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Abstract

This paper proposes PSACO (particle swarm ant colony optimization) algorithm for highly non-convex optimization
problems. Both particle swarm optimization (PSO) and ant colony optimization (ACO) are co-operative, population-based
global search swarm intelligence metaheuristics. PSO is inspired by social behavior of bird flocking or fish schooling, while
ACO imitates foraging behavior of real life ants. In this study, we explore a simple pheromone-guided mechanism to
improve the performance of PSO method for optimization of multimodal continuous functions. The proposed PSACO
algorithm is tested on several benchmark functions from the usual literature. Numerical results comparisons with different
metaheuristics demonstrate the effectiveness and efficiency of the proposed PSACO method.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Particle swarm optimization; Ant colony; Metaheuristics; Global optimization; Multimodal continuous functions
1. Introduction

Swarm intelligence metaheuristics, namely, particle swarm optimization (PSO) and ant colony optimization
(ACO) are recently proved to be successful approaches to solve complex optimization problems. PSO algo-
rithm, whose concept began as a simulation of a simplified social milieu, is a powerful optimization technique
for solving multimodal continuous optimization problems [1–3]. While ACO approaches that imitate foraging
behavior of real life ants, are known to be efficient and robust for solution of combinatorial optimization
problems [4–7]. In this study, one of the ways of integrating the concepts of these two swarm intelligence meta-
heuristics for solution of multimodal continuous problems is explored.

Consider the following continuous global optimization problem as
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where f(x) is a highly non-convex function, which will in general have several local minima. In this study, we
consider only minimization of problem (F), without loss of generality, for maximization,
max f(x) = �min[�f(x)]. x is a real valued vector in a bounded space S ¼ fx 2 Rn; aj 6 xj 6 bj;
j ¼ 1; . . . ; ng � Rn. For solution of problem (F) in Eq. (1), until now there exist few hybrid implementations
of PSO algorithm with other local search methods. The first hybrid algorithm is called, NM-PSO [8] (Nelder–
Mead–particle swarm optimization), which comprises NM method at the top level, and PSO at the lower level.
In NM-PSO method 3n + 1 particles are initially randomly generated, where, n is the size of solution vector.
‘Best’ n + 1 solutions of total solutions are sent as initial points to NM method and remaining (worst) 2n solu-
tions to PSO method to generate a total of 3n + 1 new solutions. Global best particle is selected from 3n + 1
particles and neighborhood best particles by evenly dividing the 2n particles into n neighborhoods according
to objective function value and velocity update is applied on the 2n particles. CPSO [9] (chaotic particle swarm
optimization) algorithm applies PSO to perform global exploration and chaotic local search to perform local
search on the solutions produced in the global exploration process.

This paper proposes improved particle swarm optimization hybridized with an ant colony approach, called
PSACO (particle swarm ant colony optimization), for optimization of multimodal continuous functions. The
proposed method applies PSO for global optimization and the idea of ant colony approach to update posi-
tions of particles to attain rapidly the feasible solution space. The implementation of PSACO algorithm con-
sists of two stages. In the first stage, it applies PSO, while ACO is implemented in the second stage. ACO
works as a local search, wherein, ants apply pheromone-guided mechanism to update the positions found
by the particles in the earlier stage. The implementation of ACO in the second stage of PSACO is based
on the studies by Angeline [10] which showed that (1) PSO discovers reasonable quality solutions much faster
than other evolutionary algorithms, and (2) if the swarm is going to be in equilibrium, the evolution process
will be stagnated as time goes on. Thus, PSO does not possess the ability to improve upon the quality of the
solutions as the number of generations is increased. The proposed PSACO method is tested on several widely
used benchmark multimodal continuous functions. Numerical results are compared with the some other
hybrid PSO methods and non-PSO methods available in the usual literature. The performance study demon-
strates the effectiveness and efficiency of the proposed PSACO approach.

The remaining content of this paper is organized as follows: In Section 2, particle swarm optimization algo-
rithm and the concept of ant colony method are briefly explained before delineating the proposed PSACO
algorithm. The computational results are discussed in Section 3 and conclusions and directions of future work
are given in Section 4. In Appendix A, several widely used test functions are given. They are applied in this
paper to study the performance of the proposed PSACO method.
2. Improved particle swarm optimization

To make the paper self-explanatory, before actually proposing the improved particle swarm optimization
using ant colony approach, the characteristics of particle swarm optimization algorithm and the principle of
an ant colony approach are briefly explained in the following two sections as:
2.1. Particle swarm optimization (PSO)

PSO is a population-based, co-operative search metaheuristic introduced by Kennedy and Eberhart [11]. In
PSO, candidate solutions of a population, called particles, coexist and evolve simultaneously based on knowl-
edge sharing with neighboring particles. While flying through the problem search space, each particle gener-
ates a solution using directed velocity vector. Each particle modifies its velocity to find a better solution
(position) by applying its own flying experience (i.e. memory having best position found in the earlier flights)
and experience of neighboring particles (i.e. best-found solution of the population). Particles update their posi-
tions and velocities as shown below:
vi
tþ1 ¼ wtvi

t þ c1r1ðpi
t � xi

tÞ þ c2r2ðpg
t � xi

tÞ; ð2Þ
xi

tþ1 ¼ xi
t þ vi

tþ1; ð3Þ
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where xi
t represents the current position of particle i in solution space and subscript t indicates an iteration

count; pi
t is the best-found position of particle i up to iteration count t and represents the cognitive contribu-

tion to the search velocity vi
t. Each component of vi

t can be clamped to the range [�vmax,vmax] to control exces-
sive roaming of particles outside the search space; pg

t is the global best-found position among all particles in
the swarm up to iteration count t and forms the social contribution to the velocity vector; r1 and r2 are random
numbers uniformly distributed in the interval (0, 1), while c1 and c2 are the cognitive and social scaling param-
eters, respectively; wt is the particle inertia, which is reduced dynamically to decrease the search area in a grad-
ual fashion [12]. The variable wt is updated as
wt ¼ ðwmax � wminÞ �
ðtmax � tÞ

tmax

þ wmin; ð4Þ
where, wmax and wmin denote the maximum and minimum of wt respectively; tmax is a given number of max-
imum iterations. Particle i flies toward a new position according to Eqs. (2) and (3). In this way, all particles P

of the swarm find their new positions and apply these new positions to update their individual best pi
t points

and global best pg
t of the swarm. This process is repeated until iteration count t = tmax (a user-defined stopping

criterion is reached). The pseudo-code of PSO is given in Fig. 1, where, P denotes the number of particles in
the population; f ðxi

tÞ represents the objective function value of particle i at position x, while f best
t ðxbest

t Þ repre-
sents the best function value in the population of solutions P at iteration count t.
Fig. 1. Pseudo-code for PSO algorithm.
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2.2. Ant colony optimization (ACO)

ACO is a multiagent approach that simulates the foraging behavior of ants for solving difficult combina-
torial optimization problems, such as, the traveling salesman problem and the quadratic assignment problem
[5]. Ants are social insects whose behavior is directed more toward the survival of the colony as a whole than
that of a single individual of the colony. An important and interesting behavior of an ant colony is its indirect
co-operative foraging process. While walking from food sources to the nest and vice versa, ants deposit a sub-
stance, called pheromone on the ground and form a pheromone trail. Ants can smell pheromone, when choos-
ing their way, they tend to choose, with high probability, paths marked by strong pheromone concentrations
(shorter paths). Also, other ants can use pheromone to find the locations of food sources found by their nest
mates. In fact, ACO simulates the optimization of ant foraging behavior. Recently, there are few adaptations
of ACO for solution of continuous optimization problems [13,14]. In this work, a simple pheromone-guided
search mechanism of ant colony is implemented which acts locally to synchronize positions of the particles of
PSO to quickly attain the feasible domain of objective function.
Fig. 2. Pseudo-code for PSACO algorithm.
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2.3. Hybridization of particle swarm optimization with an ant colony approach

This section describes the implementation of proposed improvement in particle swarm optimization using
an ant colony approach. The proposed method, called, PSACO (particle swarm ant colony optimization) is
based on the common characteristics of both PSO and ACO algorithms, like, survival as a swarm (colony)
by coexistence and cooperation, individual contribution to food searching by a particle (an ant) by sharing
information locally and globally in the swarm (colony) between particles (ants), etc. The implementation of
PSACO algorithm consists of two stages. In the first stage, it applies PSO, while ACO is implemented in
the second stage. ACO works as a local search, wherein, ants apply pheromone-guided mechanism to refine
the positions found by particles in the PSO stage. In PSACO, a simple pheromone-guided mechanism of ACO
is proposed to apply as local search. The proposed ACO algorithm handles P ants equal to the number of
particles in PSO. Each ant i generates a solution zi

t around pg
t the global best-found position among all par-

ticles in the swarm up to iteration count t as
zi
t ¼N pg

t ; r
� �

: ð5Þ
In Eq. (5), we generate components of solution vector zi
t, which satisfy Gaussian distributions with mean pg

t

and standard deviation r, where, initially at t = 1 value of r = 1 and is updated at the end of each iteration
as r = r · d, where, d is a parameter in (0.25,0.997) and if r < rmin then r = rmin, where, rmin is a parameter in
(10�2, 10�4). Compute objective function value f ðzi

tÞ using zi
t and replace position xi

t the current position of
particle i in the swarm if f ðzi

tÞ < f ðxi
tÞ as xi

t ¼ zi
t and f ðxi

tÞ ¼ f ðzi
tÞ. This simple pheromone-guided mechanism

considers, there is highest density of trails (single pheromone spot) at the global best solution pg
t of the swarm

at any iteration t + 1 in each stage of ACO implementation and all ants P search for better solutions in the
neighborhood of the global best solution. In the beginning of the search process, ants explore larger search
area in the neighborhood of pg

t due to the high value of standard deviation r and intensify the search around
pg

t as the algorithm progresses. Thus, ACO helps PSO process not only to efficiently perform global explora-
tion for rapidly attaining the feasible solution space but also to effectively reach optimal or near optimal
solution.

The pseudo-code of PSACO method is given in Fig. 2. The algorithm starts with initializing parameters of
both PSO and ACO methods. The first stage consists of PSO, which generates P solutions using Eqs. (2) and
(3). Objective function values are computed as f ðxi

tÞ. ACO is applied in the second stage to update the posi-
tions of particles in the swarm. This process is repeated until iteration count t = tmax.
3. Results and discussion

The performance of the proposed PSACO algorithm for global optimization of continuous function is
tested on several well-known benchmark multimodal problems. They are listed in Appendix A. All the test
functions are multimodal in nature. Because of the characteristics, it is difficult to seek for the global minima.
PSACO algorithm parameter settings used in all the simulations is given as: number of particles, P = 10; cog-
nitive and social scaling parameters, c1 = 2, c2 = 2; maximum and minimum values of inertia weights,
wmax = 0.7, wmin = 0.4; maximum number of iterations, tmax = 100 * n, n is the size of solution vector. To
gauge the performance of the proposed PSACO method with the performance of some other existing hybrid
PSO methods and non-PSO methods, several sets of experiments are carried out and results are given in Tables
1–6. Table 7 lists different global optimization methods used for performance analysis. The details of exper-
iments conducted are given below.

3.1. Results with fixed number of iterations

To compare the performance of PSACO with the performance of CPSO [9] (chaotic particle swarm opti-
mization), Table 1 reports the results produced by PSACO after 2000 function evaluations in terms of mean
value of objective function over 50 independent runs. The performance of CPSO, PSO and GA algorithms
reported in [9] is also shown in Table 1. From Table 1, it can be observed that the results obtained by both



Table 1
Fixed iteration experiments results with PSACO algorithm

Function Average objective function value

PSACO CPSO PSO GA

GP 3.0000 3.0000 4.6202 3.1471
BR 0.3979 0.3979 0.4960 0.4021
HR3,4 �3.8628 �3.8610 �3.8572 �3.8571
HR6,4 �3.3198 �3.1953 �2.8943 �3.0212
RA2 �1.9999 �1.9940 �1.9702 �1.9645
SH �186.7309 �186.7274 �180.3265 �182.1840

Table 2
Results of robustness analysis for PSACO algorithm

Function PSACO CPSO PSO GA

SR AVEN SR AVEN SR AVEN SR AVEN

GP 100 157 100 192 98 1397 98 536
BR 100 156 100 154 94 743 92 1682
HR3,4 100 159 90 119 96 183 16 112
HR6,4 98 263 96 2551 26 3796 94 5727
RA2 100 112 98 653 100 1160 84 238
SH 100 307 100 360 98 1337 98 1516

Overall 99 192 97 672 85 1436 80 1635

Table 3
Performance of PSACO and NM-PSO on 17 test functions

Function Required
accuracy

% Success rate Average number of function evaluations Average error

PSACO NM-PSO PSACO NM-PSO PSACO NM-PSO

BR 1e�3 100 100 209 151 2.6185e�13 0.00003
ES 1e�3 100 100 254 165 0.0000000 0.00004
GP 1e�3 100 100 240 217 0.0000000 0.00003
B2 1e�2 100 100 370 240 5.5511e�17 0.00003
SH 1e�2 100 100 534 400 1.0239e�09 0.00002
RS2 1e�3 100 100 327 339 1.7152e�10 0.00003
ZA2 1e�4 100 100 167 135 5.7061e�27 0.00003
DJ 1e�4 100 100 190 291 7.6900e�29 0.00005
H3,4 1e�4 100 100 592 271 2.0755e�11 0.00024
S4,5 1e�4 100 100 482 1177 5.8229e�11 0.00020
S4,7 1e�4 100 100 483 1130 1.8134e�10 0.00017
S4,10 1e�4 100 100 489 1179 3.0795e�10 0.00015
RS5 1e�2 100 100 517 3308 1.8538e�04 0.00560
ZA5 1e�4 100 100 516 1394 3.6352e�17 0.00026
H6,4 1e�3 96 100 529 1541 4.4789e�11 0.00250
GR8 1e�3 87 100 1081 1354 6.2311e�22 0.00041
GR10 1e�3 86 100 1634 2024 1.2197e�15 0.00058

Table 4
Summary of results reported in Table 3

Dimension % Success rate Average number of function evaluations Average error

PSACO NM-PSO PSACO NM-PSO PSACO NM-PSO

n < 4 100 100 286 245 1.4946e�10 0.00006
n P 4 97 100 703 1638 2.0598e�05 0.00123

overall 99 100 495 901 1.0299e�05 0.00061
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Table 5
Summary of results reported in Table 3

Function Required
accuracy

% Success rate Average number of function evaluations Average error

PSACO CTSS CHA PSACO CTSS CHA PSACO CTSS CHA

BR 1e�3 100 100 100 209 125 295 2.6185e�13 0.005 0.0001
ES 1e�3 100 100 100 254 325 952 0.0000000 0.005 0.001
GP 1e�3 100 100 100 240 119 259 0.0000000 0.001 0.001
B2 1e�2 100 100 100 370 98 132 5.5511e�17 5e�6 2e�7
SH 1e�2 100 100 100 534 283 345 1.0239e�09 0.001 0.005
RS2 1e�3 100 100 100 327 369 459 1.7152e�10 0.004 0.004
ZA2 1e�4 100 100 100 167 78 215 5.7061e�27 3e�7 3e�6
DJ 1e�4 100 100 100 190 155 371 7.6900e�29 0.0002 0.0002
H3,4 1e�4 100 100 100 592 225 492 2.0755e�11 0.005 0.005
S4,5 1e�4 100 75 85 482 538 598 5.8229e�11 0.007 0.007
S4,7 1e�4 100 77 83 483 590 620 1.8134e�10 0.001 0.01
S4,10 1e�4 100 74 81 489 555 635 3.0795e�10 0.001 0.015

Overall 2e�3 100 94 96 361 288 448 1.4700e�10 0.0025 0.004
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PSACO and CPSO are much closer to the theoretical optima, and the proposed PSACO method is superior to
all the methods in terms of the searching quality and derivation of results.

3.2. Robustness analysis of the proposed PSACO

Table 2 shows the robustness analysis results for the proposed PSACO. For comparison with CPSO [9], this
paper has adopted two robustness measures, called, succeed ratio (SR) and average valid evaluation number
(AVEN) given as follows:
SR ¼ 100N s

50
; ð6Þ

AVEN ¼
PNs

i¼1Ni

N s
; ð7Þ
where Ns is the total number of success runs from 50 independent runs. Ni is the function evaluation number
of the ith success run. In case a solution obtained has the objective function value within 3.5% of its global
optimum then it is called a success run and its function evaluation number is stored. Table 2 lists the SR
and AVEN values produced by PSACO algorithm. For comparison purpose, Table 2 also shows the SR
and AVEN values for CPSO, PSO and GA methods reported in [9]. From Table 2 it can be seen that PSACO
can find global optima with very high probability for every function even with small function evaluation num-
ber. Besides, for those valid runs, it costs the least average function evaluation number. Thus, indirect co-oper-
ative search of ant colony approach has helped PSO to improve its effectiveness and reliability for complex
numerical optimization.

3.3. Performance comparison of PSACO with NM-PSO

The results presented in Tables 3 and 4 are based on 100 independent runs of the proposed PSACO method
on each of 17 test functions. All the test examples are multimodal functions and are given in Appendix A. In
order to have comparable results, the accuracy was chosen based on the results of NM-PSO algorithm
reported in [8]. Results reported in Table 3 are in terms of, the rate of successful minimizations, the average
of the objective function evaluation numbers, and the average error. The average of the objective function
evaluation numbers is evaluated in relation to only the ‘successful minimizations.’ The mean error is defined
as the average of the difference between the best successful point found and the known global optimum, where
only the ‘successful minimizations’ achieved by the algorithm are considered. The term ‘successful minimiza-
tions’ is the number of successful runs. In the successful runs the algorithm generates the best solution of



Table 6
Comparison of results of PSACO and non-PSO methods on 10–100 dimension functions

Function Required
accuracy

% Success rate Average number of function evaluations Average error

PSACO NHGA CHA CGA ECTS PSACO NHGA CHA CGA ECTS PSACO NHGA CHA CGA ECTS

RS10 1e�2 95 100 83 80 85 1541 6257 14563 21563 15720 4e�04 3e�03 8e�3 0.02 0.02
RS50 1e�2 88 100 79 78 75 10433 44706 55356 78356 63210 3e�03 4e�03 5e�3 0.05 0.02
RS100 1e�2 86 100 72 66 75 24236 87582 124302 194302 162532 4e�03 4e�03 8e�3 0.07 0.05
ZA10 1e�3 100 100 100 100 100 2299 10734 4291 6991 4630 2e�08 1e�6 1e�6 1e�6 2e�7
ZA50 1e�3 100 100 100 100 100 47288 84327 75520 75201 63970 4e�06 1e�5 1e�5 1e�5 2e�7
ZA100 1e�3 100 100 100 100 100 145648 141430 95246 195246 152030 4e�05 1e�3 1e�3 1e�3 1e�3
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Table 7
Global optimization methods used for performance analysis

Method Reference

Particle swarm ant colony optimization (PSACO) This paper
Chaotic particle swarm optimization (CPSO) [9]
Particle swarm optimization (PSO) [9]
Genetic algorithm (GA) [9]
Nelder–Mead–particle swarm optimization (NM-PSO) [8]
Continuous hybrid algorithm (CHA) [15]
Continuous tabu simplex search (CTSS) [16]
Niche hybrid GA (NHGA) [18]
Continuous GA (CGA) [19]
Enhanced continuous tabu search (ECTS) [20]
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‘required accuracy’, where, ‘required accuracy’ is a given maximum value to consider that the algorithm has
successfully found the solution. It is calculated as the absolute difference in the best solution found and the
global optimum. The results obtained by NM-PSO method are also given in Table 3. Results reported in Table
3 show that NM-PSO method seems to converge more quickly in cases of lower dimensions (n < 4), and in
cases of higher dimensions (n P 4) the proposed PSACO converges more effectively to the global optimum
than the NM-PSO method. In order to gain a better knowledge of how PSACO algorithm performs under
different problem sizes, a summary report of the three algorithms based on the results shown in Table 3 is tab-
ulated in Table 4. The problems are further divided into two groups n < 4 and n P 4 based on their sizes. As
shown in Table 4, for larger dimensions, PSACO algorithm presents better saving of function evaluations over
NM-PSO algorithm. Regarding the average error, PSACO method finds solutions with higher accuracy than
NM-PSO algorithm in both categories.

3.4. Additional comparison with non-PSO hybrid methods

The performance of PSACO algorithm has been further compared with two recently published hybrid algo-
rithms, including, CHA [15] (continuous hybrid algorithm) and CTSS [16] (continuous tabu simplex search).
The experimental results obtained for 12 test functions are given in Table 5, which reports the average number
of function evaluations, the average of the objective function evaluation numbers, and the average error for
100 runs of each function. From Table 5, it can be observed that PSACO obtained solutions with highest aver-
age error accuracy of 2e�10 with 100% performance on all examples. In view of the algorithm efficiency and
effectiveness in term of this ‘smaller’ set of test functions, it can be anticipated that PSACO approach remains
quite competitive as compared to the other existing methods.

3.5. Experiments to study the effect of high dimension

To investigate the effect of high dimension on searching quality of the proposed PSACO method, Ackley
function is chosen for the test whose global minimum is f(x) = 0 at x = 0. This benchmark example has thou-
sands of minima in the region and is very difficult to be optimized [17]. Liu et al. [9] also used this function to
investigate the curse of dimensionality on the CPSO algorithm, which was run 10 times for Ackley function
with different dimensions. A total number of function evaluations were set as 4 · 105. Fig. 3 illustrates the
varying curve of the mean objective value obtained by PSACO in 10 independent runs with respect to different
dimensions. The PSACO was also run for a maximum of 4 · 105 function evaluations. From Fig. 3, it can be
seen that the performance of PSACO algorithm is very good even for high dimension of problem. For com-
parison purpose, the average objective value reported by PSACO method is close to three units for Ackley
function of dimension equal to 1000 while that reported by CPSO, PSO and GA methods in [9] is more than
six units. The effect of dimension is also tested on two widely used difficult benchmark examples, viz., Rosen-
brock and Zakharov with dimension of 10–100. Table 6 reports the average number of function evaluations,
the average of the objective function evaluation numbers, and the average error for 100 runs of each function.
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For comparison purpose, the results produced by other methods, CHA [15], NHGA [18] (Niche Hybrid GA),
CGA [19] (continuous GA) and ECTS [20] (enhanced continuous tabu search) are also given in Table 6. The
results show that PSACO method is a viable alternative to other metaheuristics to solve even moderate to high
dimension multimodal functions.

4. Conclusions

This paper has proposed PSACO (particle swarm ant colony optimization) algorithm for solution of highly
non-convex problems. A simple pheromone-guided local search is implemented to improve the performance of
particle swarm optimization algorithm. The results show that ACO helps PSO process not only to efficiently
perform global exploration for rapidly attaining the feasible solution space but also to effectively reach opti-
mal or near optimal solution. The comparisons of numerical results with other hybrid PSO and non-PSO
methods show that there is a scope of research in hybridizing swarm intelligence methods to solve difficult con-
tinuous optimization problems.

Appendix A
Goldstein–Price (GP) (2 variables)
GP ðx1; x2Þ ¼ ð1þ ðx1 þ x2 þ 1Þ2ð19� 14ðx1 þ x2Þ þ 3ðx2
1 þ x2

2Þ þ 6x1x2ÞÞ
� ð30þ ð2x1 � 3x2Þ2ð18� 32x1 þ 12x2

1 þ 48x2 � 36x1x2 þ 27x2
2ÞÞ;
• search domain: �2 6 x1, x2 6 2;
• four local minima;
• global minimum: (x1,x2) = (0,�1), GP(x1,x2) = 3.

Branin (BR) (2 variables)
BRðx1; x2Þ ¼ x2 �
5:1

4p2
x2

1 þ
5

p
x1 � 6

� �2

þ 10 1� 1

8p

� �
cosðx1Þ þ 10;
• search domain: �5 6 x1 6 10, 0 < x2 < 15;
• no local minimum;
• three global minima: (�p, 12.275), (p, 2.275), (3p, 2.475);
• BR(x1,x2) = 5/4p.
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Rastrigin (RA) (2 variables)

RAðx1; x2Þ ¼ x2
1 þ x2

2 � cosð18x1Þ � cosð18x2Þ;

• search domain: �1 6 x1, x2 6 1;
• 50 local minima;
• global minimum: (x1,x2) = (0, 0), RA(x1,x2) = �2.

Shubert (SH) (2 variables)
SHðx1; x2Þ ¼
X5

i¼1

i cosððiþ 1Þx1 þ iÞ
 ! X5

i¼1

i cosððiþ 1Þx2 þ iÞ
 !

;

• search domain: �10 6 x1, x2 6 10;
• 760 local minima;
• 18 global minima with SH(x1,x2) = 0.

Hartman (HR3,4) (3 variables)
HR3;4 ¼
X4

i¼1

ci exp �
Xn

j¼1

aijðxj � pijÞ
2

" #
;

• search domain: 0 6 xj 6 1, j = 1, . . . , 3;
• four local minima;
• one global minimum: x = (0.11, 0.555, 0.855); HR3,4(x) = �3.86278.
ai1 ai2 ai3 ci pi1 pi2 pi3

3 10 30 1 0.3689 0.1170 0.2673
0.1 10 35 1.2 0.4699 0.4387 0.7470
3 10 30 3 0.1091 0.8742 0.5547
0.1 10 35 3.2 0.03815 0.5743 0.8828
Hartman (HR6,4) (6 variables)
HR3;4 ¼
X4

i¼1

ci exp �
Xn

j¼1

aijðxj � pijÞ
2

" #
;

• search domain: 0 6 xj 6 1, j = 1, . . . , 6;
• four local minima;
• one global minimum: x = (0.201, 0.150, 0.477,0.275, 0.311, 0.657); HR6,4(x) = �3.32.
ai1 ai2 ai3 ai4 ai5 ai6 ci

10.0 3.0 17.0 3.5 1.7 8.0 1.0
0.05 10.0 17.0 0.1 8.0 14.0 1.2
3.0 3.5 1.7 10.0 17.0 8.0 3.0

17.0 8.0 0.05 10.0 0.1 14.0 3.2



i pi1 pi2 pi3 pi4 pi5 pi6

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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De Joung (DJ) (3 variables)

DJðxÞ ¼ x2
1 þ x2

2 þ x2
3;
• search domain: �5.12 6 xj 6 5.12, j = 1, . . . ,n;
• global minimum: x = (0.0,0.0, . . . , 0.0); DJ(x) = 0.0.

Ackley (AKn) (n variables)
AKnðxÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

x2
i

s !
� exp

1

n

Xn

i¼1

cosð2pxiÞ
 !

þ 20þ e;
• 11 functions were considered: AK50,AK100,AK200, . . . ,ZA1000;
• search domain: �32 6 xj 6 32, j = 1, . . . ,n;
• several local minima (exact number of local minima unspecified in the usual literature);
• one global minimum: x = (0, . . . , 0); AKn(x) = 0.

Rosenbrock (RSn) (n variables)
RSnðxÞ ¼
Xn�1

j¼1

½100ðx2
j � xjþ1Þ2 þ ðxj � 1Þ2�:
• Five functions were considered: RS2, RS5, RS10, RS50 and RS100;
• search domain: � 5 6 xj 6 10, j = 1, . . . ,n;
• several local minima (exact number of local minima unspecified in the usual literature);
• one global minimum: x = (1, . . . , 1); RSn(x) = 0.

Zakharov (ZAn) (n variables)
ZAnðxÞ ¼
Xn

j¼1

x2
j þ

Xn

j¼1

0:5jxj

 !2

þ
Xn

j¼1

0:5jxj

 !4

:

• Five functions were considered: ZA2, ZA5, ZA10, ZA50 and ZA100;
• search domain: �5 6 xj 6 10, j = 1, . . . ,n;
• several local minima (exact number of local minima unspecified in the usual literature);
• one global minimum:x = (0, . . . , 0); ZAn(x) = 0.

Griewank (GRn) (n variables)
GRnðxÞ ¼
Xn

j¼1

x2
j

,
4000�

Yn

i¼1

cos
xiffiffi

i
p
� �

þ 1;
• two functions were considered: GR8, GR10;
• search domain: �300 6 xj 6 600, j = 1, . . . ,n;
• several local minima (exact number of local minima unspecified in the usual literature);
• one global minimum: x = (0, . . . , 0); GRn(x) = 0.
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Shekel (S4, n) (4 variables)
i

1
2
3
4
5
6
7
8
9
10
S4;nðxÞ ¼ �
Xn

i¼1

½ðx� aiÞTðx� aiÞ þ ci��1
;

x ¼ ðx1; x2; x3; x4Þ; ai ¼ ða1
i ; a

2
i ; a

3
i ; a

4
i Þ

T
;

• three functions S4, n were considered: S4,5, S4,7, S4,10;
• search domain: 0 6 xj 6 10, j = 1, . . . ,n;
• n local minima (n = 5,7, or 10): aT

i ¼ ith local minimum approximation:
• S4;nðaT

i Þ ffi �1=ci;
• S4,5(n = 5)5 minima with one global minimum: S4,5(x) = �10.1532;
• S4,7(n = 7)7 minima with one global minimum: S4,7(x) = �10.40294;
• S4,10(n = 7)7 minima with one global minimum: S4,10(x) = �10.53641.
aT
i ci

4.0 4.0 4.0 4.0 0.1
1.0 1.0 1.0 1.0 0.2
8.0 8.0 8.0 8.0 0.2
6.0 6.0 6.0 6.0 0.4
3.0 7.0 3.0 7.0 0.4
2.0 9.0 2.0 9.0 0.6
5.0 5.0 3.0 3.0 0.3
8.0 1.0 8.0 1.0 0.7
6.0 2.0 6.0 2.0 0.5
7.0 3.6 7.0 3.6 0.5
B2 (2 variables)

B2ðx1; x2Þ ¼ x2
1 þ 2x2

2 � 0:3 cosð3px1Þ � 0:4 cosð4px2Þ þ 0:7;
• search domain: �100 6 xj 6 100, j = 1, . . . ,n;
• several local minima (exact number of local minima unspecified in the usual literature);
• one global minimum: (x1,x2) = (0, 0); B2(x1,x2) = 0.

Easom (ES) (2 variables)
ESðx1; x2Þ ¼ � cosðx1Þ cosðx2Þ expð�½ðx1 � pÞ2 þ ðx2 � pÞ2�Þ;

• search domain: �100 6 xj 6 100, j = 1, . . . ,n;

• several local minima (exact number of local minima unspecified in the usual literature);
• one global minimum: (x1,x2) = (p,p); B2(x1,x2) = �1.
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