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An ant colony approach for clustering
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Abstract

This paper presents an ant colony optimization methodology for optimally clusteringN objects intoK clusters. The algorithm employs
distributed agents which mimic the way real ants find a shortest path from their nest to food source and back. This algorithm has been imple-
mented and tested on several simulated and real datasets. The performance of this algorithm is compared with other popular stochastic/heuristic
methods viz. genetic algorithm, simulated annealing and tabu search. Our computational simulations reveal very encouraging results in terms
of the quality of solution found, the average number of function evaluations and the processing time required.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Clustering aims to discover sensible organization of
objects in a given dataset by identifying and quantifying
similarities (dissimilarities) between the objects. Cluster
analysis has found many applications including qualitative
interpretation and data compression[1], process monitoring
[2], local model development[3], analysis of chemical com-
pounds for combinatorial chemistry[4], toxicity testing[5],
finding structure–activity relations[6], discovering of clus-
ters in DNA dinucleotides[7], classification of coals[8],
etc. A good introduction to contemporary data-clustering
algorithms can be found elsewhere[9]. Different criteria
are employed by different authors for clustering. Most of
the clustering criterion functions are nonconvex and non-
linear so that the problem may have local minimum solu-
tions, which are not necessarily optimal[10]. Moreover,
they possess exponential complexity in terms of number
of clusters and become an NP-hard problem when number
of clusters exceeds 3[11]. Due to the strategic importance
of clustering in many fields, several algorithms have been
proposed in literature to solve clustering problems[12–17].
Recently, evolutionary and metaheuristics like, tabu search
[18], genetic algorithms[14,19] and simulated annealing
[20,21] have been successfully employed for clustering.
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In this work, we recast the recently proposed ant colony
optimization algorithm to suit the need for data clustering.

Ant colony optimization (ACO) metaheuristic, a novel
population-based approach was recently proposed by
Dorigo et al. to solve several discrete optimization prob-
lems [22,23]. The ACO mimics the way real ants find the
shortest route between a food source and their nest. The
ants communicate with one another by means of pheromone
trails and exchange information about which path should be
followed. The more the number of ants traces a given path,
the more attractive this path (trail) becomes and is followed
by other ants by depositing their own pheromone. This auto
catalytic and collective behavior results in the establishment
of the shortest route. As shown inFig. 1, two ants start
from their nest in search of food source at the same time
to different directions. One of them chooses the path that
turns out to be shorter while the other takes the longer so-
journ. The ant moving in the shorter path returns to the nest
earlier and the pheromone deposited in this path is obvi-
ously more than what is deposited in the longer path. Other
ants in the nest thus have high probability of following the
shorter route. These ants also deposit their own pheromone
on this path. More and more ants are soon attracted to
this path and hence the optimal route from the nest to the
food source and back is very quickly established. Such a
pheromone-meditated cooperative search process leads to
the intelligent swarm behavior. This real-life search behav-
ior was the key motivation factor leading to the formulation
of artificial ant algorithms to solve several large-scale com-
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Fig. 1. Movement of ant algorithm from nest-food source and back: (a)
two ants start exploring paths towards the food source and (b) pheromone
is deposited more quickly on the shortest path and eventually most of the
ants have chosen the shortest path.

binatorial and function optimization problems[24–26]. In
all these algorithms, a set of ant-like agents or software
ants solve the problem under consideration through a co-
operative effort. This effort is mediated by exchanging in-
formation on the problem structure the agents concurrently
collect while stochastically building solutions. Similarly,
we propose an ACO algorithm for data clustering, in which
a set of concurrent distributed agents collectively discover
a sensible organization of objects for a given dataset.

Recently, ant-like agents have been applied to solve prob-
lems in the context of objects clustering[27–30]. In these al-
gorithms, a population of distributed agents randomly move
onto the two-dimensional grid to move objects to form clus-
ters. Initially each agent selects a random direction among
the eight possible ones. The agent has a threshold proba-
bility to further continue in the previously chosen direction
when moving next, else it generates randomly a new di-
rection. The number of moves an agent can perform is de-
fined a priori. The agents try to pick up/drop objects on the
two-dimensional board according to a local density measure
of similar objects without any global control on the agents.
The approach introduced in this paper is quite different from
the above-mentioned ant algorithms in the context of data
clustering. In our algorithm, each agent discovers a possible
partition of objects in a given dataset and the level of par-
titioning is measured subject to some (Euclidean distance)
metric. Information associated with an agent about cluster-
ing of objects is accumulated in the global information hub
(pheromone trail matrix) and is used by the other agents
to construct possible clustering solutions and iteratively im-
prove them. The algorithm works for a given maximum num-
ber of iterations and the best solution found with respect to
a given metric represents an optimal or near-optimal parti-
tioning of objects into subsets in a given dataset.

This paper is organized as follows.Section 2describes
the steps involved in the ACO algorithm to solve a cluster-
ing problem, whileSection 3reports on the computational
results of evaluation of the performance of the ACO algo-

rithm on several simulated and chemical datasets. Finally,
conclusions of the current work are reported inSection 4.

2. ACO algorithm for clustering problems

This section describes the ant algorithm to solve a clus-
tering problem where the aim is to obtain optimal assign-
ment ofN objects inRn to one of theK clusters such that
the sum of squared Euclidean distances between each object
and the center of the belonging cluster is minimized. The
algorithm considersR agents to build solutions. An agent
starts with an empty solution stringS of lengthN where each
element of string corresponds to one of the test samples.
The value assigned to an element of solution stringS repre-
sents the cluster number to which the test sample is assigned
in S. For example, a representative solution string,S1 in
Table 4constructed forN = 8 andK = 3 is given below as

2 1 3 2 2 3 2 1

We note that the first element of the above string is as-
signed to cluster number 2, second element is allocated to
cluster number 1 and so on. To construct a solution, the
agent uses the pheromone trail information to allocate each
element of stringS to an appropriate cluster label. At the
start of the algorithm, the pheromone matrix,τ is initialized
to some small value,τ0. The trail value,τij at location (i, j)
represents the pheromone concentration of samplei associ-
ated to the clusterj. For the problem of separatingN sam-
ples intoK clusters the pheromone matrix is of sizeN × K.
Thus, each sample is associated withK pheromone concen-
trations. The pheromone trail matrix evolves as we iterate.
At any iteration level, each one of the agents or software
ants will develop such trial solutions using the process of
pheromone-mediated communication with a view to obtain
a near-optimal partition of the givenN test samples intoK
groups satisfying the defined objective. After generating a
population ofR trial solutions, a local search is performed
to further improve fitness of these solutions. The pheromone
matrix is then updated depending on the quality of solutions
produced by the agents. Guided by the modified pheromone
matrix, the agents build improved solutions and the above
steps are repeated for certain number of iterations.

2.1. Algorithm details

As explained earlier, ants start with empty solution strings
and in the first iteration the elements of the pheromone ma-
trix are initialized to the same values. With the progress of
iterations, the pheromone matrix is updated depending upon
the quality of solutions produced. Let us consider for the
purpose of illustration, a dataset containingN = 8 test sam-
ples defined byn = 4 attributes as shown inTable 1. The
test samples are to be clustered intoK = 3 subsets using
R = 10 agents. We now proceed to describe the progress of
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Table 1
Illustrative dataset to explain ACO algorithm for clustering withN = 8
andn = 4

N n

1 2 3 4

1 5.1 3.5 1.4 0.2
2 4.9 3 1.4 0.2
3 4.7 3.2 1.3 0.2
4 4.6 3.1 1.5 0.2
5 5 3.6 1.4 0.2
6 5.4 3.9 1.7 0.4
7 4.6 3.4 1.4 0.3
8 5 3.4 1.5 0.2

current iteration,t with a view to providing a clear picture
of the algorithm details. The agents build their solutions by
applying the information provided by the pheromone ma-
trix updated at the end of iteration,t − 1. The pheromone
concentrations for the first sample as shown inTable 2are:
τ11 = 0.014756,τ12 = 0.015274, andτ13 = 0.009900. It
indicates that at the current iteration, sample number 1 has
the highest probability of belonging to cluster number 2 be-
causeτ12 is highest. To generate a solutionS, the agent se-
lects cluster number for each element of stringS by one of
the following ways:

(i) using probability q0, cluster having the maximum
pheromone concentration is chosen (q0 being a pri-
ori defined number, 0< q0 < 1, q0 = 0.98 for the
illustrative example and in our simulations), and/or

(ii) one of theK (three) clusters using a stochastic distribu-
tion with a probability (1− q0), denoted as,pij.

The first process is known as exploitation whereas the
latter is termed as biased exploration[31]. To explain how
the above-mentioned procedures work simultaneously, con-
sider developing first solution string,S1 shown inTable 4.
We generate numbers randomly from uniform distribution
in the range between 0 and 1. The numbers generated are
equal to the length of solution string. The generated random
numbers are, say (0.693241, 0.791452, 0.986142, 0.988432,
0.243672, 0.967721, 0.0914324, 0.348767). Thus, elements
1, 2, 5, 6, 7, and 8 are assigned to appropriate clusters

Table 2
Pheromone trail matrix generated during run of the ACO algorithm for
dataset shown inTable 1

N K

1 2 3

1 0.014756 0.015274 0.009900
2 0.015274 0.009900 0.014756
3 0.015274 0.014756 0.009900
4 0.009900 0.015274 0.014756
5 0.014756 0.015274 0.009900
6 0.009900 0.014756 0.015274
7 0.009900 0.020131 0.009900
8 0.015274 0.014756 0.009900

Table 3
Normalized pheromone trail matrix

N K

1 2 3

1 0.3695 0.3825 0.2479
2 0.3825 0.2479 0.3695
3 0.3825 0.3695 0.2479
4 0.2479 0.3825 0.3695
5 0.3695 0.3825 0.2479
6 0.2479 0.3695 0.3825
7 0.2479 0.5041 0.2479
8 0.3825 0.3695 0.2479

by using first procedure (i.e. clusters chosen with highest
pheromone concentration referring toTable 2) since random
numbers corresponding to these elements are less thanq0.
On the other hand elements 3 and 4 of the solution string
S1 are assigned to one of the three clusters by using second
procedure since their corresponding random numbers are
higher than the threshold,q0. The second process chooses
any one of the three clusters with a normalized pheromone
probability (pheromone probability normalized to 1) given
by

pij = τij∑K
k=1τik

, j = 1, . . . , K (1)

wherepij is the normalized pheromone probability for ele-
menti belongs to clusterj. For illustration purpose the nor-
malized pheromone matrix is shown inTable 3. For the third
element of solution stringS1 the cluster number 1, 2 or 3 is
selected with the normalized probabilities 0.3695, 0.3825,
0.2479, respectively. This can be readily chosen by generat-
ing a number from uniform distribution. Thus, if the random
number chosen in the range(0, 1) lies between 0 and 0.3695,
cluster number 1 contains the third element, if it is between
0.3695 and 0.7520, cluster number 2 is chosen and if it is
greater than 0.7520 cluster number 3 is chosen for allocating
the third element ofS1. Suppose the random number chosen
is, say, 0.784342, which is greater than 0.7520, hence third
element of stringS1 is assigned to cluster number 3. Simi-
larly, cluster number for the other elements are assigned and
the complete solution stringS1 shown inTable 4is built. In
this way, remaining nine agents can construct their solutions
as given inTable 4.

The quality of solution constructed is measured in terms
of the value of objective function for a given data-clustering
problem. This objective function is defined as the sum of
squared Euclidean distances between each object and the
center of belonging cluster. Consider a given dataset ofN
objects {x1, x2, . . . , xN} in Rn -dimensional space to be
partitioned into a number, sayK, of clusters or groups. The
mathematical formulation of the data-clustering problem
can be described as

Min F (w, m) =
K∑

j=1

N∑
i=1

n∑
v=1

wij||xiv − mjv||2 (2)
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Table 4
Solutions generated byR = 10 agents during run of the ACO algorithm

S N Fitness,F

1 2 3 4 5 6 7 8

S1 2 1 3 2 2 3 2 1 2.695110
S2 1 1 2 2 2 3 3 1 2.474522
S3 1 1 1 2 2 3 2 1 1.816471
S4 2 1 1 2 3 3 2 1 2.140193
S5 2 2 1 2 2 3 2 1 1.982272
S6 2 1 1 2 2 3 3 1 2.534078
S7 2 1 1 2 2 3 2 1 1.842034
S8 2 3 1 2 2 3 2 3 2.408086
S9 2 1 1 2 1 3 2 1 1.900668
S10 1 1 2 2 2 3 1 1 1.877386

such that

K∑
j=1

wij = 1, i = 1, . . . , N (3)

N∑
i=1

wij ≥ 1, j = 1, . . . , K (4)

wherexiv is a value ofvth attribute ofith sample;m a cluster
center matrix of sizeK × n; mjv an average of thevth
attribute values of all samples in the clusterj; w a weight
matrix of sizeN × K; wij an associated weight of objectxi

with clusterj which can be assigned as

wij =
{

1 if objecti is contained in clusterj

0 otherwise
,

i = 1, . . . , N, j = 1, . . . , K

Referring to first solution stringS1 in Table 4:

2 1 3 2 2 3 2 1

we note that the first element of the above string is assigned
to cluster number 2 and thusw11 = 0, w12 = 1, w13 = 0.
Similarly the fifth object is allocated to group number 2 and
its wij vector isw51 = 0,w52 = 1,w53 = 0 and so on. After
gettingwij ’s, the center of each cluster,mj can be obtained
as

mjv =
∑N

i=1wijxiv∑N
i=1wij

, j = 1, . . . , K, v = 1, . . . , n (5)

For a given solution stringS1, knowing the cluster center
matrix m and weight matrixw its function value can be
calculated usingEq. (2). For solutionS1 (Table 4), weight

matrix can be given as

N K

1 2 3

1 0 1 0
2 1 0 0
3 0 0 1
4 0 1 0
5 0 1 0
6 0 0 1
7 0 1 0
8 1 0 0

Using these weights inEq. (5), the center of each cluster
m1, m2, andm3 are obtained as shown below:

K n

1 2 3 4

1 4.9500 3.2000 1.4500 0.2000
2 4.8250 3.4000 1.4250 0.2250
3 5.0500 3.5500 1.5000 0.3000

Substituting the weight matrix and cluster centers in
Eq. (2) fitness (objective function) of solutionS1 is calcu-
lated. The computed objective function values for 10 strings
are shown inTable 4.

Many of the available ACO algorithms employ some form
of local search procedures with a view to improve solu-
tions discovered by the software ants[31,32]. If heuristic
information about a particular problem domain is not eas-
ily available, local search can help to find good results[33].
In these algorithms, local search procedure is applied on all
the generated solutions,R or on a few percent ofR. In this
work, we have performed local search onL solutions repre-
senting best 20% of the total solutions. Before conducting
local search, members of the population are sorted in the as-
cending order of their function values. A simple local search
procedure is implemented on topL solutions with highest
fitness values (lowest values of objective function). In our
illustrative example, the sorted solution strings are shown
in Table 5and withL = 2 we conduct local search on top
two solution strings in this table. There are various ways of
conducting local search. In our work, we altered the cluster
number of each sample in the solution string with certain
threshold probability,pls a priori defined number in the range
0 and 1,pls = 0.01 for illustrative example and our simu-
lations. Considering the topmost solution string inTable 5:

1 1 1 2 2 3 2 1

Let us first generate eight random numbers in the
range between 0 and 1. Let the random number generated
be (0.231345, 0.742312, 0.655361, 0.198312, 0.001636,
0.1278345, 0.874452, 0.436587). Thus, only the value
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Table 5
Solutions inTable 4sorted as per the criterion of clustering problem

S N Fitness,F

1 2 3 4 5 6 7 8

S1 1 1 1 2 2 3 2 1 1.816471
S2 2 1 1 2 2 3 2 1 1.842034
S3 1 1 2 2 2 3 1 1 1.877386
S4 2 1 1 2 1 3 2 1 1.900668
S5 2 2 1 2 2 3 2 1 1.982272
S6 2 1 1 2 3 3 2 1 2.140193
S7 2 3 1 2 2 3 2 3 2.408086
S8 1 1 2 2 2 3 3 1 2.474522
S9 2 1 1 2 2 3 3 1 2.534078
S10 2 1 3 2 2 3 2 1 2.695110

of random number corresponding to fifth element is less
than the threshold probability, 0.01. So only, this element
has to be assigned a different cluster number. Currently
the fifth element is assigned to cluster number 2. There-
fore, it has to be assigned to either cluster number 1 or
3 with equal probability by generating a random num-
ber. The solution string (LS1) obtained in neighborhood
of topmost solution stringS1 by local search is given
below as

LS1 1 1 1 2 1 3 2 1

It can be observed that the fifth element has been relocated
to cluster number 1. Similarly, the second string,S2 from
top in Table 5 undergoes local search operation and the
solution string (LS2) generated in neighborhood ofS2 is
given as

LS2 2 1 1 2 2 3 1 1

After conducting the local search, the objective function
values for the newly generated solutions are computed us-
ing Eq. (2). These solutions can be accepted only if there
is improvement in the fitness. The objective function values
for locally generated solutions, LS1 and LS2 are 1.593560
and 1.835535, respectively. Here, the quality of both solu-
tions generated is better than that of solutionsS1 and S2
(1.816471 and 1.842034, respectively) given inTable 5.
Therefore, newly generated solutions replace these two so-
lutions inTable 5. The local search algorithm can be written
as follows:

With local search probability thresholdpls in [0, 1], a
neighbor ofSk, k = 1, . . . , L is generated as

(i) k = 1.
(ii) Let St be a temporary solution and assignSt(i) = Sk(i),

i = 1, . . . , N.
(iii) For each elementi of St , draw a random numberr in

(0, 1). If r ≤ pls, an integerj in the range(1, K), such
thatSk(i) �= j is randomly selected and letSt(i) = j.

(iv) Calculate cluster centers and weights associated with
solution stringSt and find its objective function value

using (2) asFt . If Ft is less thanFk, thenSk = St and
Fk = Ft .

(v) k = k + 1; if k ≤ L go to step (ii), else stop.

After performing the local search operation, the
pheromone matrix is updated. Such a pheromone updating
process reflects the usefulness of dynamic information pro-
vided by the software ants. Thus, the pheromone matrix
is a kind of adaptive memory that contains information
provided by the previously found superior solutions, and is
updated at the end of iteration. The trail updating process
applied in this algorithm considers bestL solutions out of
R members discovered by the agents as per the given cri-
terion (Eq. (2)) at iteration levelt. TheseL agents mimic
deposition of the pheromone trail of real ants by assigning
some real numbersτij associated with solution attributes.
The trail information is updated using the following rule as

τij(t + 1) = (1 − ρ) τij (t) +
L∑

l=1

�τl
ij,

i = 1, . . . , N, j = 1, . . . , K (6)

whereρ is the persistence of trail that lies between [0, 1]
and (1− ρ) the evaporation rate. Higher value ofρ sug-
gests that the information gathered in the past iterations is
forgotten faster. The amount�τl

ij is equal to 1/Fl, if cluster
j is assigned toith element of the solution constructed by
ant l and zero otherwise. An optimal solution is that solu-
tion which minimizes the objective function value (2). The
value of best solution in memory is updated with the value
of the solution obtained as “current iteration best solution” if
it is having a lower objective function value than that of the
best solution in memory. This comprises one iteration of the
algorithm.

Thus, at any iteration level the algorithm essentially exe-
cutes three steps viz. (1) generation of newR solutions by
software ants using the modified pheromone trail informa-
tion available from previous iteration, (2) performing local
search operation on the newly generated solutions, and (3)
updating pheromone trail matrix. The algorithm repeatedly
carries out these three steps for a maximum number of given
iterations, and solution having lowest function value repre-
sents the optimal partitioning of objects of a given dataset
into several groups. The summary of ant algorithm for data
clustering is depicted as a flowchart shown inFig. 2.

3. Results and discussion

We implemented the ACO clustering algorithm on five
datasets. All algorithms are executed in C++ language and
all experiments are performed on a Pentium IV 400 MHz
Personal Computer. The five datasets (two simulated and
three chemical datasets) are described below.

Both simulated datasets were created using a random
number generator that produced Gaussian distributed set of
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obje n, Si

obje n, St

A 

B 

i = i +1

Start

Compute weights of all test samples, and cluster centers 

Compute clustering metric and assign it as 

ctive function value, Ft of solutio

l = 1

Let St = Sl, where St is a temporary solution and, 

perform local search on St

Select best L solutions out of R solutions using 

objective function values

No

Yesi ≤ R  ?

Compute clustering metric and assign it as 

ctive function value Fi of solutio

Compute weights of all test samples, and cluster centers 

Construct solution, Si using pheromone trail 

i = 1

Send R agents each with empty solution string, S

A 

B 

l = l +1

Stop

Print best solution 

Yes

Termination 

criterion attained ?

Update pheromone trail matrix using best L solutions 

No

Yesl ≤ L  ?

If Ft < Fl then Fl = Ft and Sl = St

Fig. 2. Flowchart of ant algorithm for data clustering.
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Fig. 3. Example 1: (�) objects from class 1; (�) objects from class 2;
(�) objects from class 3.

objects. These datasets are given as

• Example 1. This dataset is composed ofK = 3 clusters
with 50 objects in each cluster. The data was generated
using meanµ1 = [3, 0], µ2 = [0, 3], µ3 = [1.5, 2.5] and
varianceλ1 = [0.3, 1], λ2 = [1, 0.5], λ3 = [2, 1]. The
dataset is shown inFig. 3.

• Example 2. The dataset representsK = 6 clusters with
allocation of 25 objects to each cluster. The data was
simulated using mean valuesµ1 = [3, 0], µ2 = [0, 3],
µ3 = [1.5, 2.5], µ4 = [0.2, 0.1], µ5 = [1.2, 0.8], µ6 =
[0.1, 1.1] and varianceλ1 = [0.3, 1], λ2 = [1, 0.5], λ3 =
[2, 1], λ4 = [0.03, 1], λ5 = [2, 0.5], λ6 = [0.2, 0.4]. The
dataset is given inFig. 4.

Many authors have considered theiris, wine andhuman
thyroid disease datasets as data-clustering problems to study
and evaluate the performance of their algorithms. These are
briefly described as

• Example 3. The dataset consists ofN = 150 samples of
three iris flowers (K = 3) viz. setosa, versicolor, and
verginica. Each object is defined by four attributes,n = 4:
sepal length, sepal width, petal length, and petal width.
The data is obtained from the UCI repository of machine
learning databases[34].

• Example 4. This dataset contains chemical analysis of
N = 178 wines, derived from three different cultivars,
K = 3. Wine type is based on 13 continuous attributes,
n = 13 derived from chemical analysis: alcohol, malic
acid, ash, alcalinity of ash, magnesium, total phenols, fla-
vanoids, nonflavanoids phenols, proanthocyaninsm, color
intensity, hue, OD280/OD315 of diluted wines and pro-
line. It is also available in the public domain of UCI repos-
itory of machine learning databases[34].

• Example 5. This dataset categoriesN = 215 samples of
patients suffering from three human thyroid diseases,K =
3 as: euthyroid, hyperthyroidism, and hypothyroidism pa-
tients where 150 individuals are tested euthyroid thyroid,
30 patients are experienced hyperthyroidism thyroid while
35 patients are suffered by hypothyroidism thyroid. Each
individual was characterized by the result of five,n =
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Fig. 4. Example 2: (�) objects from class 1; (�) objects from class 2; (�) objects from class 3; (×) objects from class 4; (+) objects from class 5;
(�) objects from class 6.

Table 6
Results obtained by the four algorithms for 10 different runs on Example 1

Method Function value Function evaluations CPU time (s)

Fbest Favg Fworst

ACO 203.595559 203.626619 203.906163 12396 31.49
GA 203.595559 204.057260 204.689421 32757 69.89
TS 204.053636 204.436562 205.381524 23401 61.69
SA 203.595559 203.706785 203.897976 27505 72.93

5 laboratory tests as: total serum thyroxine, total serum
tri-iodothyronine, serum tri-iodothyronine resin uptake,
serum thyroid-stimulating hormone (TSH), and increase
TSH after injection of TSH-releasing hormone[35].

To evaluate the performance of the ACO algorithm, we
have compared it with several typical stochastic algorithms
including the simulated annealing (SA) approach[20], the
genetic algorithms (GA)[19] and the tabu search (TS)
approach[18]. The effectiveness of stochastic algorithms
is greatly dependent on the generation of initial solutions.
Therefore, for every dataset, algorithms performed 10 times
individually for their own effectiveness tests, each time
with randomly generated initial solutions. Each experiment
is made of at most 1000 iterations of the associated search
procedure by the ACO algorithm, the GA approach and the
TS algorithm. For each test, the SA procedure was called

Table 7
Results obtained by the four algorithms for 10 different runs on Example 2

Method Function value Function evaluations CPU time (s)

Fbest Favg Fworst

ACO 172.948099 173.364862 173.613300 25260 66.21
GA 173.990484 177.266506 185.867600 40065 93.79
TS 176.576398 178.870536 180.802676 28191 83.91
SA 173.244913 174.572357 177.778584 30000 79.48

at most 30 000 times. The comparison of results for each
dataset is based on the best solution found in 10 distinct
runs of each algorithm, the average number of function
evaluations required and the average processing time taken
to attain the best solution. The solution quality is also given
in terms of the average and worst values of the clustering
metric (Favg, Fworst, respectively) after 10 different runs for
each of the four algorithms. For clustering problem, Ex-
ample 1 results given inTable 6, show that the ACO, GA
and SA clustering algorithms provide the optimum value
of 203.595559. In fact, the ACO found this optimum nine
times as compared to the five times and one time obtained
by the SA and GA approach in 10 runs, respectively. The
average number of function evaluations to obtain the best
solution and the average time required to attain the conver-
gence are 12 396 and 31.49, respectively, for the ACO algo-
rithm, which are better than the other algorithms as shown
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Table 8
Results obtained by the four algorithms for 10 different runs on Example 3

Method Function value Function evaluations CPU time (s)

Fbest Favg Fworst

ACO 97.100777 97.171546 97.808466 10998 33.72
GA 113.986503 125.197025 139.778272 38128 105.53
TS 97.365977 97.868008 98.569485 20201 72.86
SA 97.100777 97.136425 97.263845 29103 95.92

Table 9
Results obtained by the four algorithms for 10 different runs on Example 4

Method Function value Function evaluations CPU time (s)

Fbest Favg Fworst

ACO 16530.533807 16530.533807 16530.533807 9,306 68.29
GA 16530.533807 16530.533807 16530.533807 33,551 226.68
TS 16666.226987 16785.459275 16837.535670 22,716 161.45
SA 16530.533807 16530.533807 16530.533807 7,917 57.28

Table 10
Results obtained by the four algorithms for 10 different runs on Example 5

Method Function value Function evaluations CPU time (s)

Fbest Favg Fworst

ACO 10111.827759 10112.126903 10114.819200 25626 102.15
GA 10116.294861 10128.823145 10148.389608 45003 153.24
TS 10249.72917 10354.315021 10438.780449 29191 114.01
SA 10111.827759 10114.045265 10118.934358 28675 108.22

in Table 6. For clustering problem, Example 2 the ACO and
SA approach provide the optimum value of 172.984099.
FromTable 7, theFavg of 173.364862 obtained by the ACO
algorithm is less than the best solution obtained by the GA
and TS approach. In terms of the number of function evalu-
ations and the processing time required, the ACO algorithm
fairs better than its counterparts.

The iris dataset is Example 3. It contains 150 objects to
be partitioned into three clusters. For this problem, the ACO
and SA methods obtain the best solution of 97.100777. The
ACO was able to find the optimum nine times as compared
to that of five times obtained by the SA.Table 8 shows
that ACO required the least number of function evalua-

Table 11
Values of parameters of each of the four algorithms

ACO GA TS SA

Parameter Value Parameter Value Parameter Value Parameter Value

Ants (R) 50 Population size 50 Tabu list size 25 Probability threshold 0.98
Probability threshold for

maximum trail (q0)
0.98 Crossover rate 0.8 Number of trial solutions 40 Initial temperature 5

Local search probability (pls) 0.01 Mutation rate 0.001 Probability threshold 0.98 Temperature multiplier 0.98
Evaporation rate (ρ) 0.01 Maximum number

of iterations
1000 Maximum number of iterations 1000 Final temperature 0.01

Maximum number of
iterations (itermax)

1000 Number of iterations detect
steady state

100

Maximum number of
iterations

30000

tions (10 998) and the processing time (33.72). The results
obtained for the clustering problem, Example 4 are given
in Table 9. The ACO, SA and GA approach provide the
optimum solution of 16530.533807. The ACO, SA and GA
methods found this optimum solution in all their 10 runs.
The function evaluations and the execution time taken by
the ACO algorithm are higher than the SA approach but less
than that of the GA and TS approaches. Thehuman thyroid
disease dataset (Example 5) consist of 215 objects to be al-
located to three clusters. Both the ACO and SA algorithms
provide the optimum solution of 10111.827759 to this prob-
lem with success rate of 90 and 30% during 10 runs, respec-
tively. In terms of the function evaluations and the process-
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ing time, the ACO performed better than the SA, GA and
TS clustering algorithms as can be observed fromTable 10.

Several simulations were performed to find the algorith-
mic parameters that result into the best performance of all
the algorithms in terms of the quality of solution found,
the function evaluations and the processing time required.
The algorithmic parameters used in this study are given in
Table 11.

In this study, several datasets were considered with clus-
ters ranging fromK = 3 to K = 6 and number of attributes
from n = 2 to n = 13. As seen, the results obtained by the
ACO method are superior to that of the SA, GA and TS tech-
niques. The results illustrate that the proposed ant colony
optimization approach can be considered as a viable and an
efficient heuristic to find optimal or near-optimal solutions
to clustering problems of allocatingN objects toK clusters.

4. Conclusions

In summary, an ant colony optimization algorithm to solve
clustering problems has been developed in this paper. The
software ants use pheromone matrix a kind of adaptive mem-
ory, which guide other ants towards the optimal cluster-
ing solution. The pheromone (weight) deposition at location
(i, j) (i.e. allocation of samplei to the clusterj in a con-
structed solution) depends on its objective function value
(smaller function value deposit higher pheromone) and the
evaporation rate. The evaporation rate is a kind of forgetting
factor that helps to look into other clustering locations of ob-
ject i. Therefore, it will surely provide an optimal cluster rep-
resentation for a clustering problem as iterations progress.

The ACO algorithm for data clustering can be applied
when the number of clusters is known a priori and are crisp
in nature. To evaluate the performance of the ACO algo-
rithm, it is compared with other stochastic algorithms viz.
genetic algorithm, simulated annealing and tabu search. The
algorithm has been implemented and tested on several sim-
ulated and real datasets; preliminary computational experi-
ence is very encouraging in terms of the quality of solution
found, the average number of function evaluations and the
processing time required.
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