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A B S T R A C T

A clustering method, called HACO (Hyperbox clustering with Ant Colony Optimization), is proposed for

classifying unlabeled data using hyperboxes and an ant colony meta-heuristic. It acknowledges the

topological information (inherently associated to classification) of the data while looking in a small

search space, providing results with high precision in a short time. It is validated using artificial 2D data

sets and then applied to a real medical data set, automatically extracting medical risk profiles, a laborious

operation for doctors. Clustering results show an improvement of 36% in accuracy and 7 times faster

processing time when compared to the usual ant colony optimization approach. It can be further

extended to hyperbox shape optimization (fine tune accuracy), automatic parameter setting (improve

usability), and applied to diagnosis decision support systems.
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1. Introduction

The Ant Colony Optimization (ACO) meta-heuristic [4,5] uses a
population of agents (ants) guided by an autocatalytic process
directed by a greedy force for discrete combinatorial optimization
problems. Previous studies applied optimization techniques to
clustering problems, for example [11,12,15,18], aim to minimize a
fitness function, usually a distance measure, relating the data to a
cluster centroid.

Minimizing the distance between data points and cluster
centroids is a logical approach, yet it does not necessarily provide
topological information of the data. The mentioned methods have
provided reasonable minimum distance results, though they lack
the information that is, in many cases, essential for extracting
intuitive knowledge from the data. When used in pattern
recognition or classification applications, despite the fact that
the fitness criterion is satisfied, result accuracy (misclassification)
may be an issue.

The Hyperbox clustering with Ant Colony Optimization method
(HACO) is proposed for clustering unlabeled data by placing
hyperboxes in the feature space optimized by the ACO. It applies an
optimization technique combined to a well-known local search
algorithm to the clustering problem, acknowledging the topolo-
gical information of the data, if available.
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Hyperboxes are placed in the search space using the ACO meta-
heuristic and then clustered using the Nearest-Neighbor (NN)
method. The number of hyperboxes to perform the search with is
usually smaller than (or, in the worst case, equal to) the number of
samples, which means that the search can be done in less
iterations, making HACO a fast classifier.

HACO is applied to three computer-generated 2D data sets which
have significant topological information for validation as a
classification method, considering speed and accuracy. It is then
applied to a Human Papillomavirus (HPV) data set in order to
identify probable infection profiles that may be used as a basis for
preventive medical check-ups. It is compared to two well-
established clustering methods and the usual ACO approach and
the results show that the HACO method can be more effective than
the others.

A brief description of ACO and definition of hyperboxes are
presented in Section 2; Section 3 proposes and details the HACO
method; clustering experiments and the results are analyzed in
Section 4.

2. Description of ant colony optimization and hyperboxes

2.1. A review on ant colony optimization

The ACO meta-heuristic is population-based and can be readily
applied to discrete combinatorial optimization problems. It makes
an analogy of the way real ant colonies work to optimize
combinatorial problems [4,5]. The basic idea is the synergy of
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Fig. 1. Data partition examples: (a) intuitive partition; (b) ACO partition.
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applying multiple communicating agents to build a solution. Real
ants communicate with each other by depositing pheromone on
the trail between the food source and the nest [3]. The shorter the
trail, the faster the ants will go through it and thus more
pheromone will be deposited. Since ants have a high probability of
following trails with higher pheromone deposition, the process
reinforces itself [4,5].

This is a distinctive feature of ACO: the pheromone matrix
works as dynamic memory, indicating how desirable a data object
is to the solution [4], and thus mediates how one ant’s behavior is
determined by the previous ants [3–5]. The values are updated
according to the quality of the solutions, so the process
‘‘remembers’’ good solutions and ‘‘forgets’’ bad ones. Similar
agent-based applications have been used for data clustering, but
such algorithms usually follow the Ant Cemetery approach [12],
which provides no global control over the agents. This approach
has been combined with Fuzzy C-Means [11] and K-Means [15]
algorithms in order to improve the quality of results.

The main characteristics of ACO approach are positive feedback
(improves speed of finding good solutions), distributed computa-
tion (avoids early convergence) and greedy heuristic (finds
reasonable a solution early in the process) [4,5,7]. Due to such
characteristics, however, it may be outperformed by specialized
algorithms [4,5].

The ACO can be simplified in three basic procedures per
iteration [4,5]: build solutions, local optimization (an optional
step) and pheromone update. When applied to finding suitable
data set partitions for clustering [18], i.e., dividing the data set into
distinct classes represented by the clusters, ACO aims to minimize
distances between the samples and the centroids.

Due to its inherent characteristics (flexibility and fast con-
vergence), the ACO algorithm is a good approach for partition
clustering. In this case, since the objective is to minimize the
distance between data objects and the cluster centroids, it
attempts to cluster the closest data objects. This is done by
assigning clusters to each data object, and then calculating the
distances. It may not produce the best results; however, depending
on how the data is distributed on the feature space. This approach
does not consider the topology of the feature space, which is
inherently associated to classification processes [6,17]. For
example, consider the data set shown in Fig. 1.

Intuitively, it is clear that the classes are distributed as one long
curved-shaped cluster (the points with positive vertical coordi-
nates) and one oval cluster (points with negative vertical
coordinates), as in Fig. 1a. The ACO algorithm, however, defines
a partition of the data in such way that it is divided into one
elongated cluster and one larger cluster, as in Fig. 1b. The fitness of
the solution in Fig. 1b is indeed better than the fitness of Fig. 1a;
nevertheless it is clear that the solution lacks the topological
information.

2.2. Describing hyperboxes

A hyperbox defines a region in an n-dimensional space
[17,19,20] and is fully described by two vectors, usually its two
extreme points: al which is the lower bound and bl, the upper
bound. Assuming an n-dimensional space of real numbers (Rn)
and a hyperbox Hl = (al, bl), where al � bl, a point y is said to be in
Hl if

H ¼ fH1;H2; . . . ;Hl; . . . ;HCg;
Hl�R

n;

y ¼ fy1; y2; . . . ; y j; . . . ; yng;
y2Hl) al j � y j � bl j; al; bl 2Rn;

(1)
where C is the total number of hyperboxes and yj is the jth attribute
of y.

Using this definition it is necessary to have two points for a
hyperbox; however, the objective of HACO is to group data objects
that are near each other, which accounts to some problems on
choosing this points. It is, therefore, more convenient to use a
slightly different approach, which maintains the useful character-
istics of a hyperbox. It can be defined by one point (in HACO, one
data object xi) and an n-dimensional vector D which defines the
edge lengths for each attribute, as in Hl = (xi, D). Therefore, each
hyperbox will define a region in the space around such data point,
as follows:

X ¼ fx1; x2; . . . ; xi; . . . ; xNg�R
n;

D ¼ fD1;D2; . . . ;D j; . . . ;Dng;
8 y2Rn;

y2Hl) xi j �
D j

2
� y j � xi j þ

D j

2
;

(2)

where X is the set of data points with cardinality N, and Dk is the
edge length for the jth hyperbox dimension.

Hyperbox classifiers can give straightforward interpretation
for classification rules [17], such as ‘‘if y 2 [al, bl] then y belongs
to the class defined by H00l , without calculating any distances.
Also, if associated with a fuzzy membership function, they can
be used as inputs for fuzzy min–max neural networks to be
applied in classification [19] or clustering [20]. In these
applications, data is assumed to be labeled and part of it is
used for training.

It is possible to automatically determine shape patterns
by grouping hyperboxes, and then define a class according to
the specific characteristics. Since overlapping may occur
but data objects are not allowed to belong to different classes
(crisp clustering [10]), the proposed method requires that
overlapping hyperboxes represent the same class. In other
words, hyperboxes representing different classes must be
disjoint.



Fig. 2. HACO algorithm diagram.
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3. HACO: Hyperbox clustering with Ant Colony Optimization

Evolutionary and meta-heuristic methods are globalized
search techniques, whereas usual deterministic and stochastic
methods are localized ones [4,5], i.e., the latter require good
initial conditions to be able the output a good result. To search
the possible labels for an optimum value of criteria is computa-
tionally prohibitive [4,5]; however, ACO has proved fast con-
vergence [9].

The proposed HACO method aims to find a partition of the data
into clusters, a combinatorial problem, since the partition may give
insight into some inherent structure of the data or identify a
pattern [13]. Despite the similar denomination, HACO does not
resemble the Hyper-cube framework for ACO [2], which limits the
pheromone values to the [0, 1] interval.

The HACO method has two steps, illustrated in Fig. 2. First ACO
is applied to optimally scatter the hyperboxes on the feature space.
This population-based approach allows search in more than one
solution at a time [4,5]. The second step is to group (or ungroup)
the hyperboxes to form clusters that will define the classes.

In the second step, if the number of clusters is known
beforehand, the hyperboxes are grouped using a NN method, so
the solution considers the topology of the data set to provide better
quality results. NN considers proximity to be a key role in intuitive
clustering; it assigns each unlabeled object to the cluster of its
nearest labeled neighbor object if the distance between them is
smaller than a given threshold [10,14].

HACO results provide clusters representing classes, which
enable a simple, straightforward classification for the data objects.

3.1. Using ACO to place hyperboxes

The proposed method starts by loading the data and
determining the number of hyperboxes C to use as

C ¼ rd a �
Yn

j¼1

jjmaxðxi jÞ �minðxi jÞjj
D j

0
@

1
A; (3)

where the function rd rounds the resulting number to the nearest
integer, a is the search space ratio that defines up to how much of
the feature space can be occupied by hyperboxes, Dj is the length of
the hyperbox edge in the jth dimension and xi is the ith data
sample.

The parameter a’s purpose it to allow the user to have more
control over the resulting classifier, since it indicates the ratio of
the feature space ratio to be occupied with hyperboxes. It can
be any value in the interval [0, 1]. If C is found to be greater
than N (either the feature space is too large, the hyperbox
dimensions are too small or both), it is reassigned to N.The ACO
algorithm, illustrated in step 1 of Fig. 2, will repeat its three
basic steps until at least one of the following stop criteria is
achieved:
� N
umber of iterations is equal or more than I.

� T
he density of the best solution found is 1.

In HACO the quality of a solution is measured as its density, i.e.,
the relation of the number of data objects that belong to a
hyperbox. The density dr 2 (0, 1] of a solution Sr (generated by the
rth agent) can be calculated as

Sr ¼ fHr1;Hr2; . . . ;HrCg;

dr ¼
1

N

XN

i¼1

f rðxiÞ;
(4)
where

xi 2X;
l;m2f1;2; . . . ;Cg; l<m;

f rðxiÞ ¼
1; xi 2Hrm; xi =2Hrl;
0; otherwise:

� (5)

Initialization of the pheromone matrix is done by setting all
values to a small positive value t0 2R [4,5], so no partition is
preferred over the others, concluding the initialization procedures.

A solution vector Sr is built in every run by each of the R agents,
applying the information stored in the pheromone matrix T to
assign a hyperbox Hl to a data object xi. Each solution is subject to
the following constraint:

8 l;m2f1;2; . . . ;Cg; l 6¼m) Srl 6¼ Srm: (6)

This means that, for all solutions, no two hyperboxes are
assigned to the same data sample.

The solution can be built in two ways. The first is called
exploitation [4,5] (probabilistic choice), where the agent chooses
the sample with highest pheromone value with a probability
PE 2 [0, 1]. In case this probability is not satisfied, the agent chooses
one of the possible samples with a stochastic distribution pil of the
pheromone values, such that

pil ¼
tilPN
i¼1 til

; (7)

where til is the element of T that associates the pheromone
concentration of the ith data point to the lth hyperbox. This process
is called exploration [4,5].

When exploring, a probability is randomly selected to be
compared to the stochastic distribution of the pheromone. This
means that the pheromone values for each possible sample is a
number in [0, 1], and the sum of all pheromones is 1. Therefore the
value for each sample can be considered as the probability of
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choosing such sample as part of the solution. The sample is chosen
by adding the pheromones of each sample until the sum value is
greater than the random probability. So the sample is selected
randomly among all possible alternatives (possibilistic choice).

The exploitation/exploration of the pheromone matrix accounts
for the global search of the optimal solution. Further optimization
can be implemented by modifying the solutions built by the agents
locally.

Local optimization is done after the agents have built the
solution. The system tries to optimize the best solutions by
randomly changing the data object assigned to each hyperbox with
a local search probability PLS. The local optimization is also subject
to Eq. (6) and the modified solution is stored if there is an
improvement on the quality, i.e., if its density increases.

Updating the pheromone matrix according to the quality of the
solutions is the final, and most important, step in each iteration.
HACO updates the pheromone based on the best L solutions
generated (L � R). This resembles the elitist selection strategy used
in genetic algorithms, where only the best fit individuals in the
population are carried on to the next generation [14,17]. It ensures
the agents will tend to build new solutions based on the knowledge
gained from previous iterations.

Thus, a solution S0 is created from the L solutions with highest
densities, and each pheromone value is updated as

tilðt þ 1Þ ¼ r � tilðtÞ þ
XL

r¼1

d0r; (8)

where r is the trail persistence and d0r is the density of the rth
solution in S0. The trail persistence defines how well the system
remembers the knowledge acquired with previous solutions, and
1 � r is called the evaporation rate [4].

The quality of the solution defines how the pheromone matrix
will be updated and, therefore, how the system will search for
solutions. The main goal of the system is to cover all samples
(density is equal to 1), but if that is not possible, the other criterion
asserts a maximum runtime. ACO is applied to maximize the
density of the solution by placing the hyperboxes where they will
contain as many data objects as possible while maintaining the
constraints specified in Eq. (6).

3.2. Hyperbox clustering

After running ACO until the stop criteria have been achieved
HACO classifies the hyperboxes. Overlapping hyperboxes are
joined into one cluster (class) and non-overlapping ones are
assigned to their own clusters. This automatically provides the
number of clusters (a useful resource for unknown data), though it
still is highly dependent on the data set’s topology and hyperbox
dimensions. Two hyperboxes overlap if

Hl;Hm 2H; l 6¼m;
9 y2Rn s:t: y2Hl; y2Hm;

(9)

where y is any n-dimensional point. A simple way to test this is by
checking if the upper and lower bonds of two hyperboxes intersect.
It is important to emphasize that even though hyperboxes may
overlap, according to (5) the data objects may only belong to one
hyperbox for classification.

In the case the number of clusters K is known a priori, HACO
proceeds as follows. If the number of clusters found is greater than
the given K, the clusters that are closest to each other are grouped
together using the Nearest-Neighbor method [10,14]. If the
number of clusters proposed is smaller than the given, HACO
assigns a new hyperbox and new associated cluster to the sample
with the greatest distance from the existing hyperboxes, repeating
this procedure until the given number of clusters is achieved.

3.3. HACO for classification

The goal of data mining is, essentially, to extract knowledge
from the data accurately and comprehensibly [16], since the result
is usually applied to support human decisions. The hyperboxes
assigned to classes provide a straightforward classifier, from which
classification rules can be easily extracted [17].

To this end, once the hyperbox clusters are defined, each sample
is assigned to a cluster with the following criteria: if a data object xi

is contained in the region defined by a hyperbox Hl, see Eq. (1),
there is a straightforward classification (it is assigned to the same
cluster as Hl); else it is assigned to the same cluster as the hyperbox
closest to it.

The cluster centroids cr, for the rth solution are calculated as the
mean value of all data objects assigned to each cluster. The fitness
of the clustering is given by

FðSrÞ ¼
XN

i¼1

XK

k¼1

vik � distðcrk; xiÞ; (10)

where dist is the standard Euclidean distance between kth cluster
centroid of cr and the ith data point, and

vik ¼
1; xi 2Ak;
0; xi =2Ak;

�
(11)

where Ak is the class defined by the kth cluster.

4. HACO experiments on data sets

4.1. Experimental setup

Experiments are run under Suse Linux1 on a Pentium M1

1.6 GHz with 512 MB of RAM. For each data set the results for the
following clustering methods are gathered: Nearest-Neighbor
(NN), Fuzzy C-Means (FCM [1]), Ant Colony Optimization (ACO,
partition search approach [18]) and Hyperbox Clustering with Ant
Colony Optimization (HACO).

The comparison with only FCM and NN has two key points.
First, they are well-known algorithms and, therefore, provide a
more intuitive base for comparison with the method proposed.
Second, they provide different approaches to the clustering
problem when compared to evolutionary techniques.

HACO and ACO are probabilistic methods, and FCM is very
dependent on the initialization (done randomly in the experi-
ments), so different runs may return different results. For all
methods, each run is considered to be the processing of all steps
necessary to obtain a final solution that classifies all samples. For
statistical validation, each method is applied 10 times to each data
set, and the best accuracy results and average runtime are
compared.

Running the experiments many times also accounts for a
reasonable idea of the runtime required for running each algorithm
once, since that may change between attempts due to a number of
reasons. This average runtime information is used to compare the
performances of HACO and ACO, which have similar approaches to
the problem.

NN is a fast and simple method which assigns each unlabeled
object to the cluster of its nearest labeled neighbor object if the
distance between them is smaller than a given threshold [10,14].
The efficiency of this method depends on the size of the data set
and its features, since it calculates the distances for all objects and
these distances may be dominated by irrelevant features (curse of



Fig. 4. U-matrix for HPV data. (For interpretation of the references to color in this

artwork, the reader is referred to the web version of the article.)

Table 1
Algorithm input parameters.

FCM ACO HACO

I = 1000 I = 1000 I = 1000

e = 0.0001 R = 50 R = 50

m = 2 PE = 0.98 PE = 0.98

L = 1 L = 1

PLS = 0.01 PLS = 0.01

r = 0.99 r = 0.99
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dimensionality [14]). The NN algorithm implemented in this work
is slightly modified to accommodate the a priori knowledge of the
number of clusters. The threshold is changed according to the
number of clusters obtained, increasing if the number is too big
and decreasing if it is too small, thus forcing the partition to
provide the desired number of clusters.

Fuzzy clustering extends the notion of association between
objects and clusters using a membership function that defines with
what degree each object belongs to each cluster [1,21]. FCM is a
well-known clustering method which runs for at most a number I

of iterations or until the difference between the weights in two
consecutive iterations is less than an error threshold e. The shape of
the fuzzy sets is controlled by a fuzzification factor m > 1 [1], and
initial fuzzy weight values (belonging to [0, 1]) are assigned
randomly. The fitness of the solution given by the FCM algorithm is
also calculated by Eq. (10), having vik as the membership value.

Each of the applied methods has its own set of parameters,
listed in Table 1. They are assigned, according to references, as
values that produce good results. NN uses only a distance threshold
value as input parameter which is not considered since it is
adjusted as needed to fit the desired number of clusters.

Though the HACO accommodates hyperboxes of any shape,
there is no logic implemented to reasonably define which shape
they should have. Therefore, hyperboxes with the same shape and
volume are considered for the experiments, so all elements of the
vector D are equal (D1 = D2 =� � �= Dn = D0). Since this is still a
validation tryout for the HACO, the parameter D0 is set to different
values to verify its influence on results.

The fuzzification factor for FCM is usually set to 2 [17]. ACO
parameters are set according to [11,18] and, for comparison
purposes, the parameters for HACO are set likewise.

The number of clusters K desired for each data set is also given
as a parameter, according to the data set used in the experiment.
For validation, each method is applied to three different computer-
generated data sets and then tested with a real set of HPV data.

4.2. Synthetic data set for validation

Each of the three computer-generated data sets, shown in Fig. 3,
has a distinct topology to better assert the method’s efficiency and,
for illustration purposes, only two features.

The first data set, Fig. 3a, consists of 150 objects intuitively
forming two clusters, one with an ellipsoid geometry and the other
Fig. 3. Computer-generated data sets: (a) 150 s
resembling the form of a horseshoe. The data set in Fig. 3b consists
of 302 objects forming three clusters, two with ellipsoid geometry
and one with an elongated shape. Fig. 3c has 600 objects that form
three distinct ellipsoid clusters.

4.3. HPV data—a real world application

The Human Papillomaviruses (HPVs) cause long-term infec-
tions that can be detected. There are no effective antiviral drugs yet
available, and treatment should be provided because the disease
can progress to cancer [8].

The Department of Stomatology, part of the Dentistry School in
Unigranrio, has collected 199 samples of oral mucosa and a
questionnaire for 42 physical characteristics and habits amongst
the local population. The questionnaire provides the features while
the mucosa gives the health status (infected or not by HPV) of each
individual. At the time of collection all individuals seemed healthy.

The questionnaire contains information such as gender, job,
smoking habits, use of mouthwash, and others. It is very broad and
was filled without any constraints, meaning each question was
answered by the individual’s standards, not previously specified
values. For example, the smoking frequency assumes values such
as ‘‘20 cigarettes per day’’ and ‘‘on weekends’’.

Since some features had no influence on the result (for example,
all individuals are of Brazilian nationality) or could not be properly
converted into numerical values (profession or place of collection
of the mucosa), they were not considered for the experiments. The
data set used has 185 samples with 21 features, and is to be divided
into two clusters (infected and healthy individuals). Fig. 4
amples; (b) 302 samples; (c) 600 samples.



Table 3
Experimental results for synthetic data sets.

Data Runtime (s) Fitness Accuracy

NN 1 0.02 889.48 100%

2 0.05 19164.57 100%

3 0.10 594.07 100%

FCM 1 0.04 913.55 74%

2 0.10 24457.35 48.68%

3 0.20 1743.70 100%

ACO 1 6.10 477.47 70.67%

2 16.20 11089.20 55.96%

3 33.00 4754.55 72.19%

HACO, D0 = 1 1 3 889.48 100%

2 20.9 19164.57 100%

3 21.7 594.07 100%

HACO, D0 = 2 1 1 889.48 100%

2 9.9 19164.57 100%

3 10 594.07 100%

HACO, D0 = 3 1 1 489.89 65.33%

2 6.1 19164.57 100%

3 5.1 594.07 100%

Table 2
Influence of HACO parameter a in data set 2.

a Number of hyperboxes Density Suggested K Runtime (s)

0.1 47 0.8179 41 39

0.2 95 1 25 22

0.3 143 1 14 0.3

0.4 191 1 14 0.71

0.5 239 1 6 0.94

0.6 287 1 6 1.49

0.7 302 1 9 1.65

0.8 302 1 9 1.66

0.9 302 1 9 1.7

1.0 302 1 9 1.77

G.N. Ramos et al. / Applied Soft Computing 9 (2009) 632–640 637
illustrates the highly dimensional data through the U-matrix of a
self-organizing map.

4.4. HACO experimental results

Considering only data set 2, experiments were run to assess the
influence of the parameter a in the results. In this experiment, D0 is
fixed at 1 and the number of clusters K is not given as input. Details
of the results are given in Table 2.

As expected, the number of hyperboxes C, obtained from Eq. (3),
grows linearly with a until the threshold (number of samples) is
reached.

Also as expected, the density of the solution grows as the
number of hyperboxes grows. The suggested number of clusters
decreases as the number of hyperboxes, which stabilizes around to
suggest around 9 clusters, grows. This is not surprising more
hyperboxes of the same size being used means a higher chance of
them overlapping. None of the results for suggested number of
clusters is the desired 3, suggesting that the hyperbox dimensions
also have a strong influence on this matter.

Finally, the runtime decreases drastically with the increasing a,
as a consequence of the density stop criterion. This results give
insight on how a affects the performance of HACO, and point to a
relationship between this parameter, D0 and the suggested K. The
results are very dependent on the data set in question, but knowing
this, and having the number of clusters of the data and the range of
Fig. 5. Evolution of
its features, used in Eq. (3), it may be possible to automatically
define reasonable values for D0.

HACO proposes a to give the user more control over the
resulting classifier geometry. Larger values result in more space
being taken, which may cause the clusters to be too large (and the
classifiers too general). On the other hand, smaller values may
result in many smaller clusters (and classifiers that are not general
enough). Thus, for the rest of the experiments, the parameter a is
set empirically to the intermediate value 0.5. The edges of the
hyperboxes, determined by D0, will have different values to assess
how they affect the performance.

Further evaluation of HACO is done with experiments in all the
computer-generated data sets, and the results for each method are
shown in Table 3. Time values are considered the mean runtime for
all 10 runs of the algorithm; fitness and accuracy values are given
by Eqs. (10) and (12), respectively, and are described only for best
solution found. Parameters used are the ones given in Table 1, and
visual representation of these results is given in Figs. 6–8.
each method.
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The accuracy indicates how well each method classifies the data
sample [17] and is defined as

accuracy ¼ TP þ TN

N
; (12)

where TP is the number of samples correctly classified as positive
(belonging to the class), TN is the number of samples correctly
classified as negative (not belonging to the class), and N is the total
number of samples.

Both FCM and ACO approaches aim to minimize the distances
between data objects and the cluster centroids (their objective
function), but the HACO aims to maximize the hyperbox density
values (which leads to minimizing the distances). NN joins the
samples into clusters, and aims to find a distance threshold that
results in the desired number K. The progress of each method is
illustrated in Fig. 5.

The maximum hyperbox density is only obtained for data set 1,
in other cases the stop criterion is the number of iterations. Notice
that once the hyperbox density stop criterion is achieved (around
iteration 600), HACO stops searching for other solutions. Using
more stop criteria provides faster results and decreases the
computational cost of the algorithm.

The fitness found using HACO usually has a higher value than
the one found using ACO because HACO uses the topological
information when grouping data objects. The ACO can find an
optimal solution given a large enough number of iterations and
Fig. 6. Experimental results using HACO and using NN: (a) data set 1; (b) data set 2; (c) d

referred to the web version of the article.)

Fig. 7. Experimental results using FCM: (a) data set 1; (b) data set 2; (c) data set 3. (For inte

version of the article.)

Fig. 8. Experimental results using ACO: (a) data set 1; (b) data set 2; (c) data set 3. (For inte

version of the article.)
runs, but it produced a bad result for the simplest case of three
distinct ellipsoid clusters, shown in Fig. 8c. In a separate
experiment, considering only data set 3 and having 200 iterations
and as many runs, ACO eventually found much better solutions
(though not as accurate as the other methods), but it obviously
required a much longer runtime.

Accuracy for FCM results is obtained from classification after a
simple defuzzification: each object is assigned to the cluster to
which it belongs with highest degree. With crisp clusters the
fitness can also be recalculated, assuming values closer to the
fitness of other methods.

It is important to notice that FCM assigns fuzzy values while the
other two assign crisp values. This means that even though FCM
produces similar solutions to the others, Figs. 7a and 8a or Figs. 6c
and 7c, the fitness values can be significantly higher.

The accuracy of HACO remains the same for data sets 2 and 3 for
all values of D0 tested, but it changes for data set 1 with D0 = 3. In
this last case, the size of the hyperboxes is large enough for two of
them to overlap and thus be joined in one cluster. The resulting
classification provides good fitness but lacks accuracy.

The application of the Nearest-Neighbor method in HACO
allows it to consider the topology of the data sets, clearly a key
aspect in classification, improving the quality of the result as is
obvious in Figs. 6–8.

Notably, FCM quickly provided an excellent result for data set 3;
however, this is because the geometry is favorable to this method
ata set 3. (For interpretation of the references to color in this artwork, the reader is

rpretation of the references to color in this artwork, the reader is referred to the web

rpretation of the references to color in this artwork, the reader is referred to the web



Table 4
Experimental results for HPV data set.

Runtime (s) Fitness Accuracy

NN 0.30 40534.31 68.41%

FCM 0.70 21880.28 50.81%

ACO 42.00 12452.35 52.35%

HACO Runtime (s) Fitness Accuracy

D0 = 1 5.80 25555.14 71.35%

D0 = 2 2 31918.13 68.11%

D0 = 3 1 31522.15 67.57%
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(only ellipsoid clusters). If an elongated cluster is presented (as in
data sets 1 and 2), the results for FCM are not so accurate. These
results show that HACO is a suitable method for classification, even
if the data has inherent topological information and that it can be
applied to real data sets.

Considering the HPV data set, the high number of features
makes it difficult to visualize the clusters. Experimental results are
shown in Table 4. NN provides fast result, almost as accurate as the
HACO. The FCM method also provides fast results, but lacks
accuracy. ACO gives slightly better results than FCM, but not as
well as NN and with a much longer runtime. The quality of HACO
results does not vary much with the hyperbox dimension;
however, the computational cost of D0 = 3 is almost 6 times lower
than the one of D0 = 1.

The NN method is fast and provided very good results for the
given test and real data sets. This approach, however, is usually
used only for local optimization (usually as pre-processing) and
may miss the globally optimum solution [10,14]. The runtime
increases with the data set size, so its performance against much
larger sets may be different.

FCM is clearly an efficient method; however it does not consider
the geometry as an important characteristic of the data set. It also
may be outperformed due to poor choice of initial values, in the
experiments they were randomly assigned, but gave results similar
to the ones in Table 3 when ‘‘properly’’ initialized (initial weight
values set according to desired classification, as in Fig. 1a).

The ACO method applied to partition clustering may find good
results for the validation data sets, as in Fig. 8a, and presents
competitive results when compared to other optimization
methods [18]; however it also does not consider the topology of
the feature space. Better results may be found by changing some
parameters like number of agents or iterations, which will
consequently increase the computational cost.

Considering D0 = 1, HACO uses more hyperboxes and thus has
provides a finer approach to the actual shape of the cluster,
providing a result over 7 times faster than ACO. For the other values
of D0, the accuracy decreased; however, this is a reasonable tradeoff
due to the gain in processing time.

The results show that the use of hyperboxes in searching
provided a faster application. The accuracy (for D0 = 1) is better
than for NN, almost 40% improved over FCM and over 30% better
than the accuracy for ACO, showing that HACO was successfully
applied to a real world problem, outperforming well-established
algorithms (NN and FCM) and the algorithm it is based on (ACO).
While this might not be enough to state that HACO is one of
the better performing clustering methods available, it should
suffice to show that the proposed algorithm provides results
which are reasonable enough to be considered and further
investigated.

HACO’s major contribution to the ant colony body of knowledge
is speed and quality of results, clearly seen from the results for
artificial and HPV data. Using hyperboxes, HACO acknowledges the
topological information of the data, and can be easily turned into
an intuitive classification tool.

The risk profile provided by HACO was shown to an expert in
Unigranrio and approved as a tool in aiding HPV infection
diagnosis. It is important to emphasize that HACO does not
pinpoint the disease in someone, since the exact symptoms/
characteristics of HPV infection are not yet defined and vary from
place to place. What HACO achieved is a probable risk profile for
the specific region where the data was collected. This aids the
health professionals by indicating the necessity of further
examination of a patient that fits the identified risk profile without
the burden of a full check-up.

5. Conclusion

The Hyperbox clustering with Ant Colony Optimization (HACO)
method is proposed for data classification. It uses the Ant Colony
Optimization (ACO) to search the feature space and hyperboxes to
make the space smaller, and a local optimization method to
acknowledge the topological information.

The HACO method is validated for data classification with three
computer-generated 2D data sets and applied to a Human
Papillomavirus (HPV) data set in order to identify probable risk
profiles and enable early diagnosis, a crucial factor for preventing
the disease to evolve into cancer.

The method is compared to Nearest-Neighbor (NN) and Fuzzy
C-Means (FCM), two well-established clustering methods, and to
an ACO partition approach for clustering method. The quality of the
results given by HACO is competitive against the NN results and
significantly better than the FCM and ACO. Results show that data
geometry is indeed an important factor and should be considered.

The experimental results obtained for the three computer-
generated data sets validate HACO as a clustering method that
considers the shape of the input data, suitable for pattern
recognition applications. The results for the HPV data set show
that HACO is better suited for this data than the other three
methods. NN also provided reasonable results, but this method is
limited when applied to highly dimensional data sets.

Accuracy values from HACO are significantly better than FCM
and ACO (over 30% more accurate), and the runtime improvement
when compared to the latter is substantial (over 7 times faster).
Class features can be readily obtained from the HACO HPV results,
and the cluster centroid for each class provides a probable risk
profile for infection in the location of sample collection.
Comparison of a risk profile and an individual profile may indicate
need for further examination and, consequently, early diagnosis of
infection.

HACO showed promising results for clustering (and straightfor-
ward extraction of classification rules), indicating that further
development in this research should be considered. Better
assessment of the performance can be achieved by comparison
with newer and/or similar approaches, such as GA, SA, PSO,
Ant Cemetery, Extended FCM, and other hybrid evolutionary
approaches.

Future perspectives also include automatic parameter tuning
from the input data set, specially the hyperbox edge length D, in
order to minimize user burden and improve the quality of the
results. Further development can also be pursued in optimizing the
hyperbox dimensions, to fine tune results, and in verifying how
HACO performs when applied to larger data sets or to similar
medical data, aiming to use this method as part of a computer
aided diagnosis system. HACO may also be used with any type of
data, and can be readily applied, for example, in software quality
assessment or telecommunication customer’s profile identifica-
tion.
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of Unigranrio University for the data and expert opinion on the
subject. The authors also thank the anonymous reviewers for their
useful suggestions.

References

[1] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms,
Plenun, 1981.

[2] C. Blum, M. Dorigo, The hyper-cube framework for ant colony optimization, IEEE
Transactions on Systems, Man and Cybernetics - Part B 34 (2) (2004) 1161–1172.

[3] J.-L. Deneubourg, S. Aron, S. Goss, The self-organizing exploratory pattern of the
argentine ant, Journal of Insect Behavior 3 (2) (1990) 159–168.

[4] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of
cooperating agents, IEEE Transactions on Systems, Man and Cybernetics - Part B
26 (1) (1996) 29–41.
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