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Abstract- We present a swarm intelligence based algorithm 
for data clustering. The algorithm uses ant colony optimization 
principles to find good partitions of the data. Ln the first stage of 
the algorithm ants mo%e the cluster centers in feature space. 
The  cluster centers found by the ants are evaluated using a 
reformulated Fuzzy C Means criterion. In the second stage the 
best cluster centers found are used as  the initial cluster centers 
for the Fuzzy C Means (FCM) algorithm. Results on 8 datasets 
show that the partitions found by FCM using the ant initialization 
are better optimized than those from randomly initialized FCM. 
Hard C Means was also used in the second stage and the 
partitions from the algorithm are better optimized than those 
from randomly initialized Hard C Means. 

1. INIXODUC rION 

The goal of any clustering algorithm i s  to separate the 
data into self-similar clusters such that some measure of 
the inter-cluster distance is maximized and the intra-cluster 
distance is minimized. Clustering algorithms can be broadly 
classified as Hard, Fuzzy. Possibilistic, and Probabilistic [I].  
Hard clustering algorithms assign individual data points to 
one cluster. This model is inappropriate for real data sets 
in which the boundaries between the clusters may be fuzzy. 
Fuzzy algorithms can assign data points partially to multiple 
clusters. The degree of membership in the clusters depends on 
the closeness of the data point to the cluster center. 

The drawback of clustering algorithms like FCM which are 
based on the hill climbing heuristic is, prior knowledge of 
the number of clusters in the data is required and they have 
significant sensitivity to cluster center initialization. In [2] the 
authors proposed an algorithm that finds the number of clusters 
and provides good cluster centers. Their algorithm uses ant 
colony optimization principles as inspired by [3], [4], [5 ] .  
Thc algorithms dcvcloped using the principles of ant colony 
optimization are distributed, flexible, and robust [ 2 ] .  Each 
individual ant is a simple agent with limited power, but with 
co-operation and stochastic iterative behavior a colony of ants 
can accomplish complex tasks. The ant colony Optimization 
(ACO) algorithms simulate the behavior of ants and are 
based on the interactions of the ants uith each other and the 
environment [6]. [7]. [XI. 

In the proposed algorithm. the stochastic property of ants 
is simulated to obtain good cluster centers. The ants move 
randomly in the feature space carrying a feature of a cluster 
center with them. After a fixed number of iterations the cluster 
centers are ewluated using the rcformulation of FCM which 
Ieavcs out the mcmbership matrix [I]. After the ant stage the 

best cluster centers obtained are used as the initial cluster 
centers for the Fuzzy C Means and Hard C Means algorithms. 
Results on 8 datasets show the superiority of the ant initial- 
ized algorithms over the randomly initialized algorithms. The 
rcformulations for FCM and HCM arc explaincd in Section 11. 
Section 111 explains the ant based algorithm and the parameters 
required for the algorithm. The datascts used and their results 
are explained in Section IV. Conclusions and future work are 
presented in Section V11. 

11. REFORMULATION OF CLUSTERING CRITLR1A FOR 
FCM A N D  HCM 

In [ l ]  the authors proposed a reformulation of the op- 
timization criteria used in a couple of common clustering 
objective functions. The original clustering functions minimize 
the objective function { 1) to find good clusters. 

c n  

&,(GT,B) = ~ C U p l k ( . r : h , P I  
t = l  k=l 

where 
C'?k : Membershzp of the kf" object in the 
8, : The it'& cluster prototgpe 
rn. 1 1 : The degree of f uzztficataon 
c 2 2 : Number of cl listers 
n : Xumber of ilnta pcnnts 

clr1ster 

Thc reformulation replaccs thc membership matrix U with 
the necessary conditions which are satisfied by U. The rcfor- 
niulated version of .Tr, is denoted as R , .  

For the Hard clustering case the U optimization is over 
a crisp membership matrix. The necessary condition for U is 
given in equation 2. Equation 3 gives the necessary conditions 
for U, for the fuzzy casc. Thc distance OL1;(xk7 ,&)is denoted 
as Dzk. 
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The reformulations for hard and fuzzy optimization func- 
tions are given in equations 4 and 5 respectively. The function 
R depends only on the cluster prototype and not on thc U 
matrix, whereas J depends on both the cluster prototype and 
the U matrix. The U matrix for the reformulated criterion can 
be easily computed using equation 2 or 3. 

n 

(4) 
k= I 

I?,(d) = 12 (?Il EDp ) l -  (5) 
.4=1 

111. Fuzzy ANTS AL.GORITHM 
The proposcd algorithm is motivated by swarm intelligence 

techniques. The ants co-ordinate to inovc cluster centers in 
feature space to search for optimal cluster centers. Initially 
the feature values are normalized between 0 and 1. Each ant 
is assigned to a particular feature of a cluster in a partition. 
The ants never change the feature, cluster or partition assigned 
to them, a pictorial view is given in Fig. 1. After randomly 
moving the cluster centers for a fixed number of iterations, 
called an epoch, the quality of the partition is evaluated by 
using the reformulated criterion 4 or 5. If the current partition 
is better than any of the previous partitions’ in the ant’s 
memory then the ant remembers this partition else the ant, 
with a given probability goes back to a better partition or 
continues from the current partition. This ensures that thc ants 
do not remember a bad partition and erase a previously known 
good partition. Even if the ants change good cluster centers to 
imreasonable cluster centers. the ants can go back to the good 
cluster centers as the ants have a finite memory in which they 
keep the currently best known cluster centers. There are two 
directions for the random movement of the ant. The positive 
direction is when the ant is moving in the feature space from 
0 to 1, and the negative direction is whcn the ant is moving in 
the feature space from 1 to 0. if during the random movement 
the ant reaches the end of the feature space the ant reverses 
the direction. After a fixed number of cpochs the ants stop. 

The data is partitioned using the centroids obtained from the 
best known R,, value. The nearest neighbor algorithm is used 
for assignment to a cluster. The cluster centers so obtained are 
then used as the initial cluster centers for the Fuzzy C Means 
or the Hard C Mcans algorithm. The ant based algorithm is 
presented in Fig. 2. 

The values of the parameters used in the algorithm are 
shown in Table 1.  

I V. Ex PF R I M FN TA I ,  R E s I; I ,TS 

The algorithm was applied to six data sets: the Iris Plant 
dataset, Glass Identification dataset, Wine Recognition dataset, 
MRI dataset, Multiple Sclerosis dataset and the British Towns 
dataset. The datasets are described in Table 11. The results 
obtained for the datasets are shown in Table Ill.  All results 
are an average from 50 random initializations. The results for 
the FCM and HCM are the average results from 50 random 

I)  Normalize the fcaturc values between 0 and 1 .  The nor- 
malization is lincar. The minimum value of a particular 
feature is mapped to 0 and the maximum value of the 
feature is mappcd to 1. 

2) Initialize the ants with random initial values and with 
random direction. There are two directions, positive and 
negative. The positive direction means the ant is moving 
in the feature space from 0 to 1 .  The negative direction 
means the ant i s  moving in the feature space from 1 to 0. 
Clear the initial memory. The ants are initially assigned 
to a particular feature within a particular cluster of a 
particular partition. The ants never change the feature, 
cluster or the partition assigned to them. 

3) Repeat 
3.1 For onc cpoch /* One cpoch is n iterations of 

random ant movement *I 
3.1.1 For all ants 

3.1.1.1 With a probability the ant rests for 
this epoch 

3.1.1.2 If the ant is not resting then with a probabil- 
ity PCOntZlllLC the ant continues in the same 
direction else it changes direction 

3. I .I .3 With a value between D,,, and D,,,, the 
ant moves in the selected direction 

3.2 The new R,, value is calculated using the new 

3.2.1 If the partition is better than any of the old 
partitions in memory then the worst partition 
i s  removcd from the memory and this ncw 
partition is copied to the memories of the ants 
making up the partition 

3.2.2 If the partition is not better than any of the old 
partitions in memory 
Then 
With a probability Pc:ontz,tue~urrent the ant 
continues with the current partition 
Else 
With a probability 0.6 the ant chooses to go 
back to the best known partition, with a proba- 
bility 0.2 the ant goes back to the second best 
known partition, with a probability 0.1 thc ant 
gocs to the third best known partition, with a 
probability 0.075 the ant goes to the fourth best 
known partition and with a probability 0.025 
the ant goes to the worst known partition. 

cluster centers 

Until Stopping criteria 
The stopping criterion is the number of epochs. 

Fig 2. F L W ~  ant clustenng with centroids algonthm 
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Parameter 

Nwnher of ants 

Fig. 1. Pictorial view of the algorithm in parallcl co-orctinatcs 

Value 

?O Partitions 

FABLE I 
PA RAM ET E R  V4 L L t s 

Dataset 

TABLE Ill 
RtsuLrs FOR I;ULzY t MLAW 

4 Continuous 
Attributes 

f Examples f Classes 

Iris 
Wine 

Glass 
M RI 

I ~emorv  ncr ant I 5 1  

I50 4 3 
178 13 3 
214 4 6 

65536 3 3 

Jterations per epoch 
Epochs 

Parariietcr 

Enochs 

initializations. The glass datasct has bccn simplified to havc 
just 2 classes window glass and non-window glass. The results 
for this modified dataset are also shown in Table 3. The age 
factor plays an important role in the Multiple Sclerosis dataset; 
the results considering the age feature and ignoring the age 
feature are also shown. Note, the R,,, value is always less 
than or equal to that from randomly initialized FCM except 
for Glass (6 classes). Fivc datascts havc a single cxtrcma for 
the FCM algorithm. Thcy convergc to the same cxtrcma, for all 
initializations tried hcrc. This is rcflcctcd in Table I11 whcrc wc 
havc thc samc valucs in columns 3 and 4 for the five datascts. 

Old Value New Value 

IO00 2000 

TABLE I 1  
DATASETS 

~u l t ip~t t  Sclerosis I 98 I 5 1  2 
Rntisli Towns I 50 I 4 1  5 

Dataset 

I iris I 5.4271 I 5.2330 I 5.2330 I 
%ne 1 33.0834 I 28.7158 I 28.7158 
Glass (6 classes) I 11.3827 I 7.2437 1 7 2917 

I (;lass (2 classes) I 25.8531 I 24.3032 I 24.3932 1 
Multiplc Sclerosis 

(with age) 
Multiple Sclerosis 

(ignoring age) 

6.9456 6.8538 6.8538 

3.5704 3.5319 3.53 19 

303.289 

By performing manual search, new parameters, which gave 
better results, wcrc found. The valucs of the new parameters 
are shown in Table IV and the rcsults obtained by using 
thcsc modificd paramctcrs are shown in Tabk V. Significant 
improvements wcrc obscrvcd for 3 datascts. For thc British 
Towns datasct the averagc value for R,,, aftcr FCM decreased 
to 1.5999 from 1.6033, similarly for the Glass (6 classes) 
dataset the average value for R,, after FCM decreased to 
7.2897 from 7.2937. This average value is better than that 
obtained from randomly initialized FCM. The average value 
for R, after FCM for the MRI dataset decreased to 301.9198 
from 302.1302. 

TABLE IV 
NEW PARAMETERS 

nmLt* I o.r)oi I 0.0001 
&” I 0.01 I 0.001 

l’he parameters Nitmbei= ofepoclis, D,,,, and D,,,, play an 
important role in determining the quality of the clusters found. 

‘ 1  partition - number or clusters x number of features per cluster 

V. H A R D  C MEANS 

Means 
algorithm. The ants find the cluster ccntcrs and thcsc ccntcrs 

The ant a,gorithm uiaS applied with the Hard 
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Dataset 
Min R,  R ,  from R ,  from 

found FCM, ant FCM. random 
by Ants Iiiitislization Initialization 

Bntish Town\ 1 1.6051 1 15999 I 1.6039 
Glass (6 classes) I 92284 I 7.2897 I 7 2917 

Ant5 
per 

partition 

MRI 1 302.1188 I 301,9189 I 303.2894 1 

Min R,,, R,,, from R ,  from 

by Ants Initialization lnrtialization 
Epochs found tICM,Ant IICM,Rnndom 

r 
Mm R ,  R,, from R, from 

by Ants Initialimtton Initialization 
Dataset found tlCM, ant IICM, random 

50 
75 
7.5 

100 
100 I Wine I 52.8098 I 50.4573 1 48.9792 I 

4000 51.0631 49.2604 48 9792 
2000 50 1879 49 2604 48 9792 
7000 49.9230 48 9748 48 9792 
2000 49 641.5 48 9716 48 9792 
4000 492076 48 9697 48 9792 

British Towns 
Iris 

5.5202 3.6260 3.4339 
7.0055 6.9981 8.251 6 

MR I I 433.2752 I 432.7499 I 452.384 

From Table VI we see that the algorithm gives better results 
than randomly initialized HCM for 5 of the 8 datasets tested. 
Changing the parameter values can improve the results. By 
performing a search in the parameter space wc got parameter 
values that resulted in better partitions. Tables VI1 and VI11 
show the variation in the results obtained by changing the 
number of ants per partition and epochs for the British Towns 
and Wine datasets. From the tables we see that as the number 
of epochs increase, the minimum R,, found by the ants 
decreases, this is to be expected because as the number of 
epochs increases, the ants get more time to refine the centroids 
found. Also as the number of ants increases, better R,  values 
are found. Table IX shows the results obtained for different 
MRI slices, the parameter values used for thc MRI datasct are 
tabulated in Table IV and the ants per partition \yere 50. We 
can see the ant generated partitions all have lower R,, values. 

VI. EXECUTION TIME 
The variation of the minimum R,, found by the ants by 

changing the ants per partition for MR slice # 35 is shown in 
Table X. As thc nuniber of ants incrcases the minimum R, 
found decreases, but at the cost of increased cxccution time. 
As the ants increase, more search space is explored and we 
get better R, values. 

The execution time for the British Towns and the MRI 
dataset is shown in Table XI. Thcsc two datasets wcrc chosen 

Glass (6 classes) 
Glass (2 classcs) 
Multiplc Sclerosis 

(with age) 

50 I 2000 1 5.3658 I 3.5812 1 3.4339 
SO I 4000 I 4.5048 I 3.5701 I 3.4339 

28.1317 24.3770 21.1 165 

34.2488 34.1 352 36.9132 

10.220 I 10.20 16 10.3548 

I 75 I 2000 1 5.1691 I 3.6134 1 3.4339 I 

Multiple Sclerobis 
(imorine aeef 

4.6406 

100 I 2000 I 30835 I 3 0661 1 14339 

IABLL VI11 
RESLLTS FOR THE Wl\E DATt\SET 

partition 

52 8003 49 2405 48.9792 

4.6381 4.7759 

because British Towns’ dataset is the smallest (in terms of 
number of examples) dataset and the MRI dataset is the largest 
dataset used in the study. The values are an averagc from 
20000 epochs and 5 experiments for the British To\yns’ dataset 
and from 6000 epochs and 3 experiments for the MRI dataset, 
for FCM the values are an average from 50 runs of random 
intializations. One experiment consists of the ant stage and 
the following Fuzzy C Mcdns or the Hard C Means stage. 
The time required for one epoch for the British towns dataset 
was morc than that for the MRI dataset as there are more 
classes. and hence more ants. in the British towns dataset. 
The time required for the entire experiment was more for the 
MRI dataset as there are more examples in the MRI dataset. 
The experiments were performed on an Intel Pentium 4 2.53 
GHz processor with 5 12 KB cache and 2 GB of main memory. 

vI1. CONCLUSIONS A N D  FUTURE b O R K  

The algorithm is based on relocating the cluster centroids 
in the feature space. The ants move the cluster centers, not 

TABLE IX 
RESULTS €OR THE M R I  DATASET 

882 5732 
927.6961 
851 3756 

46 I 842.5583 I 841.3414 I 847.0730 
47 I 796.8415 1 795.6057 1 834.1028 
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Ants 
pcr 

partition 

Min Rtn R ,  from R ,  From 
found IICM,Ant IlCh.1.Random 

by Ants Irurial~zation lnitialimtton 

Datasct 

50 
75 

100 

I British Towns 

919.8082 917 6636 927 6961 
912.0365 9099324 927.6961 
9100054 9079996 027.6961 

TABLE XI 
E Y F C ~ J T I O N  TIME 

Time 

1.5999 
1.6037 
1.608 I 

British 
Towns 

49 16 
I 18 
0 16 

MRI 

the objects, in feature space to find a good partition for the 
data. The algorithm docs not usc thc object merging criterion, 
which makes it independent of the threshold for merging the 
objects. Also, there are less controlling pamnietcrs than thc 
previous ant based clustering algorithms [Z]. 

Results from 8 datasets show the superiority of our algo- 
rithm over the randomly initialized FCM and HCM algorithms. 
For comparison purposes, Tables XII, XI11 and XIV show 
the fkequcncy of occurrence of different extrema for the 
ant initialized FCM and HCM algorithms and the randomly 
initialized FCM and HCM algorithms. The ant initialized FCM 
algorithm always finds better extrema for the MRI dataset and 
for the British Towns' dataset the ant initialized algorithm 
finds better extrema 49 out of 50 times. The ant initialized 
HCM algorithm finds better extrema for the his dataset all 
the time and for the Glass (2 class) dataset a majority of 
the time. For the different MRI slices, the ant initialized 
HCM algorithm finds bcttcr extrema most of the timc. In 
[9], a Genetic progmming approach has used to optimize the 
clustering criteria, the genetic approach for Hard C Means, 
found better extrema 64% of the time for the Iris dataset. The 
ant initialized HCM finds better extrema all the timc. 

The number of ants per partition is  an important parameter 
of the algorithm. The quality of the partition improves as 
number of ants increase, but the improvement comes at the 
cxpensc of increased exccution timc. Futurc work should focus 
on automatically finding thc number of ants per partition 
and the number of clusters. In this direction, the algorithm 
proposed in 121 can be used to find the number of clusters. 

In the algorithm the number of ants is an important 
parameter, and also the initial number of clusters in the data 

301.9195 1 -50 I 17 
307.1898 1 0 1  13 

1 1 1 Frequency 1 Frequency 1 
Dataset Extrema FCM, Ant FCM. Random 

liiitializahon Initialization 

50 
75 

100 

14.9fA5 97 
22.2210 108.8380 0.0134 
29.7060 120.896 

540.72 50 I 6.7333 I 
75 I 10.1137 I 811.0133 

TAR1 E Xlll 
F R F Q L F Y C Y  01- DIFFI-KEN1 EXTRFMA FROM f$f?M, FOR Gl4SS (2 TI A S S )  

4 N D  [RI4 DATASFT 

12.5')f3 Frequency Frequency 

Initialization Inrtializatwn 
Dataret Extrema IICM. Ant IJCM, Random 

t 34.1720 19 3 
34.1 343 1 1  19 
34. I372 19 15 
34.1658 1 5 

Glass 
(2 class) 

I 6.9981 1 50 I 23 I 

20 

35 

4s 

7.1386 I 0 1  I4 Iris 
10.9083 1 0 1  5 

841 3414 50 44 
889.1043 0 6 
930 1677 45 30 
951.4871 5 15 

0 1003.402 5 

838.0175 50 41 
912.2289 0 9 

, I 

12.1437 I 0 1  8 

79s .3041 
47 796.2459 

970.5483 

TABIX XIV 
FREQUEWV OF DIFFERENT EXTREMA FROM HCM. MRI DATASET 

35 27 
15 13 
0 10 

841.3414 I 50 I 45 I 46 1 889.1043 I 0 1  5 
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is requircd. Future work should focus on setting these values 
automatically. We compared the results from the algorithms 
with randomly initializcd FCM and HCM. 111 thc futurc rcsults 
can be compared with clcverly initialized FCM and HCM 
algorithms. The initial placement of thc ants is also random, 
future work might fociis on giving clevcr initializations to thc 
ants. The stopping critcna is currently based on the number 
it iterations, futurc work should concentrate on automatically 
stopping the ants based on their progress. 
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