the randomness in the algorithm. Initially,
the objects are randomly projected onto the toroidal grid; thus, the similarities of the objects in a local neighbourhood are
very low. Therefore, the objects are easily picked up but not easily dropped by the ants. It takes long time to go from the
inception of the algorithm to the moment when the rough clusters are created. Commonly, 100,000 iterations are needed
for ant-based clustering algorithms [2].
� Improving the algorithm’s clustering quality

In essence, ant-based clustering algorithms are distance-based because the similarity of the objects is computed by
Euclidean distance or Cosine distance. Just like other distance-based clustering algorithms, they are effective for datasets
with an ellipsoidal or Gaussian distribution. If the separation boundaries between clusters are nonlinear, however, the
algorithms will fail. An alternative approach to solving this problem is kernel mapping, which transforms the data into
a high-dimensional feature space and then performs the clustering in the feature space.

Kernel-based clustering was proposed by Mark [14]. Its integration with K-means, fuzzy K-means, SOM, and support vec-
tor machines has been shown to be effective in improving clustering quality [11].

In this paper, we incorporated the kernel method into ant-based clustering and created the novel ant-based clustering
with the kernel method (ACK). The applications of kernels in ACK are shown in two respects. First, kernel principal compo-
nent analysis (KPCA) is used to modify the initial projection of all objects. Second, the Euclidean distance in the feature space
is applied as a measure of the similarity between the objects. These two applications are geared toward solving the problems
mentioned above. Compared with general ant-based clustering, ACK can create better clustering results in some datasets
with non-Gaussian distribution. Moreover, the clustering quality and efficiency are greatly improved.

The paper is organized as follows: Section 2 describes the basics of the ant-based clustering algorithm. Section 3 intro-
duces kernel-based clustering. Section 4 proposes the novel ant-based clustering algorithm using the kernel method. Section
5 compares the proposed algorithm with other clustering algorithms. Finally, Section 6 gives the conclusions and discusses
future work.
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2. The ant-based clustering algorithm

The algorithm introduced by Lumer and Faieta [24] represents the basic ant-based clustering method. The LF algorithm
projects the objects into a two-dimensional plane. Assume that an ant is located at site r at cycle t and finds an object oi at
that site. The local similarity measure of oi is given by
Table 1
The pse

Algo

0 /
1 R
2 R
3 I
4 /
5 f
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
f ðoiÞ ¼
1
s2

P
oi2Lðoi ;rÞ

1� dðoi ;ojÞ
a

h i
; when f > 0

0 otherwise

8<
: ; ð1Þ
where L(oi,r) denotes the local neighbourhood surrounding the site r, which is often a square of size s � s(s = 2r + 1). d(oi,oj) is
the distance between two objects; typically, Euclidean distance is used. a is a factor that defines the scale for dissimilarity.
Choosing a to be too small prevents the formation of clusters; on the other hand, choosing a to be too large results in the
fusion of individual clusters [15–17,24,37,38].

The probability that an ant will pick up or drop the object is
PpðoiÞ ¼
k1

k1 þ f ðoiÞ

� �2

; ð2Þ

PdðoiÞ ¼
2f ðoiÞ when f ðoiÞ < k2

1 when f ðoiÞP k2

�
; ð3Þ
where k1, k2 are two constants. A high-level description of the LF algorithm is presented in Table 1.
A number of modifications have been introduced to the basic LF algorithm to improve clustering quality and convergence

speed, which can be summarized as

� Using inhomogeneous ants that move at different speeds [15,37,40,41]. Then, f(oi) becomes:
f ðoiÞ ¼
1
s2

P
oi2Lðoi ;rÞ

1� dðoi ;ojÞ
að1þðv�1Þ=vmax

h i
; when f > 0

0 otherwise

8<
: ; ð4Þ
where v denotes the speed of the ant and vmax is the maximum speed. Fast-moving ants form rough clusters on a large scale,
while slow ants group objects on a smaller scale by dropping objects with more accuracy.
udo-code of the LF algorithm.

rithm: LF Algorithm

* initialization */
andomly scatter the objects on the toroidal grid
andomly place the ants on the toroidal grid

nitialize all parameters: r1, tmax, a, k1, k2

* main loop*/
or t = 1 to tmax do

for all ants do
if(ant unladen) and (grid occupied by object oi) then

compute f(oi) and Pp(oi)
draw a random real number p 2 (0,1)

if(p 6 Pp(oi) then
pick up object oi

end if
else

if(ant carrying object oi) and (grid empty)then
compute f(oi) and Pd(oi)
draw a random real number p 2 (0,1)
if (p 6 Pd(oi) then
drop object oi

end if
end if

end if
Move to randomly selected neighbouring grid not occupied by other ants

end for
adjust r, a, k1,k2

end for
Output locations of all objects;
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� Using ants with short-term memory [2,16,17,36].
An ant stores two objects in its short-term memory: visited places and visited objects. Short-term memory can help ants
to drop the object quickly to improve the algorithm speed.
� Making some important parameters adaptive, such as the neighbourhood radius r and the scale factor a [2,14,15,36,39].

As mentioned above, ant-based clustering should avoid complex parameter settings to simplify its use.
� Designing the ant as an agent [39,41,42].

All of these modifications are intended to improve the performance of the basic ant-based clustering and make it more
applicable. In the following sections, we will show how ant-based clustering is integrated with the kernel method to
improve the algorithm’s performance. Before the introduction of ACK, kernel-based clustering is introduced.

3. Kernel-based clustering

3.1. Mercer kernels

Consider a smooth, continuous nonlinear mapping U from the data space to the feature space F:
U : RN ! F:
Then, the data samples in the input space xk 2 RN(k = 1,2, . . . , l) are mapped into U(x1), U (x2), . . . ,U(xl). Note that the dot
product in the feature space can be computed using Mercer kernels in the input space:
Kðxi; xjÞ ¼ UðxiÞ �UðxjÞ: ð5Þ
In other words, by employing a specific kernel function, the dot product that it returns implicitly defines the nonlinear
mapping U to the feature space [14].

Commonly used kernel functions include the following:

Polynomial kernel: K(x,y) = (x � y + 1)d.

Gaussian kernel: Kðx; yÞ ¼ exp � kx�yk2

2r2

� �
.

Neural network type kernel: K(x,y) = tanh ((x � y) + b).

3.2. Kernel-based clustering

Supposing data samples x and y, the Euclidean distance in the input space is
dðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx� yk2

q
: ð6Þ
After the samples are mapped into the feature space, the Euclidean distance between U(x) and U(y) in the feature space
becomes:
dFðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kUðxÞ �UðyÞk2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UðxÞ �UðxÞ � 2UðxÞ �UðyÞ þUðyÞ �UðyÞ

p
: ð7Þ
Based on (5), (7) can be computed as
dFðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðx; xÞ � 2Kðx; yÞ þ Kðy; yÞ

p
: ð8Þ
Eq. (8) can replace (6) as the similarity measure in the clustering algorithms. Based on this principle, kernel-based clus-
tering transforms the data into a high-dimensional feature space and then performs clustering in the feature space. The
application of kernels in K-means, fuzzy K-means, and evolution algorithms has been proven to be effective in terms of
improving clustering performance [8,11].

4. The novel ant-based clustering with the kernel method (ACK)

In this paper, we applied the kernel method in ant-based clustering. With respect to the problems mentioned in Section 1,
kernels are applied in two ways: first, all objects are preprocessed by KPCA then projected onto a plane based on the first two
kernel principals; second, the Euclidean distance of objects in the feature space is used as a similarity measure, which means
that ant-based clustering is performed in the feature space after kernel mapping.

4.1. Projection of the objects based on KPCA

In general, in ant-based clustering algorithms, the objects are randomly projected onto the plane. As a result, that one
pattern corresponds randomly with a pair of coordinates. This random projection leads to few similarities between the



4662 L. Zhang, Q. Cao / Information Sciences 181 (2011) 4658–4672
objects in the local neighbourhood at the beginning of the algorithm. Therefore, the objects are easily picked up but not eas-
ily dropped by the ants. It takes a long time for an object to be similar to nearby objects from the inception of the algorithm.

To reduce the influence of randomness in this stage, we have suggested a modified projection based on principal compo-
nent analysis (PCA) [45]. The objects are preprocessed by PCA; then, the first two principal components (PCs) remain, and
these are processed. According to the principles of PCA, the first two PCs can retain most of the information about the original
objects. If the objects are projected with the two processed PCs, the objects that are close to each other in the Rn space will be
close to each other in the projection plane. As a result, the object is very similar to others in its local neighbourhood at the
beginning of the algorithm. This result is similar to that of ant-based clustering algorithm after many cycles; thus, the run-
ning time is reduced significantly.

In this paper, we applied KPCA, which was suggested by Bernhard [32], to replace PCA. Compared with linear PCA, KPCA
can extract features that are more useful for classification. After the first two kernel principal components (KPCs) are ob-
tained, they also need to be processed as the projection coordinates. The processing methods are as follows:

� Enlarging: If the KPCs are very small, they are multiplied by a large number to be distinguished easily.
� Rounding: Obtaining the integer.
� Shifting: Finding the minimums of the first KPC and the second KPC. The last processed values are obtained by subtracting

the minimums from the pair of KPCs. The aim of this processing is to distribute the coordinates of the objects in the first
quadrant.

The two processed KPCs are taken as the projection coordinates of the objects, where the first KPC is the x-coordinate and
the second KPC is the y-coordinate:
xoi
ðt ¼ 1Þ ¼ PreðKPC1oi

Þ
yoi
ðt ¼ 1Þ ¼ PreðKPC2oi

Þ

(
; ð9Þ
where t is the number of cycles; Pr e(x) is the function describing the whole preprocess; and KPC1oi
and KPC2oi

are the first
and second KPC of the object oi, respectively.
4.2. The ant movement model operating in the feature space

In the above-mentioned ant-based clustering algorithms, the objects are picked up or dropped by the virtual ants. The
ants and the objects are separate. In this study, we applied the ant movement model suggested by Xu et al. [39], where each
object is looked at as an ant. Each ant has two states: movement and sleep. If the ant finds that a location is suitable for it to
rest, it will stop moving and enter a sleeping state; otherwise, it will continue to move to another place. The fitness of the
local neighbourhood is computed as (10), which is similar to (1) in Section 2.
f ðoiÞ ¼
1
s2

P
oj2Lðoi ;rÞ

1� dðoi ;ojÞ
ai

h i
; when f > 0

0 otherwise

8<
: ; ð10Þ
where ai ¼ 1
N�1

PN
j¼1dðoi; ojÞ is the average distance between oi and other objects.

If we apply a kernel function to map the objects into the feature space, then the clustering can be performed according to
the similarities of the objects in the feature space. The fitness becomes:
f ðoiÞ ¼
1
s2

P
oj2Lðoi ;rÞ

1� dF ðoi ;ojÞ
ai

h i
; when f > 0

0 otherwise

8<
: ; ð11Þ
where ai ¼ 1
N�1

PN
j¼1dFðoi; ojÞ and dF (oi,oj) is the distance between oi and oj in the feature space. Based on the introduction in

Section 3.2, dF(oi,oj) can be obtained by the kernel function according to (12). A Gaussian kernel is applied in this study:
dF oi; oj
� 	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K oi; oið Þ � 2K oi; oj

� 	
þ K oj; oj

� 	q
: ð12Þ
For an ant, the probability of being activated by the local neighbourhood is
PaðoiÞ ¼
b

bþ f oið Þ

� �2

; ð13Þ
where b 2 R+ is the threshold of the ant’s active fitness. Eq. (13) is also similar to (2) in Section 2. It can be seen that when
f� b, Pa(oi) is close to 1. Thus, if the fitness of oi is much smaller than the threshold, oi has a high probability of being acti-
vated. The active oi moves in the plane and searches for a more comfortable place to sleep. When f� b, Pa(oi) is close to 0.
Therefore, oi does not wake up and continues to sleep.



L. Zhang, Q. Cao / Information Sciences 181 (2011) 4658–4672 4663
The principle of the ant movement model is the same as that in the LF algorithm [24]. The big difference is that the passive
movement of objects is transformed into active movement. The adaptive adjustment of the parameters a and b is also similar
in the two models; this concept will be described in Section 4.4.

4.3. The process of the ACK algorithm

Here, we give a simple description of the ACK algorithm. Initially, KPCA is first performed for the dataset. For each object,
the first two KPCs are processed as the projection coordinates. After the objects are projected onto the plane, each object is
viewed as an ant. All the ants are in an active state, and they move randomly around on the plane following the movement
strategy. The simplest movement strategy is choosing a new location in the neighbourhood as the next destination. In each
cycle, the ant will recalculate its current fitness f and probability Pa to decide whether it should continue to move or sleep.
The pseudo-code of the main body of the ACK algorithm is given in Table 2.

It should be noted that KPCA and the distance between the objects in the feature space can be calculated beforehand once
the kernel function is given. The distance values can be stored in the matrix; then, the remaining calculations in the main
algorithm are simple matrix manipulations. This preprocessing can reduce the time of the algorithm.

4.4. Parameter setting

(1) Size of the projection plane
The size of the projection plane is set as S � S, S is computed by
Table 2
The pse

Algo

0 /
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
S ¼MAXðPreðKPC1oi
Þ; PreðKPC2oi

Þi 2 ½1;N�; ð14Þ

where N is the size of the data.

(2) Radius r

The radius r determines the region that the ant perceives. A larger radius means that it takes in more information but
there is a higher time cost. Furthermore, a larger radius inhibits the quick formation of clusters in the initial phase. We
applied a changing radius that gradually increases over cycles [16,17,39]. The initial value r1 is 1, and the maximum
rmax is 5; the adjustment of r is
rt ¼ Round r1 þ rmax � r1ð Þ � t=tmaxð Þ: ð15Þ

Round(x) is the function used to get the integer of x.

(3) Kernel size r

r is an important parameter of the Gaussian kernel. The selection of r is one of the major questions under consider-
ation in support vector and kernel methods. There are no good ways to solve this problem. Cross-validation and the
leave-one-out technique are usually used. Sometimes, r can be selected by experience. In this paper, we applied the
try and trial method, and the value that generated the best results in KPCA was selected.

(4) Scaling parameter a
In (11), the value of ai is a constant. Several approaches to determine the value of a have been described [39]. Here, we
applied an adaptive method. Suppose that in cycle t, ci (t) is the average similarity of the object oi with other objects
inoi ’s local neighbourhood. Then:
udo-code of the ACK algorithm.

rithm: ACK Algorithm

* initialization */
All objects are placed on the toroidal grid based on KPCA
Initialize all parameters: r1, tmax,a, b
/* main loop */
for t = 1 to tmax do

for i = 1 to N do (N is the number of the objects)
compute f(oi) and Pa(oi)
draw a random real number p 2 (0,1)

if (p 6 Pa) then
activate ant and move to next place

else
stay at current site and sleep

end if
end for

adjust r,a,b
end for
Output locations of all objects;



4664 L. Zhang, Q. Cao / Information Sciences 181 (2011) 4658–4672
ciðtÞ ¼
1

n� 1

Xn

oj2L oi ;rð Þ
dF oi; oj
� 	

; ð16Þ
where n is the number of the objects in oi ’s local neighbourhood. ai can be computed as
aiðtÞ ¼
1
K

Xt

l¼t�k

ciðlÞ; ð17Þ
where K (K = 10 in this paper) is a constant. Eq. (17) shows the ai is the average value of ci K times before t. This adaptive
adjusting method means that the ant has a memory of its fitness. The short memory method had been used in general
ant-based clustering to remember the places or objects that the ant has visited recently.

(5) Threshold b
The value of b tends to decrease gradually in the process of clustering. We can adjust b every 100 cycles by the fol-
lowing equation:
bðt þ 1Þ ¼
0:95bðtÞ if Modðt;100Þ ¼ 0;
bðtÞ otherwise:

�
ð18Þ
5. Experimental results and analysis

5.1. Evaluation functions

The following functions are used to evaluate the performance of the ACK algorithm and other clustering algorithms.

(1) The F-measure (F)
The F-measure combines the ideas of precision and recall from information retrieval. The precision and recall of a clus-
ter j (generated by the algorithm) with respect to a class i(given by the class labels of the dataset) are defined as
pði; jÞ ¼ nij=nj; ð19Þ
rði; jÞ ¼ nij=ni; ð20Þ

where nij is the number of elements of class i in cluster j, nj is the number of members in cluster j, and ni is the number
of members in cluster i.
The corresponding value under the F-measure is

Fði; jÞ ¼ ðb
2 þ 1Þ � pði; jÞ � rði; jÞ
b2 � pði; jÞ þ rði; jÞ

; ð21Þ

where we choose b = 1 to obtain equal weighting for p(i, j) and r(i, j). The overall F-value for the partitioning is

F ¼
Xk

i

ni

k
maxjfFði; jÞg; ð22Þ

where k is the total number the clusters. F is limited to the interval [0,1] and should be maximized.

(2) The Dunn Index (DI)

The Dunn Index determines the minimum ratio between inter-cluster distance and cluster diameter for a given par-
titioning. It captures the notion that, in a good clustering solution, data elements within one cluster should be much
closer to each other than to elements within different clusters. It is defined as
DI ¼ min
c;d2C

d lc;ld

� 	
maxe2C diamðeÞ½ �


 �
; ð23Þ

where C is the set of all clusters, the diameter diam(c) is computed as the maximum intra-cluster distance, and
d(lc,ld) is the distance between the centroids of clusters c and d. Cosine distance is applied in this study, and DI is
maximized.
(3) The inner cluster variance (ICV)
The inner cluster variance (ICV) computes the sum of squared deviations between all data items and their associated
cluster centre, which reflects that data elements within the individual cluster must be similar. It is given by
ICV ¼
X
c2C

X
i2c

d i;lc

� 	2
; ð24Þ

where C is the set of all clusters, lc is the centroid of cluster c, and d(i,lc) is the distance function employed to compute
the deviation between each data item i and its associated cluster centre. Cosine distance is applied in this study, and
ICV is minimized.
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(4) The error rate (ER)
The error rate is computed as
Table 3
The dat
items, N

Nam

Squa
2D3C
Ring
Line
Moo
Iris
Win
Wisc
Zoo
Yeas
ER ¼ nerror=N; ð25Þ

where nerror is the number of objects that are clustered falsely, and N is the total size of the dataset. This function re-
quires the class label to be known previously.
(5) Time cost (T)
All algorithms are performed on an Intel core E7200 2.53 GHz personal computer. ATTA is programmed in C++ and
executed in the Linux operating system, but all other algorithms are programmed in MATLAB and executed in the
Windows operating system.
All results presented through the evaluation functions were averaged over 10 runs.

5.2. Experimental data

Ten datasets, five synthetic and five real, were used to assess the algorithms. Some of these datasets are benchmarks that
have been widely applied in ant-based and kernel-based clustering. The datasets are briefly introduced in Table 3.

Square: The Square dataset has been used in many ant-based clustering algorithms. The dataset is two-dimensional and
consists of four clusters arranged as a square. The data are generated according to a normal distribution N(u,r2). The nor-
mal distributions of the four clusters in our study are as follows: (N(�5,2), N(�5,2)), (N(5,2), N(5,2)), (N(�5,2), N(5,2)),
and (N(5,2), N(�5,2)).
2D3C: This dataset is a variation of the Square. It consists of three clusters: two are normal distributions with different
standard deviations, and one is a uniform distribution. The densities of the three clusters are different.
Ring: This dataset is generated by two distributions: an isotropic Gaussian and a uniform ‘‘Ring’’ distribution. A total of
100 data points were drawn for each distribution.
Line: This dataset is composed of two clusters: one is Gaussian and one is linear with two parts.
Moon: This dataset includes two clusters of data with a valley structure. It is often used to test clustering algorithms such
as spectral clustering and manifold clustering.

The real datasets Iris, Wine, Wisconsin, Zoo, and Yeast all come from the database of University of California Irvine (UCI)
for machine learning [46]; these datasets are often used to test the performance of all kinds of algorithms.

All the datasets should be preprocessed using the following steps: the data vectors are normalized in each dimension;
then, the degree of similarity is computed using Euclidean distance and normalized to lie within the interval [0,1].

5.3. Comparison results and discussion

The ACK algorithm was compared with the following algorithms:

� The classic clustering algorithm
– K-means
� The classic kernel-based algorithm

– Kernel-based K-means (KK-means)
� Ant-based clustering algorithms

– LF algorithm [5,24]
– ATTA [18], which represents the latest modified algorithm of ant-based clustering
– Ant-based clustering with PCA (ACP) [45], which is an early version of our research. The initial projection of the objects

is modified by PCA, and ant-based clustering is performed in the input space. The other parts are the same as ACK
asets used for comparing ACK with other clustering algorithms (C is the number of the clusters, D is the dimensionality, N is the total number of the data
i is the number of items of cluster i).

e C D N Ni References

re 4 2 400 4 � 100 [2,16,17]
3 2 300 3 � 100 [16]
3 2 200 2 � 100 [11,14,31]
2 2 200 2 � 100 [35]

n 2 2 210 2 � 105 [3]
3 4 150 3 � 50 [2,5,14,16,31,36,39,41]

e 3 13 178 59, 71, 48 [2,5,31,36,39]
onsin 2 9 699 458, 241 [16,18]

7 16 101 41, 20, 5, 13, 4, 8, 10 [2,18]
t 10 8 1484 463, 429, 244, 163, 51, 44, 37, 30, 20, 5 [5,16,39]
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– ACP-F: The initial projection of the objects is modified by PCA, and ant-based clustering is performed in the feature
space. The other parts are the same as ACK

– ACK-I: The initial projection of the objects is modified by KPCA, and ant-based clustering is performed in the input
space. The other parts are the same as ACK

The design of ACP-F and ACK-I is used to compare PCA with KPCA and the clustering in the input space with that in the
feature space. The comparison results are shown in Tables 4 and 5.
5.3.1. Summary of the algorithm performance using synthetic and real datasets
For most datasets, ACK outperforms other algorithms in the clustering quality shown by the F-value, ICV, and ER, but it is

not the most efficient. KK-means shows a relative good performance in quality and efficiency; its improved performance in
comparison with K-means proves that the application of kernels is effective. Beyond ACK and KK-means, ATTA also exhibits
good performance, especially in terms of DI and time cost. As for some of the complex datasets, such as Zoo and Yeast, none
of the clustering algorithms can get satisfactory results.
5.3.2. Time cost
It can be seen that K-means and KK-means are highly efficient, but these two algorithms require a priori knowledge of the

number of clusters. In our experiment, they were run by being given the correct number of clusters.
For ant-based clustering, the time cost of LF is quite large because the ants move randomly and spend a lot of time finding

proper places to drop or pick up objects. Compared with LF, ACP, ACP-F, ACK-I and ACK are more efficient, because the ran-
dom projections of the patterns are modified. ATTA is the most efficient of all the algorithms, but we should note that ATTA’s
code is written in C++ and the program runs in the Linux operation system (because there are several modifications in ATTA,
it is difficult for us to implement ATTA in our code). The program was downloaded from Handl’s web site [47]), which saves
time compared to MATLAB code in the Windows operating system. Although ATTA is highly efficient, ACK outperforms it in
clustering quality, as shown by the F-value, ICV, and ER in most datasets, because ACK performs clustering in the feature
space after kernel mapping.
Table 4
Comparison of several algorithms using synthetic datasets (the best result is indicated by bold entity).

K-means KK-means LF ATTA ACP ACP-F ACK-I ACK

Square
F 0.983 0.984 0.894 0.980 0.964 0.978 0.968 0.989
ICV 0.357 0.352 0.393 0.376 0.382 0.372 0.380 0.296
DI 3.702 3.717 2.896 3.654 3.601 3.650 3.648 3.926
ER 0.99 0.99 2.05 1.02 1.85 1.06 1.23 0.97
T (s) 25.16 28.78 450.72 5.14 332.86 320.25 220.06 204.78

2D3C
F 0.982 0.985 0.978 0.981 0.980 0.980 0.978 0.983
ICV 0.447 0.439 0.496 0.453 0.489 0.467 0.451 0.448
DI 2.477 2.478 2.052 2.228 2.149 2.152 2.127 2.426
ER 0.94 0.93 3.47 1.12 1.12 0.94 1.13 0.95
T (s) 20.32 20.88 386.67 4.98 189.33 191.36 170.23 164.48

Ring
F 0.664 0.893 0.842 0.843 0.846 0.902 0.889 0.982
ICV 1.162 1.047 1.055 1.067 1.084 1.023 1.053 0.966
DI 1.349 1.714 1.478 1.895 1.712 1.903 1.715 1.900
ER 19.65 7.02 12.67 8.48 8.05 4.33 6.89 3.06
T (s) 25.26 27.69 238.45 8.46 201.89 210.46 101.38 85.66

Line
F 0.637 0.818 0.593 0.602 0.615 0.794 0.719 0.826
ICV 1.089 0.994 1.179 1.168 1.044 1.105 1.038 0.965
DI 1.252 1.297 0.973 1.058 1.024 1.396 1.377 1.489
ER 15.45 5.54 17.23 15.78 16.10 8.45 11.28 5.42
T (s) 23.35 23.46 296.46 7.97 194.58 220.72 177.80 163.26

Moon
F 0.794 0.890 0.748 0.838 0.829 0.864 0.833 0.882
ICV 0.829 0.792 0.910 0.804 0.813 0.793 0.806 0.795
DI 2.165 2.454 2.044 2.466 2.389 2.430 2.391 2.453
ER 9.05 6.72 11.30 9.47 10.58 7.83 8.49 7.43
T (s) 30.10 30.12 199.51 7.62 187.24 196.84 120.28 101.22



Table 5
Comparison of several algorithms using real datasets* (the best result is indicated by bold entity).

K-means KK-means LF ATTA ACP ACP-F ACK-I ACK

Iris
F 0.822 0.830 0.772 0.818 0.797 0.831 0.804 0.835
ICV 0.965 0.711 0.929 0.824 0.715 0.706 0.867 0.683
DI 2.669 2.686 2.118 2.923 2.446 2.673 2.502 2.898
ER 10.72 8.02 14.49 12.64 12.88 8.74 10.44 7.45
T (s) 30.75 31.66 186.15 3.30 150.84 130.29 96.78 80.42
Wine
F 0.813 0.859 0.856 0.855 0.842 0.861 0.845 0.868
ICV 2.672 2.408 2.872 2.493 2.445 2.402 2.436 2.332
DI 1.932 3.927 2.034 4.242 3.986 3.994 3.986 4.197
ER 5.24 3.14 3.90 3.85 4.12 3.08 4.09 3.02
T (s) 30.10 31.25 199.51 4.25 187.24 184.38 134.06 101.22

WI
F 0.956 0.960 0.874 0.968 0.966 0.968 0.972 0.972
ICV 2.009 1.894 2.052 1.613 1.748 1.510 1.332 1.032
DI 4.155 4.872 4.963 5.488 5.029 5.443 5.435 5.428
ER 4.24 4.20 6.03 4.08 4.15 4.12 3.89 3.42
T (s) 33.64 46.55 356.65 10.27 268.21 256.46 289.35 252.95

Zoo
F 0.774 0.804 0.785 0.825 0.789 0.816 0.793 0.818
ICV 2.531 2.525 2.507 2.484 2.550 2.492 2.502 2.492
DI 1.2836 1.386 1.147 1.396 1.384 1.559 1.147 1.562
ER 23.40 14.39 21.98 11.27 20.46 12.90 18.38 12.83
T (s) 10.58 10.69 166.65 6.62 78.44 86.22 79.40 80.95

Yeast
F 0.448 0.451 0.435 0.439 0.442 0.446 0.445 0.446
ICV 1.650 1.633 1.733 1.882 1.894 1.742 1.744 1.744
DI 0.8705 1.920 1.543 1.956 1.585 1.852 1.845 1.847
ER 52.47 50.69 61.08 57.14 54.20 53.38 51.84 52.63
T (s) 40.58 64.70 600.54 10.45 312.43 412.97 290.62 302.75

* Wisconsin is abbreviated as ‘‘WI’’ to save table space.
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5.3.3. KPCA vs. PCA
Fig. 1 shows the initial data, and the projections of the objects based on PCA and KPCA of the synthetic datasets. Fig. 2

shows the initial projections of the objects and the final clustering results of the real datasets. Some conclusions can be
drawn from Figs. 1 and 2.

� First, for most datasets, the projections based on PCA and KPCA can create rough clusters. Especially for the synthetic
datasets Square, 2D3C, and Ring, the initial projections clearly create clusters, and no further clustering is required.
� Projection based on KPCA is superior to that based on PCA. The non-linearly separable objects in PCA projection can be

linearly separable in KPCA projection, which is shown clearly in the Ring, Line, Moon, Iris, Wine, and Wisconsin datasets.
� The rough clusters after the projections can provide the basis for the following fine clustering and reduce the time cost

greatly. The time is reduced even if the rough clusters cannot be created clearly, such as in the dataset Yeast, which is the
dataset with the worst results. The modified projections can also create some small clusters, which then act as seeds that
collect other objects to create larger clusters.

Comparing ACP with ACK-I and ACP-F with ACK in Tables 4 and 5, we can see:

� In the same clustering space (whether the input space or the feature space), KPCA takes less time than PCA for most data
sets, and in particular for the Ring, Line, Moon, Iris, and Wine datasets.
� For some datasets, such as Square, 2D3C, Iris, and Wine, KPCA does not exhibit a significant improvement in clustering

quality compared with PCA. Thus, KPCA plays a more important role in terms of time cost than clustering quality.

5.3.4. Feature space vs. input space
Through comparing K-means with KK-means, ACP with ACP-F, ACK-I with ACK in Tables 4 and 5, some conclusions can be

drawn.

� The performance improvement of KK-means compared with K-means indicates that the application of kernels is effective.
� For ant-based clustering, the clustering quality in the feature space is better than in the input space (whether PCA or

KPCA). The improvement is obvious in the Ring, Line, Moon, Iris, and Wine datasets.
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Fig. 1. The initial data and projections of the synthetic datasets.
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� As for the 2D3C, Ring, Line, Moon, Zoo, and Yeast datasets, the time cost of ACP-F is higher than that of ACP, which indi-
cates that the accurate clustering results generate time expense. Thus, clustering in the feature space plays a more impor-
tant role in the clustering quality than in the time cost.



Iris-PCA ( C1, oC2,+C3) Iris-KPCA Iris-final clusters

Wine-PCA ( C1, oC2,+C3) Wine-KPCA Wine-final clusters

0 100 200 300 400
0

100

200

300

400

x

y

0 100 200 300 400
0

50

100

150

200

250

300

x

y

0 100 200 300 400
0

50

100

150

200

250

300

x

y

0 100 200 300 400 500 600
0

100

200

300

400

500

600

x

y

0 200 400 600 800
0

100

200

300

400

500

600

x

y

0 200 400 600 800
100

200

300

400

500

600

x

y

0 100 200 300 400 500
50

100

150

200

250

300

350

x

y

0 100 200 300 400 500
150

200

250

300

350

400

x

y

0 100 200 300 400 500
200

250

300

350

400

x

y

Zoo-PCA Zoo-KPCA Zoo-final clusters 

( C1,oC2,+C3, oC4, C5,+C6,+C7)                     

Yeast-PCA, Yeast-KPCA Yeast-final clusters 

( C1, oC2,+C3, C4, oC5,+C6, C7, oC8,+C9, C10) 

0 50 100 150
0

50

100

150

200

x

y

0 50 100 150
20

40

60

80

100

120

140

x

y

0 50 100 150
40

60

80

100

120

140

x

y

300 400 500 600 700 800
300

400

500

600

700

800

900

x

y

200 250 300 350 400 450 500 550

250

300

350

400

450

500

x

y

0 200 400 600 800
100

200

300

400

500

x

y

Wisconsin-PCA ( C1, oC2) Wisconsin-KPCA   Wisconsin-final clusters 

Fig. 2. The projections and final clustering results of the real datasets.
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For each dataset, Fig. 3 shows the ratio values of the distances between the centres in the feature space and those in the
input space. Because the distance matrix is symmetrical and the elements in the diagonal are zeros, only one half of the
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matrix is shown by the histograms. It can be seen from Fig. 3 that, for most datasets, the ratio values are larger than one,
which means that the clusters are more separable in the feature space than in the input space. Thus, the clustering in the
feature space more easily returns better results.
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In general, the performance of ACK is greatly improved by applying KPCA and clustering in the feature space. KPCA plays
an important role in time saving; at the same time, clustering in the feature space increases clustering quality. For some non-
linearly separable datasets, such as Ring, Line, and Moon, conventional ant-based clustering such as LF, ATTA, and ACP cannot
generate satisfactory results, while ACK performs very well. As for the real datasets Iris, Wine, and Wisconsin, the clustering
quality of ACK represented by the F-value, ICV, and ER, is also better than in conventional algorithms. For the Zoo and Yeast
datasets, no ant-based clustering can generate the correct number of clusters. In most cases, the numbers created are 6 for
Zoo and 5 for Yeast (the actual numbers are 7 and 10, respectively). The performance of ant-based clustering still needs to be
improved for complex datasets.

6. Conclusion

A novel ant-based clustering algorithm integrated with the kernel method was proposed in this paper. The algorithm
inherits some advantages of traditional ant-based algorithms. For example, it does not need any prior knowledge about clus-
tering. Its clustering results are visible, and it can be performed by parallel computing. Moreover, the algorithm has some
new characteristics. First, it can deal with some datasets with non-Gaussian distribution because of the incorporation of
the kernel function. Second, the projection based on KPCA creates rough clusters, which reduces the running time and in-
creases the algorithm’s efficiency. Finally, performing clustering in the feature space after kernel mapping can improve clus-
tering quality.

This paper mainly focuses on the basic process of ACK. Its application to additional datasets and improved methods to
adjust the parameters requires further study.
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