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a  b  s  t  r  a  c  t

Clustering  divides  data  into  meaningful  or useful  groups  (clusters)  without  any  prior  knowledge.  It  is a  key
technique  in  data  mining  and  has  become  an important  issue  in  many  fields.  This article  presents  a  new
clustering  algorithm  based  on  the  mechanism  analysis  of  chaotic  ant  swarm  (CAS).  It is an  optimization
methodology  for clustering  problem  which  aims  to obtain  global  optimal  assignment  by minimizing  the
eywords:
ata mining
ata clustering
haotic ant swarmoptimization
ptimization based clustering

objective  function.  The  proposed  algorithm  combines  three  advantages  into  one:  finding  global  optimal
solution  to  the objective  function,  not  sensitive  to  clusters  with  different  size  and  density  and  suitable  to
multi-dimensional  data  sets.  The  quality  of  this  approach  is  evaluated  on  several  well-known  benchmark
data  sets.  Compared  with  the  popular  clustering  method  named  k-means  algorithm  and  the  PSO-based
clustering  technique,  experimental  results  show  that  our  algorithm  is an  effective  clustering  technique
and  can  be  used  to handle  data  sets  with  complex  cluster  sizes,  densities  and  multiple  dimensions.
. Introduction

Clustering is the unsupervised classification of patterns (obser-
ations, data items, or feature vectors) into groups (clusters) [1].
n the past fifty years, many attentions have been focused on the
roblem of clustering from the theoretical and the practical point of
iew. Such problem has been addressed in diverse areas such as pat-
ern recognition, data analysis, image processing, economic science
especially market research) and biology. So the study about new
lustering algorithms is an important issue in the research fields
ncluding data mining, machine learning, statistics, and biology.

In recent years, different clustering algorithms have been pro-
osed, such as partitioning [14,16], hierarchical [5],  density-based
7],  grid-based [23] and model-based [2].  Partitioning approach
onstructs different partitions based on a certain criterion. For hard
artitional clustering, each pattern belongs to one and only one
luster. Fuzzy clustering [9,10] extends this notion that each pat-
ern may  belong to all clusters with a degree of membership. Apart
rom the above techniques, kernel k-means and spectral cluster-
ng have both been used to identify clusters that are non-linearly
eparable in input space [11–13].
k-means algorithm [14] is the most popular approach because
f its simplicity, efficiency and low cost of computation. However,
ince criterion functions for clustering are usually non-convex and
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nonlinear, traditional approaches, especially the k-means algo-
rithm, is sensitive to initializations and easy to be trapped in local
optimal solutions [4].  As the increasing numbers and dimensions
of data sets, finding solutions to the criterion functions has become
an NP-hard problem. Since the importance of clustering strategies
in many fields, global optimization methods, such as genetic
algorithms (GA), ant colony optimization (ACO) and particle
swarm optimization (PSO), have been applied to solve clustering
problems [8,6,24,15].  When solving clustering problems, these
algorithms start from an initial population or position and explore
the solution space through a number of iterations to reach a near
optimal solution.

Swarm Intelligence (SI) is an innovative distributed intelligent
paradigm for solving optimization problems that originally took its
inspiration from the biological examples by swarming, flocking and
herding phenomena in vertebrates [6].  Chaotic ant swarm (CAS)
[17] is an optimization algorithm inspired by chaotic behavior of
ant swarm which has been applied in several fields [18,20,19].  How-
ever, there is few application of CAS in data clustering. Moreover, as
a latest optimization methodology, mathematical modelling, mod-
ification, and adaptation of the algorithm might be a major part of
the research on CAS in future.

In this paper, we propose a clustering algorithm based on the
principles of chaotic ant swarm search method and build a new
optimization model for discovering clusters, which is a chaotic

optimization version to solve clustering problems. In our algo-
rithm, no centroid or center needs to be selected in the initial
step. Meanwhile, in order to overcome the drawbacks of traditional
algorithms, the proposed algorithm combines the following three

dx.doi.org/10.1016/j.asoc.2012.03.037
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:wanmiao120@163.com
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dvantages into one: (1) Find a global optimum clustering result;
2) Have a good algorithm performance for high-dimensional data;
3) Not sensitive to clusters with different size and density.

. Background

.1. Optimization based clustering

Clustering is a data mining technique which classifies objects
nto groups (clusters) without any prior knowledge. The problem
f common clustering can be formally started as follows. Given a
ample data set X = {x1, x2, . . .,  xn}, determine a partition of the
bjects into K clusters C1, C2, . . .,  CK which satisfies:⋃K

i=1Ci = X;
Ci

⋂
Cj = ∅, i, j = 1, 2, . . . , K; i /= j;

Ci /= ∅, i = 1, 2, . . . , K.

(1)

In the viewpoint of mathematics, cluster Ci can be determined
y:

Ci = {xj | ‖xj − zi‖ ≤ ‖xj − zp‖, xj ∈ X}, p /= i, p = 1, 2, . . . , K,

zi =
1

| Ci |
∑
xj∈Ci

xj, i = 1, 2, . . . , K, (2)

here ‖· ‖ denotes the distance of any two data points in the sam-
le set. zi is the center of cluster Ci, which is represented by the
verage(mean) of all the points in the cluster.

We  can see from Eq. (2) that Ci is composed by some data items
earest to zi. So the task of clustering can be seen as a process of
etermining k centers of {C1, C2, . . .,  CK}.

A clustering criterion must be adopted. The most commonly
sed criterion in clustering task is the sum of squared error (SSE)
26]:

SE =
K∑
i=1

∑
xj∈Ci

‖xj − zi‖2. (3)

For each data in the given set, the error is the distance to the
earest cluster. The general objective of clustering is to obtain that
artition which, for fixed number of clusters, minimizes the square-
rror.

Thus, the clustering problem is converted to a process of search-
ng K centers z1, z2, . . .,  zK, which can minimize the sum of distance
etween all the sample data xi and its closest center. This could
e considered as a function optimization issue with the objective
unction as SSE.

.2. Chaotic ant swarm (CAS) optimization

Social insects with self-organizing behavior, for example, ants,
ave attained the attention of many scientists and researchers.
he colony of these insects can achieve high level of structure
nd success of foraging activities while individuals in the colony
nly take simple tasks and act aperiodically. Existing ant-inspired
ptimization algorithms are mainly based on the random meta-
euristic of nondeterministic probability theory. However, Cole has
ointed out that ant colony exhibits a periodic behavior while single
nt shows low-dimensional deterministic chaotic activity patterns
21]. Moreover, the problem of how the chaotic behaviour of sin-
le ant relates to the self-organization and foraging behaviours of
he ant colony has received little attention. From the perspective of

ynamics, there are interactions between the two kinds of behav-

ors. These interactions help ants to find food and survive, which
an be adapted to the solution of optimization problems. Conse-
uently, inspired by the chaotic and self-organization behaviours
ting 12 (2012) 2387–2393

of ants, chaotic ant swarm (CAS) [17] was developed to solve the
optimization problems, which incorporated chaotic dynamics of
ant, swarm organization and optimization principles.

In CAS, an ant colony composed of M ants is considered. These
ants are located in a D-dimensional search space S and they try
to minimize a function J. The ant colony undergoes two succes-
sive phases, chaotic phase and organization phase. To achieve
self-organization from chaotic state, a successively decrement of
organization variable yi is introduced into CAS. The influence of the
organization variable on the ant’s behaviour is very weak in the
first process and the behaviour of single ant is chaotic. The motion
of the ants approximately are governed by the following equation:

xid(t) = xid(t − 1)e3− dxid(t−1). (4)

Eq. (4) is a chaotic map  suggested by Solé [22]. With the con-
tinual small change of yi evolving in time, the influence of the
organization on the behaviour of individual ant becomes stronger
and stronger. When the effect of the organization is sufficiently
large, the chaotic behaviour of the individual ant disappears. Then
ants will do some further searches and move to the position that
they can find in the search space. Throughout the whole pro-
cess, they exchange information with their neighbors continually.
Mathematically, the changing process of position for ant i can be
described as [17]:⎧⎪⎪⎨
⎪⎪⎩
yi(t) = yi(t − 1)(1+ri),

xid(t) = (xid(t − 1) + Vid)e(1−e−ayi(t))(3− d(xid(t−1)+Vid))

+ (pbestid(t − 1) − xid(t − 1))e(−2ayi(t)+b) − Vid,

(5)

where

1. t means the current iteration step, and t − 1 is the previous iter-
ation step;

2. yi(t) is the ith ant’s organization variable of the current iteration
step, yi(0) = 0.999;

3. xid(t) is the current state of the dth dimension of ant i;
4. pbestid(t − 1) is the best position found by the ith ant and its

neighbors within t − 1 steps;
5. Vi(0 < Vid < 1) determines the search region of ant i;
6. a is a sufficiently large positive constant and can be selected as

a = 2000;
7. b is a constant, 0 ≤ b ≤ 2/3.

In addition, ri and  d are two  important parameters. ri is the
organization factor of ant i, which affects the convergence speed of
the CAS directly. The larger ri is, the faster the system converges, and
the shorter the runtime is. The format of ri can be designed accord-
ing to concrete problems and runtime. Each ant could have different
ri, such as ri = 0.1 + 0.2 × rand(1).  d affects the search ranges of the
CAS. If the interval of the search is [− ωd/2, ωd/2], we  can obtain
an approximate formula ωd ≈ 7.5/ d, and Vid = ωd/2(0 < Vid < 1) will
make the search interval shift to [0, ωd]. The impacts to the opti-
mization result by adjusting each parameter in Eq. (5) are fully
discussed in [17].

The procedure of CAS algorithm can be illustrated in Fig. 1.

3. Proposed methodology: the CAS-based clustering
algorithm (CAS-C)

In this section we will give the formal mathematical model of

data clustering and express how CAS optimization solves general
clustering problem in detail.

As data clustering can be seen as an optimization problem of
seeking a global optimal solution to Eq. (3),  in this paper we  present
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Fig. 1. Working flow of CAS algorithm.

 CAS based clustering approach, called CAS-C algorithm, to solve
his problem. In CAS-C, clustering is regarded as a process of ant
oraging, and the centers or centroid can be seen as the goal (food)
o search.

Unlike the partitional clustering techniques, there is no initial
artition selected in our algorithm. In the initial step, several data

n the sample set are randomly picked as the positions of the ants.
fter steps of iteration, the ants move and converge to some points

hat are considered as centers of each cluster in the data space.
enerally, there are two ways to stop the iteration of optimization-
ased algorithm. A maximum number of iterations can be specified
y experience to prevent endless oscillation. The other way is calcu-

ating the value of the objective function to find a converging state
hen all the patterns do not change between two  successive itera-

ions. We  choose the former way throughout this paper and preset
termax as a number of maximum steps of iteration. When the algo-
ithm arrives to Itermax, the clustering process will stop with the
esults output.

Based on Eq. (5),  the equation for CAS-C algorithm is given as

yi(t) = yi(t − 1)(1+ri),
zpid(t) = (zpid(t − 1) + Vid)e

(1−e−ayi(t))(3− d(zpid(t−1)+Vid))

+(zbestpid(t − 1) − zpid(t − 1))e(−2ayi(t)+b) − Vid,

(6)

here

. t means the current iteration step, and t − 1 is the previous iter-
ation step;
. zpid(t) is the current state of the dth dimension (d = 1, 2, . . .,  D) of
ant i for the pth desired center zp (p = 1, 2, . . .,  K, where K is the
desired cluster number and needed to be pre-assigned before
the algorithm starts);
ting 12 (2012) 2387–2393 2389

3. zbestpid(t − 1) presents the best position of the dth dimension
found by all the ants within (t − 1) steps for ant i;

4. Other parameters have the same meaning with Eq. (5).

Now we will give a full explain about how CAS-C algorithm is
implemented. Algorithm 3.1 introduces the procedure of proposed
CAS-C algorithm. Given the desired cluster number K, the CAS-C
algorithm is carried out in the following steps:

1. Initialization. There are several parameters to be preassigned
before iteration starts in CAS-C. Initialize  d for scope of search-
ing in the data space, the ant number M,  the maximum number of
generations Itermax and the organization factor ri. Then set t = 1
and generate positions of M × K ants randomly from the data
space for each center (line 1 in Algorithm 3.1).

2. Iteration process. At the tth step, the best position found by all
ants within (t − 1) steps is picked out as zbestpi(t − 1) for ant i.
Then every individual ant changes their places in the data space
as Eq. (6).  After moving, select proper zbestpi(t) for each ant based
on minimizing the square-error in Eq. (3),  and remember it to
the next iteration. The iteration process is terminated and goes
to Step 4 when t equals to the maximum iteration step Itermax

(lines 2-14 in Algorithm 3.1).
3. Mark final centers. All the ants will converge to the global opti-

mal  points in the search space after the iteration process. The
final positions of the ants are considered as the required cen-
ters(lines 15-16 in Algorithm 3.1).

4. Perform clustering on the data set. Allocate all the data according
to Eq. (2) into different clusters which are represented by the
final centers gained after the iteration process. Mark every data
object with its corresponding label (lines 18-25 in Algorithm 3.1).

Algorithm 3.1 (The CAS-C algorithm).
Require:

Data set, X = {x1, x2, . . . , xn};
Cluster number, K .

Ensure:
Clusters: {C1, C2, . . . , CK }.

1: Initialize the search scope  ,  organization factor r and
position z of M ants randomly, in which each single ant zi
(i = 1, 2, . . . , K) contains K randomly generated centroid
vectors: zi = {zi1, zi2, . . . , ziK }.

2: for t = 1 : Itermax do
3: for i = 1 : M do
4:  Calculate the objective function J(i, t) with current zi(t)
5: Jlast = J(i, t − 1)
6:  yi(t) = yi(t − 1)(1 + ri),
7: zi(t) = (zi(t − 1) + Vi)e(1−e−ayi (t) )(3− (zi (t−1)+Vi )) +

(zbesti(t − 1) − zi(t − 1))e(−2ayi (t)+b) − Vi
8: Calculate J(i, j + 1) with current zi(j + 1) according to

Eq.  (3)
9: if J(i, t) < Jlast then
10: zbesti(t) = zi(t) //zbesti represents the local best

position, the best position found so far for ant i.
11: else
12: zbesti(t) = zbesti(t − 1)
13: end if
14: end for
15: Update the global best position zbestg : Select the best

zbesti from {zbest1, zbest2, . . . , zbestM } as zbestg . //zbestg
represents the global best position in the neighborhood of
each ant.

16: {z1, z2, . . . , zK } = zbestg
17: end for
18: for j = 1 : n do
19: for c = 1 : K do
20: Calculate distance dc = ‖xj − zc‖
21: end for

22: d = {d1, d2, . . . , dK }
23: Find the position p of min(d)
24: Cp .add(xj)
25: end for



2 Compu

4

i
e
i
e

4

s
i

c
t
a

r
P
s
s
p
g
o
u
d

4

i
v

4

s
fi
o
a

S

m

d
t

4

a
(

p
d

I

w

390 M. Wan  et al. / Applied Soft 

. Cluster validity

The prudent and enlightened validation of clustering results
s the essential step that changes a qualitative analysis into hard
vidence [25]. The clustering results will be presented by compar-
son with two previous clustering algorithms using four different
valuation measures.

.1. Methods for comparison

For presenting the priority of the proposed CAS-C algorithm, we
elect some previous clustering techniques for algorithm compar-
sons.

Firstly we choose the k-means algorithm [14] as a method to be
ompared because it is the most famous conventional clustering
echnique. The k-means algorithm is a partition-based clustering
pproach and has been widely applied for decades of years.

Moreover, as an swarm-based methodology, the CAS-C algo-
ithm will be compared with the PSO-based clustering technique.
article swarm optimization (PSO) [27] is a formerly proposed
warm-based algorithm which simulates bud flocking or fish
chooling behavior to achieve a self-evolution system. PSO com-
ares favorably with many global optimization algorithms like
enetic algorithms (GA) [28], simulated annealing (SA) [29] and
ther global optimization algorithms. The clustering approach
sing PSO can search automatically the data centers of K groups
ata set by optimizing an objective function.

.2. Evaluation functions

In order to evaluate the performances of CAS-C and its compar-
son algorithms, in this article we use four measure functions to
alidate the convergence and clustering quality.

.2.1. Sum of squared error (SSE)
SSE is the common criteria of evaluating clustering results which

ums the squared error of each data together. It is also taken as the
tness function of both CAS-C and PSO-clustering algorithms. The
bjective function will be measured in each single iteration of CAS-C
nd PSO techniques and should be calculated as:

SE =
k∑
i=1

∑
xj∈Ci

‖xj − zi‖2, (7)

It is easy to see that Eq. (7) tries to make the results of clustering
ore compact and independent.
All the three methods used in this paper aim to minimize SSE

uring their iterations. Thus, the smaller the final value of SSE is,
he better the optimization algorithm performs.

.2.2. Intra-cluster and inter-cluster distances
Clustering results can be measured by calculating the aver-

ge intra-cluster distance (Intra) and average inter-cluster distance
Inter).

The intra-cluster distance measure is the distance between a
oint and its cluster center. We  take the average of all of these
istances and call it Intra which is defined as

1
K∑∑
ntra =
n
i=1 xj∈Ci

‖xj − zi‖2, (8)

here n is the total number of objects in a data set.
ting 12 (2012) 2387–2393

The inter-cluster distance between two clusters is defined as the
distance between the centers of them. We  calculate the average of
all of these distances as follows

Inter = 1
K

∑
‖zi − zj‖2, i = 1, 2, . . . , K − 1, j = i + 1, . . . , K. (9)

A good clustering method should produce clusters with high
intra-class similarity while low inter-class similarity. The similarity
is expressed in terms of a distance function which is usually very
different in diverse applications. Therefore, we want to minimize
the value of measure Intra and maximize the value of Inter.

4.2.3. F-measure
F-measure is the widely used statistical validation which con-

siders both the Precision and Recall information.
Generally, some symbols are introduced for the convenience of

evaluating the clustering results. C0
i

(i = 1, 2, . . .,  k) is used to rep-
resent the actual target clusters, where k is the number of desired
clusters set in the algorithms. The corresponding clusters detected
by algorithms are named as Cs

i
(i = 1, 2, . . .,  k). The performance of

clustering can be evaluated in terms of Precision and Recall which
can be calculated as follows:

Precision = | C0
i

| ⋂ | Cs
i

|
| Cs
i

|

= sum of correctly detected objects for cluster i

sum of detected objects for cluster i
,  (10)

Recall = | C0
i

|
⋂

| Cs
i

|
| C0
i

|

= sum of correctly detected objects for cluster i

sum of objects actrually in cluster i
.  (11)

Both the two  criterions vary from 0 to 1. In principle, we  want
both high Precision and high Recall in the experiments.

F-measure is the harmonic mean of Precision and Recall and is
calculated by

F = (b2 + 1) · Precision · Recall

b2 · (Precision + Recall)
, (12)

where we  chose b = 1, to obtain equal weighting for Precision and
Recall.

F-measure is limited to the interval [0, 1] and should be maxi-
mized.

5. Simulation experiments

In this section, we will present several simulation experiments
on the platform of Matlab to give a detailed illustration on the
superiority and feasibility of the proposed approach.

5.1. Data source

Two different types of benchmark data sets are used: two  syn-
thetic data sets [30] that permit the modulation of specific data
properties and three real data sets provided by UCI Machine Learn-
ing Repository [31].

Both of the two synthetic data sets in our work follow x-
dimensional normal distributions N( ��, ��) from which the data
items are located into the y different clusters. The sample size s

of each cluster, the mean vector �� and the vector of the standard
deviation �� are themselves randomly determined using uniform
distributions over fixed ranges (with s ∈ [50, 450], �i ∈ [− 10, 10]
and �i ∈ [0, 5]). Consequently, clusters in each data set are with



M. Wan  et al. / Applied Soft Computing 12 (2012) 2387–2393 2391

-10

-8

-6

-4

-2

0

2

4

6

8

d
2
8
e
t
d

a
p
i
c
4

Table 1
Summarization of data sets.

Data sets Instances Featrues/dimensions Clusters

2D-4C 1572 2 4
10D-4C 1289 10 4

T
V

T

-20 -15 -10 -5 0 5 10 15 20
-12

Fig. 2. The original two-dimensional data distribution in space.

ifferent size and different density. The first one, which we call it
D-4C, is a two-dimensional data set arranged in ([−20, 20], [−12,
]) and contains 4 clusters with 528, 348, 272 and 424 instances
ach (see Fig. 2). The second data set, named 10D-4C, contains a
otal number of 1289 items that spread in 4 clusters based on 10
ifferent features.

All the 3 data sets from UCI that we employ in our experiments
re famous databases that can be easily found in data mining and

attern recognition literatures. Iris data set contains 3 classes of 50

nstances each, where each class refers to a type of iris plant and
an be treated as a cluster in the experiments. Each instance has

 features representing sepal length, sepal width, petal length and

able 2
alues of performance measures by the k-means, PSO and the proposed CAS-C algorithm

Data sets Method F 

2D-4C k-means 0.7682 

(0.0104) 

PSO  0.9553 

(0.0062)
CAS-C 0.9966a

(0.0027) 

10D-4C k-means 0.6306 

(0.067369) 

PSO 0.6436 

(0.037196) 

CAS-C 0.7089a

(0.012749) 

Iris  k-means 0.8853 

(0.13340)
PSO  0.9333 

(0.042715) 

CAS-C 0.9333a

(0.010368) 

Wine  k-means 0.702 

(0.14568) 

PSO  0.6937 

(0.33945) 

CAS-C 0.735a

(0.030169) 

Glass  k-means 0.4768 

(0.0014282) 

PSO  0.4801 

(0.001387) 

CAS-C 0.4957a

(0.001291) 

he bold value is the best-performed result among 3 results acquired by 3 different appro
a Rank 1.
b Rank 2.
Iris 150 4 3
Wine 178 13 3
Glass 214 9 6

petal width, respectively. Wine data are the results of a chemical
analysis of wines grown in the same region in Italy but derived
from three different cultivars. This set contains 3 clusters and has
59, 71, 48 instances for each cluster. Glass data set has 214 instances
describing 6 classes of glass based on 9 features. The data points in
all the 3 data sets are scattered in high-dimensional spaces.

The description of all the data sets used in our study can be
summarized in Table 1.

5.2. Parameter settings

In the initialization step, there are a number of parameters that
need to be set for both CAS-C and PSO-clustering algorithms.

For PSO, we use 50 particles, and set w = 0.72 and c1 = c2 = 1.49.
These values were chosen to ensure good convergence [32].

For CAS-C, 30 ants are used. We  default a = 2000, b = 7/12,
y(0) = 0.999, ri = 0.02 + rand(1) * 0.5 and Istep = 800. The value of
parameter  d can be selected according to the ranges of intervals
[17].

5.3. Results
For all the results reported, average measures over 30 sim-
ulations are given. Euclidean distance is chosen to measure the
distance among data points in our work.

s.

SSE Intra Inter

4.2041 × 103 2.2376 7.4135
(53.6571) (0.3850) (0.8914)
3.7578 × 103 1.8331 9.6757
(44.3622) (0.13687) (0.47761)
3.5906 × 103a 1.4112a 10.7462a

(38.2317) (0.0925) (0.2351)
1.7512 × 104 3.4861 12.0786
(343.2058) (0.17326) (1.25532)
2.0309 × 104 4.0123 14.1810
(358.3691) (0.14857) (1.20055)
1.9008 × 104b 3.6957b 14.8365a

(316.5987) (0.05923) (0.09487)
97.3462 0.8023 3.5196
(9.6661) (0.002076) (0.06771)
97.3259 0.7898 3.5483
(10.77132) (0.00349) (0.0486)
97.3094a 0.7794a 3.5767a

(8.8901) (0.00095) (0.02074)
1.6656 × 104 0.9039 44.5206
(76.3192) (0.051477) (0.72684)
1.6548 × 104 0.9069 43.1749
(72.14098) (0.05796) (0.41683)
1.6363 × 104a 0.9037a 43.3477b

(44.0654) (0.00569) (0.08893)
240.5743 1.1044 7.9543
(24.43907) (0.07563) (1.8499)
238.9055 1.0672 8.6098
(21.70175) (0.06820) (1.34023)
236.7708a 1.0276a 10.23569a

(18.46152) (0.01298) (0.83705)

aches (Rank 1).
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Table 3
Results of t-test on Intra.

Data sets t Degree of
freedom (DF)

Significant
probability (p)

2D-4C −11.4 58 2.31E−13
10D-4C −8.85 58 1.83E−09
Iris −2.94 58 0.00382
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t
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T
R

Wine −2.49 58 0.01102
Glass −2.55 58 0.00944

For all the results reported, average values of different per-
ormance indices over 30 simulations and their corresponding
tandard deviations (shown in bracket) for each data set are given
n Table 2. Euclidean distance is chosen to measure the distance
etween data points in our work.

A Student’s t-test has been conducted Intra and Inter for PSO-
ased and CAS-C algorithms. Tables 3 and 4 present the statistical
esults comparisons, where p is the probability if the null hypoth-
sis (H0) is supported.

For the Intra measure, we implement our t-test based on:

H0 : Intra(CAS-C) < Intra(PSO),
H1 : Intra(CAS-C) ≥ Intra(PSO).

For the Inter measure, we implement our t-test based on:

H0 : Inter(CAS-C) > Inter(PSO),
H1 : Inter(CAS-C) ≤ Inter(PSO).

From the clustering results shown in Tables 2–4,  and according
o the properties of data sets which are described in Table 1, some
onclusions could be revealed as follows:

(1) After label comparison for each data set, CAS-C acquired the
argest average F-measure value for all 5 data sets, which means the
AS-C algorithm has the lowest error rate and performs the best
ccuracy ability of clustering. PSO-based clustering technique also
ained larger F values than the k-means algorithm, but smaller than
he CAS-C approach for 4 data sets. It can be found that the global
earch ability indeed help the optimization-based clustering tech-
iques make significant improvement to the k-means algorithm.
urthermore, for the 10D-4C and the Wine data sets, the CAS-C
lgorithm performed distinct improvements than the PSO-based
pproach, which means CAS-C are more suitable to group the data
ith high-dimension and multiple cluster densities.

(2) Consider the fitness of solutions, i.e. the minimum value of
bjective function, SSE. For all data sets, except 10D-4C, the CAS-C
lgorithm had the smallest value of SSE. Moreover, based on the
omparison of SSE, the CAS-C algorithm minimized the objective
unction better than PSO algorithm for all 5 data sets. These results
how that with the help of global and chaotic search, the proposed
AS-C methodology can reach the global optimal solutions, which
as covered the shortage of the k-means algorithm. Meanwhile,
s an optimization-based clustering algorithm, CAS-C reached the
ptimal points more closer and exhibited better convergence than

he PSO algorithm.

(3) When considering intra-cluster and inter-cluster distances,
he former ensures compact clusters with little deviation from the
luster centers, while the latter ensures larger separation between

able 4
esults of t-test on Inter.

Data sets t Degree of freedom (DF) Significant probability (p)

2D-4C 8.99 58 5.23E−10
10D-4C 2.43 58 0.01253
Iris 2.4 58 0.0119
Wine 1.81 58 0.04217
Glass 4.6 58 3.18E−05
ting 12 (2012) 2387–2393

the different clusters. With reference to these criteria, the CAS-C
algorithm succeeded most in finding clusters with larger separation
than the k-means algorithm and PSO technique, although k-means
algorithm did the best for the wine data set. It is also the CAS-C
algorithm that succeeded in forming the more compact clusters
than the other two methods on all data sets but 10D-4C.

(4) Then come to result comparisons between data sets. The pro-
posed CAS-C algorithm performs better than PSO-based and the
k-means approaches for all the data sets: It had the best SSE, F-
measure, Intra and Inter values for the 2D-4C, Iris and Glass data
sets; It got the best SSE, F-measure, and Intra values and the sec-
ond best inter-cluster distance for the Wine data set; It acquired
the best F-measure and Inter measures for the 10D-4C data set with
the second best SSE and Intra values. We  can see that the PSO-based
approach exhibited worse than CAS-C and even k-means algorithm
on 10D-4C and Wine data sets, which shows the PSO-based clus-
tering techniques are not good at handling high-dimensional data
sets, while CAS-C can overcome this drawback.

(5) The standard deviations of different measures obtained by
different methods are shown in bracket. Stability of CAS-C over
different data sets can also be seen from the smallest values of
standard deviation of all indices. These comparisons present that
the results of the CAS-C algorithm change less at different exper-
iments, and CAS-C is a more stable clustering technique than the
k-means and PSO-based clustering algorithms. The results of one-
tailed t-test presented in Tables 3 and 4 reveal that Intra(CAS-C)
is significant smaller than Intra(PSO) (t < 0 with p > 0.05), while
Inter(CAS-C) is significant larger than Inter(PSO) (t > 0 with p < 0.05)
on all data sets in our experiments.

To sum up, CAS-C is a high-quality clustering algorithm which
can find the global optimum clustering result and have a good
algorithm performance for the data set with high-dimension and
multiple cluster densities.

6. Conclusion

This paper presents an efficient clustering algorithm based on
the chaotic ant swarm optimization. The clustering problem is
converted to that of seeking the center for each cluster by opti-
mizing the objective function. Numerical simulations are given to
show that the proposed CAS-based clustering algorithm have bet-
ter convergence ability and could be used to achieve high quality on
multi-dimensional data sets and can detect clusters with different
sizes or densities with encouraging results.
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