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a b s t r a c t

Community structure detection in complex networks has been intensively investigated in
recent years. In this paper, we propose an adaptive approach based on ant colony cluster-
ing to discover communities in a complex network. The focus of the method is the clus-
tering process of an ant colony in a virtual grid, where each ant represents a node in the
complex network. During the ant colony search, the method uses a new fitness function
to percept local environment and employs a pheromone diffusion model as a global in-
formation feedback mechanism to realize information exchange among ants. A significant
advantage of our method is that the locations in the grid environment and the connections
of the complex network structure are simultaneously taken into account in ants moving.
Experimental results on computer-generated and real-world networks show the capability
of our method to successfully detect community structures.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nature, society, and many technologies can be modeled by numerous networks that involve many important and
complicated interactions among individuals [1], such as Biological networks, Social networks, Collaboration networks, and
Web networks. These networks are often called complex networks. These complex networks are found to divide naturally
into communities,which are groups of nodes such that the nodeswithin a group aremuchmore connected to each other than
to the rest of the network. In recent years, community structure discovery has been one of the most popular research areas
along with its applicability to a wide range of disciplines [2–5]. For example, cell biologists use the community structure
in protein interaction networks to make sense of signal transduction cascades and metabolism, to research the inherent
relationships between cellular functions and biochemical events in this area. Computer scientists are mapping the Internet
and the WWW into different communities to discover topic information from Web pages and potential relationships in
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hyperlinks. Epidemiologists follow transmission networks through which viruses spread and try to find how to stop the
spread of the virus by analyzing the transmission network structure, and so on. That is, communities are interesting and
fundamental because they often correspond to functional units and reflect the in-homogeneity or locality of the topological
relationships between the nodes of target systems. Thus, community structuremining is important for analyzing topological
structures, comprehending network functions, recognizing hidden patterns, and forecasting the future behaviors of complex
systems.

With the development and popularity of complex networks, various network clustering algorithms to mine community
structures have been proposed [4,6–20]. In Ref. [21], Fortunato gave a comprehensive and in-depth summary for the
methods and algorithms of community detection in graphs from different aspects. Although special strategies adopted are
different, most of the algorithms are mainly divided into two basic categories from the view of the search mechanism: the
global optimization approach and local search approach [20]. The first approach poses clustering as a global optimization
problem, which employs an objective function to evaluate the network modularity quality and tries to find an optimal
clustering result in the whole solution space [6–8,14–17]. In contrast, there are no global optimization objectives in the
second approach, and they carry out clustering based on some local heuristic rules [4,9–13], such as edge betweenness, clique
percolation, randomwalk, etc. Moreover, there are some algorithms that use a combination of these two basicmethods [18–
20], which can get better clustering results and higher time efficiency than each basic approach. For all that, however,
how to further improve the detection accuracy, especially how to discover reasonable community structure without prior
knowledge, is still a challenging problem. In this paper, we propose an Ant Colony Clustering algorithm based on Fitness
perception and Pheromone diffusion for community detection in complex networks (called as ACC-FP), which is also a
combination method. ACC-FP first uses a new fitness function to percept local environment and move to more comfortable
locations in the grid. Then, in terms of the ants clustering quality at each iteration, it employs a pheromone diffusion
model, which can faithfully simulate the volatilization character of pheromone, to realize information exchange among
ants and guide ant colony to perform global searches. Experimental results and relevant comparative analyses show that
the combination of local perception and global information feedback is effective to achieve high-quality clustering results.

The rest of this paper is organized as follows. Section 2 introduces related research on community detection. Section 3
presents themotivation and the details of the proposed algorithm. Section 4 presents and analyzes the experimental results.
Section 5 concludes this paper.

2. Related work

In the past decade, the problemof community detection has attractedmuch attention in various scientific fields including
physics, sociology, and computer science. Many methods employing different strategies have been proposed and applied
successfully to some specific complex networks. For instance, Girvan and Newman proposed GN algorithm, which is a
method for detecting a community structure by using information about edge betweenness [4]. Subsequently, Newman
proposed a fast algorithm for detecting a community structure based on the Q metric [6]. Based on a q-state Potts model,
Reichardt and Bornholdt presented a fast community detection algorithm, which can detect overlapping communities
without prior knowledge about the number of communities [7]. By means of the eigenvectors of a modularity matrix
for the network, Newman proposed a spectral algorithm for community detection, which can acquire higher quality than
some competing methods in shorter running times [8]. Radicchi et al. gave two quantitative definitions of community and
presented a local algorithm to detect communities, which can efficiently deal with large-scale networks [9]. Gergely et al.
used clique percolation to identify densely connected subgraphs in complex networks [10]. Frey et al. employed affinity
propagation to pass messages and iteratively partitioned data points into the exemplar clusters [11]. Yang et al. developed
a new algorithm called FEC for identifying communities from signed social networks whose idea rested on an agent-based
random walk model [12]. In 2012, Faqeeh et al. put forward a new algorithm (called FA in this paper), which employed
the eigenvectors of the clumpiness matrix to construct a ‘‘projection space’’ and used some kind of angular distance in this
space to define a border line, and then applied this borderline and hierarchical clusteringmethods to identify the community
structure of a complex network [13]. Gong et al. proposed the improved memetic algorithm called iMeme-Net for solving
community detection problems, which combined Label Propagation (PGLP) tactic, an Elitism Strategy (ES), and an Improved
Simulated Annealing Combined Local Search (ISACLS) strategy to carry out population generation [14].

It is worth noting that there has been an increasing development trendwhich employed swarm intelligence to detect the
community structure of complex networks in recent years. Pizzuti proposed a new algorithm to discover communities in
networks by employing Genetic Algorithms (namedGA-Net) [15]. The approach introduced the concept of community score
to measure the quality of a partition in communities of a network and tried to optimize this quantity by running the genetic
algorithm. Liu et al. proposed a communicating community discovery algorithm based on an ant colony clustering model,
which employed movement, picking-up and dropping-down operators to perform node clustering in email networks [16].
To reduce clustering computational costs without loss of solution quality, Sadi et al. used ant colony optimization (ACO)
techniques to find cliques in a network and assigned these cliques asmeta-nodes, and then employed a traditional algorithm
to find community memberships on the reduced graph [17]. To further optimize the approach, authors subsequently used
the snowball sampling method to generate these subgraphs and ran the ACO-based clique finding technique on each one in
parallel [18]. Taking the Q metric as an objective function, Zhang et al. proposed a mining community method in dynamic
social networks, which used a clustering center initialization, the pheromone updating, and heuristic function guiding
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strategies to achieve the clustering solution [19]. In Ref. [20], Jin et al. proposed a new ant colony optimization algorithm
named ACOMRW, whose basic idea is the progressive strengthening of within-community links and the weakening of
between-community links. At each iteration, a Markov random walk model is taken by ants as the heuristic rule; all of the
ants’ local solutions are aggregated to a global one through clustering ensemble, which is then used to update a pheromone
matrix. Gradually this converges to a solution where the underlying community structure of the complex network will
become clearly visible.

In essence, community detection in a complex network is a node clustering problem. As a kind of nature inspired
algorithm, Ant clustering has shown its ability to produce a low cost, fast, and reasonably accurate solution to the complex
clustering problem. For instance, Chen et al. first proposed an ant sleeping model (ASM) and presented the corresponding
adaptive ant clustering algorithm in Ref. [22], whichmimicked the behaviors of gregarious ant colonies. Later, they extended
the work and presented an ant movement (AM) model and an adaptive ant clustering (AAC) algorithm based on the
model [23]. Experimental results show that the AAC algorithm based on the AM model is suitable for solving large-scale
and complicated clustering problems. However, as far as we know, there is no research of using a similar clustering model
to detect the communities from complex networks till date. Moreover, though many computational methods have been
available for researchers to detect communities, these methods are not sufficient to completely solve the problem along
with the widespread use of complex networks. Hence, both facts inspire us to extend the ASM algorithm and present a
new ant clustering algorithm based on ant gregarious and communication behaviors for mining communities in complex
networks.

3. The ACC-FP algorithm

3.1. Basic principle

A complex network is typically represented as an undirected graph G(V , E), where V is the set of nodes (or vertices) and
E is the set of edges (or links). The community detection in a complex network is essentially a clustering problem, which
focuses on detecting densely connected subgraphs G1,G2, . . . ,Gk in G, where G1,G2, . . . ,Gk satisfy ∪1≤i≤k Gi = G and
∩1≤i≤k Gi = ∅. Intuitively, if a partition has the property that within-community edges are dense and between-community
edges are sparse, it will be called a well defined clustering result. In this section, we develop a global search algorithm based
on an adaptive ant clustering for detection of communities, which uses a new fitness function to percept local environment
and employs a pheromone diffusion model to realize information exchange.

In fact, the study of the behavior of real ants has greatly inspired and motivated the developments of ant colony
optimization (ACO) and ant colony clustering (ACC). Biologists have discovered that ant nests are near to each other in nature,
so ants can take care of each other and collectively combat alien invasions. However, ant nests are not evenly distributed.
The antswith similar habits live quite close to each other, whereas the antswith different habits live relatively far away. That
is to say, they tend to stay with the species having the same or similar habits. In light of such a living behavior, ants naturally
obtain a comfortable environment with the similar gathering, repelling others. The AM model mentioned in Section 2 is
the most typical model, which simulates the behavior that ants search for a comfortable position to take a break from the
living environment. In light of the similar idea, we model the basic ants and their environment as follows. All ants live in
a two-dimensional grid (environment). Each ant is a simple agent who represents a node of a complex network. At the
beginning, ants are randomly placed at different locations in a virtual grid. During the evolution process, an ant makes
use of the perception of a fitness function to move to a new location or stay in the original location in each iteration. That
is, if there is a more comfortable position for the ant, the ant is activated and moves to the new location; otherwise, it
will keep the sleeping state and stay still. Ant colony movings at each iteration form a clustering result (solution), whose
quality is evaluated and employed to update the pheromone of nodes. To reflect characteristics of the pheromone diffusion,
a pheromone diffusion model is applied to the pheromone updating. The evolution process is repeated till all ants find and
keep the most comfortable positions, and then the community structure of the complex network is visible in the grid.

3.2. Ant colony perceptions and movements

At each iteration, each solution associated with a clustering result is found by means of ant colony perceptions and
movements. The ants respectively move according to the perceptions of the surrounding environments, form into groups
eventually, and hence the corresponding nodes are clustered.

3.2.1. Fitness function
Each ant is a simple agent who is able to feel the quality of its local environment, and it frequently tries to search for a

more comfortable position for sleeping in its surrounding environment. There are two behavior ways for ants. When an ant
is in an inappropriate location, it will actively move around to search for a more suitable position and will not stop until it
finds one. Conversely, when an ant is satisfied with its current position, it will keep sleeping. It is easy to see that an ant’s
perceptual abilities for the environment are very important for such behaviors. To measure an ant’s perceptual ability, a
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fitness function of an ant i at the iteration t is defined as

fi(t) =
1
|A|


j∈A

1
1 + dij

(1)

where A represents the ant i’s neighborhood in its living environment (grid), |A| is the number of ants in A, and dij is the
distance between two nodes i and j in the complex network. Since the objects to be clustered are the nodes of a graph, the
similarity is often defined in terms of structural equivalence [24]. Thus, dij in our algorithm is computed as follows:

dij =

 N
k=1,k≠i,j

(aik − ajk)2 (2)

where N is the number of nodes in G(V , E), aij is an entry of the adjacency matrix, which represents the connectivity
relationship between two nodes i and j, and aij(i, j = 1, . . . ,N) is equal to 1 when the link lij exists, and zero otherwise. It is
obvious that if two nodes i and j are precisely structurally equivalent, the entries in their respective rows of the adjacency
matrixwill be identical and thus dij = 0. The distance has the properties of a distancemetric: (1) dij ≥ 0, ∀i, j; (2) dii = 0, ∀i;
(3) dij = dji, ∀i, j.

3.2.2. Moving strategy
If an ant senses more comfortable locations in each iteration, it gets activated and tries to move to a new location in

the grid. The new location is randomly selected from the neighborhood of its neighbor nodes in G(V , E) with respect to
a probability Pij(t). This probability Pij(t) represents the possibility that the ant i moves to an empty location of the ant
j’s neighborhood where there is an edge between two represented nodes in G(V , E). It is defined proportionally to an
aggregation pheromone factor and a heuristic factor, i.e.,

pij(t) =


[τj(t)]α · [ηj]

β
l∈Neighbor(i)

[τl(t)]α · [ηl]
β
, j ∈ Neighbor(i)

0, otherwise

(3)

τj(t) =


k∈A

τk→j(t)
dkj

(4)

ηj =

|c(i, j)|,


l∈Neighbor(i)

|c(i, l)| ≠ 0

d(j), otherwise
(5)

where τj(t) is the quantity of aggregation pheromone laying on the node j at the time t (t is the number of iterations), A
represents the node j’s neighborhood in the grid, τk→j(t) is the aggregation pheromone on the node j imposed by the node k’s
pheromone, and dkj denotes the distance between two nodes k and j in the complex network; ηj represents a local heuristic
information, |c(i, j)| is the number of common neighbor nodes for the two linked nodes i and j, d(j) is the degree of the node
j; Neighbor(i) is the neighbor node set of the node i in the complex network, and the parameters α and β determine the
relative importance of pheromone trail versus heuristic factor for the node j. Thus, the higher the value of τj(t) and ηj, the
more possible it is to select the node j as the next position.

3.3. Aggregation pheromone diffusion and updating

Aggregation pheromone is an important carrier for an ant colony to implement swarming intelligence. Generally, the
more the number of nodes clustered in the local environment around a node is, the larger the pheromone will be; thus, it
can attract more and more ants to move closer to its neighborhood. On the other hand, the aggregation pheromone, as a
chemistry substance, volatilizes gradually over time, i.e., the pheromone can diffuse around. To simulate this phenomenon,
we present a pheromone diffusion model and its corresponding updating formula. The basic idea is to take into account the
pheromone influences among close locations in the grid when an ant colony searches a feasible solution. Namely, there are
coupling effects among adjacent pheromone diffusion fields; the closer the distance between two locations, the stronger the
coupling action is, and yet the farther the distance, the weaker the coupling action is. Thus the pheromone updating needs
to perform decoupling compensates for the pheromone intensity of adjacent locations.

3.3.1. Pheromone diffusion model
Let τk(t) be the pheromone trail on a node k laid by the ant colony. We can give the pheromone diffusionmodel based on

the real distance between two nodes in the grid. Fig. 1 shows the sketch map of the pheromone diffusion; Fig. 1(a) presents
the relationship between the intensity τi(t) and the distance dr , and Fig. 1(b) gives the simulationmethod of the pheromone
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a b
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Fig. 1. Sketch map of aggregation pheromone diffusion of an info fountain k and its intensity field. (a) Relationship between the intensity τi(t) and the
distance dr . (b) Simulation method of the pheromone diffusion.

diffusion. To compute the pheromone intensity of nodes in the diffusion field, a cone is employed to simulate the pheromone
diffusion model, where the center dot denotes the node k as an info fountain, r is the radius of diffusion area in the grid,
the node j locates in the intensity field of the info fountain, and dr is their distance in the grid. The figure shows that the
pheromone diffuses around by taking an info fountain as a center of the diffusion intensity field and that the closer to the
info fountain the location, the stronger the field force of the intensity field is. More precisely, the pheromone influence of
an info fountain on other nodes will gradually reduce as the distance between nodes becomes long. Therefore, we can give
a simple diffusion model:

τk→j(t) =



r − dr

r


· τk(t), if dr < r

0, otherwise.
(6)

Based on such a pheromone diffusion model, the aggregation pheromone of all nodes at each iteration can be obtained.

3.3.2. Pheromone updating
Once each solution is formed at each iteration, aggregation pheromone trails of the nodes will be updated. More specifi-

cally, the algorithm updates the pheromone intensity for all nodes in light of the profit value of the solution; the formula of
pheromone updating is as follows:

τj(t + 1) = (1 − ρ)τj(t) + △τj(t, t + 1) (7)

where τj(t + 1) represents the pheromone trail of the node j used in the iteration (t + 1), 0 < ρ ≤ 1 is a coefficient which
represents pheromone evaporation, and the △τj(t, t + 1) represents the pheromone increment that ants deposited on the
node j when the iteration t ends, which depends on the change of the local living environment and the profit value of the
solution. In our algorithm, the quality of a solution is evaluated by the average fitness value of all ants, and it is defined by

S(t) =
1
N

N
i=1

fi(t) (8)

whereN is the number of the ant colony. Thus,△S(t) can be denoted as the evolutionary effect of the tth iteration, described
as follows:

△ S(t) = S(t) − S(t − 1). (9)

Apparently, if △S(t) > 0 in the evolutionary process, it means that the clustering result becomes better, vice versa.
Meanwhile, the fitness value of each node also shifts along with the change of the global result, which is denoted as follows:

△ fj(t) = fj(t) − fj(t − 1). (10)

Based on such global and local changes, △τj(t, t + 1) can be computed by the following equations:

△ τj(t, t + 1) =




k∈A

(1 − ρ)τk→j(t) + Q , △fi(t) > 0 and △ S(t) > 0

max


k∈A

(1 − ρ)τk→j(t) − Q , 0


, △fi(t) < 0 and △ S(t) < 0

k∈A

(1 − ρ)τk→j(t), otherwise

(11)
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where Q > 0 is a control parameter for the pheromone change. From the descriptions in Eq. (11), it is not hard to see
that the incremental quantity of pheromone trail represents a trade-off between the global evaluation of a solution and
the local fitness of a node. There are three cases: (1) when the clustering result becomes better and the ant moves to a
better position, the incremental quantity of the corresponding node is enhanced; (2) when the clustering result becomes
worse and the ant moves to a worse position, the incremental quantity of the corresponding node is softened; (3) in other
instances, the incremental quantity only makes use of the pheromone impacts of the local environment. Apparently, this
strategy strengthens the effect of good solutionwhile weakening the influence of inferior solution, and fully reflects the idea
of swarming intelligence.

3.4. Adaptive adjusting of the fitness threshold value

To switch an ant state, our algorithm gives an initial fitness threshold value µ(0) at the beginning. At each iteration t ,
when fj(t) < µ(t), the ant is activated and moves according to the moving strategy; otherwise, the ant keeps the sleeping
state. If µ(t) is too small, then most of the ants sleep so that the solution evaluation may remain stagnant. Conversely, most
ants move continuously, which also affects the convergence of the algorithm. Thus, µ(t) is an important parameter which
partly determines the algorithm’s solving abilities.

To simplify the parameter’s selection, a method to self-adaptively adjust the threshold of ant’s movement is presented.
Themain idea is as follows: if the clustering result gradually becomes better bym iterations, we reduce the value ofµ(t+m)
to make less ants move and perform fine-tuning for the result along with the good trend. In contrast, if the clustering result
is getting worse, we increase the value of µ(t + m) to make more ants move and increase the scope of the search. The
adaptive adjusting rule is defined as

µ(t + m) =


0.9µ(t), if S(t + m) ≥ S(t)
1.1µ(t), otherwise. (12)

3.5. Algorithm description and complexity analysis

Summing up the above ideas, ACC-FP can simply be described as follows. In the initialization phase, ants (nodes) are
randomly placed at different locations in a virtual grid. A fitness function is employed to percept the comfort levels of the
locations. According to the state of comfort levels or the pheromone accumulation, ants decide whether or not to move to
more comfortable locations in each iteration, which will result in a clustering solution. Based on the quality of the solution,
a pheromone diffusion model is applied to update the pheromone of nodes. The evolution process is iterated till ACC-FP
converges to an approximate optimal solution. The algorithm works as shown in Fig. 2.

Let the maximum number of a node degree be k1 in the complex network, and the maximum neighborhood number
of a location be k2 in the grid. In the initialization phase, computing distances and the number of common neighbors
for all pairs of nodes is time-consuming, whose time complexity is O(k1 · N). In the ant clustering phase, the time
complexities of the 2.1 step, the 2.2 step and the 2.3 step are O((k1 + k2) · N),O((k2 + 1) · N) and O(1) (can be negligible),
respectively. In the end, the time complexity of the output step is O(|C |). Thus, the overall complexity of ACC-FP is about
O(k1 ·N)+O(T ((k1+2k2) ·N+|C |)). Becausemost complex networks are small-world and scale-free networks, k1 ≪ N . On
the other hand, we use the direct neighborhood of a location for the smaller network, so k2 = 8. The double neighborhood
(including direct and indirect relations) of a location is only employed for the larger network where k2 = 24; thus k2 ≪ N .
Moreover, the number of communities |C | is also far less than N . Therefore, the time complexity of ACC-FP can be decreased
to O(T ·k′

·N)(k′
≪ N), which is better than typical algorithmswith O(T ·N2). As most complex networks are sparse graphs,

this will be very efficient.

4. Empirical study

In order to quantitatively analyze the performance of ACC-FP, we use both computer-generated and real-world networks
to perform our empirical study. First, we analyze main parameter influences by an empirical testing method in this
algorithm. Then, our algorithm is compared with GN [4], Fast Newman (FN) [6], FEC [12], FA [13], iMeme-Net [14], and
ACOMRW [20] on three real-world networks, which are all known and competitive network clustering algorithms. Finally,
we test the performance of ACC-FP onmany computer-generated networks to further illustrate the validity of the approach.
Our algorithm is coded using Java.

4.1. Test networks and evaluation metrics

To test ACC-FP, we have performed our experiments over three real-world networks and many computer-generated
networks. First, we applied it to three widely used real-world networks with a known community structure. They are the
well known Karate Club network [25], Bottlenose Dolphin network [26], and American College football network [4]. The
Karate Club network was constructed by Zachary [25], and it is a network of friendship which has 34 members of a karate
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Fig. 2. The ACC-FP algorithm.

club as nodes and 78 edges representing friendship between members. Due to a leadership issue, the club splits into two
distinct groups. A simple un-weighted version of the network is used in our experiment. The Bottlenose Dolphin network
is a community of Bottlenose dolphins living in Doubtful Sound and New Zealand, and it was compiled by Lusseau from
the observation of dolphins’ behavior during seven years [26]. There are 62 dolphins and edges are set between network
members that are seen together more often than expected by chance. The network is split naturally into two large groups,
and the number of ties is 159. The American College Football network [4] comes from the United States college football.
The network represents the schedule of Division I games during the 2000 season. Nodes in the graph represent teams and
edges represent the regular season games between the two teams they connect. The teams are divided into 12 conferences
(communities). The teams on average played 4 inter-conference matches and 7 intra-conference matches; thus teams
tend to play between members of the same conference. The network consists of 115 nodes and 616 edges grouped in 12
communities.

Second, we adopt some random networks with a known community structure, which have been used as bench-
mark datasets for testing complex network clustering algorithms [27]. This kind of random network is defined as
LFR(N, k, γ , φ, ϕ), where N is the number of nodes in a network, k is the average degree of nodes, γ is the exponent of
the degree distribution, φ is the exponent of the community size distribution, and ϕ is a mixing parameter which is used to
control the ratio between the degree of intra-communities of a node and its total degree.

To compare the clustering accuracy of different algorithms more fairly, we adopt two widely used accuracy measures,
which are Fraction of Vertices Classified Correctly (FVCC) [6] and Normalized Mutual Information (NMI) [28]. The FVCC is a
simple measure to evaluate the clustering accuracy, while the NMI is adopted to estimate the similarity between the true
partitions and the detected ones. The NormalizedMutual Information is a similarity measure proved to be reliable by Danon
et al. [28]. Given two partitions A and B of a network in communities, let C be the confusion matrix whose element Cij is
the number of nodes of community i of the partition A that are also in the community j of the partition B. The NMI I(A, B) is
defined as

I(A, B) =

−2
CA
i=1

CB
j=1

Cij log(CijN/Ci·C·j)

CA
i=1

(Ci· log(Ci·/N)) +

CB
j=1

(C·j log(C·j/N))

(13)

where CA (CB) is the number of groups in the partition A (B), Ci· (C·j) is the sum of the elements of C in row i (column j),
and N is the number of nodes. If A = B, I(A, B) = 1. If A and B are completely different, I(A, B) = 0. A larger value of NMI
represent a greater similarity between A and B.
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Fig. 3. The effects of µ(0) parameters on performance. (a) Three different real-world networks. (b) Four different scale computer-generated networks.

4.2. Parameter analyzing and setting

There are more parameters such as T ,N,m, τ (0), ϖ, δ, µ(0),Q , ρ, α, β in this algorithm, which denote iteration num-
ber limitation, ant colony size, step length of updating fitness threshold value, initial pheromone value, cycle threshold value,
pheromone threshold value, initial fitness threshold value, pheromone increment, the pheromone evaporation coefficient,
and the weights for the pheromone trail and for the heuristic information, respectively. However, it is fortunate that most
of the parameters are easy to be determined. For example, T = 100,N = |V |,m = 5, ϖ = 10, δ = 10, τ (0) = 5 (which
mainly depends on the number of average common neighbors), Q=2, ρ = 0.6, α = 1, and β = 2, in general. However,
the setting of the parameter µ(0) is very difficult and important. The value of µ(0) is directly related to the movement of
the ant colony in the evolutionary process and thus has a significant impact on the solving accuracy and efficiency. In this
subsection, we focus on studying the effect of µ(0) by a series of experiments. Fig. 3 shows the results, in which the y-axis
denotes the average fitness of the clustering results and the x-axis denotes µ(0). As we can see from Fig. 3(a), our algo-
rithm obtains the best results when µ(0) is respectively set to 0.4, 0.3, and 0.2 for karate, dolphin and football networks. As
for four different computer-generated networks such as (128, 32, 1, 1, 0.2), (300, 30, 1, 1, 0.2), (500, 50, 1, 1, 0.2), and
(1000, 50, 1, 1, 0.2), µ(0) is respectively set to be 0.2, 0.2, 0.2, and 0.1 to achieve the best performances as shown in
Fig. 3(b). Because different networks have different topological characteristics, our algorithm obtains the best results at
different values of µ(0).
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Table 1
Compare ACC-FP with some algorithms on three real-world networks.

Algorithms Karate network Dolphin network Football network
NMI (%) FVCC (%) Num. of Com. NMI (%) FVCC (%) Num. of Com. NMI (%) FVCC (%) Num. of Com.

GN 57.98 97.06 5 44.17 98.39 13 87.89 83.48 10
FN 69.25 97.06 3 50.89 96.77 5 75.71 63.48 7
FEC 69.49 97.06 3 52.93 96.77 4 80.27 77.39 9
ACOMRW 100 100 2 88.88 98.39 2 92.69 93.04 12
FA 100 100 2 88.88 98.39 2 92.42 93.04 12
iMeme-Net 100 100 2 100 100 2 86.2 94.78 12
ACC-FPa 100 100 2 100 100 2 93.84 93.04 12
ACC-FPb 96.69 100 2.3 88.46 99.03 2.6 90.14 90.17 11.5
ACC-FPc 81.62 100 3 72.86 98.39 4 87.03 86.96 12
a The best results obtained over 10 runs.
b The average results obtained over 10 runs.
c The worst results obtained over 10 runs.

4.3. Comparative evaluations on real-world networks

To demonstrate the strength of the ACC-FP method, we compare it with the six competing methods: GN, FN, FEC,
ACOMRW, FA, and iMeme-Net on three real-world networks. For each network, we compute the FVCC and NMI on the
basis of the best results reported by the authors. Because the ACC-FP is a random optimization method, we run it 10 times
with the best parameter setting and compute its average, the best, and the worst performances over these 10 runs.

Table 1 shows the detailed comparative results of the various algorithms on the three different datasets, respectively. For
each detection method, we have listed the NMImeasure, FVCCmeasure, and the number of communities detected (number
of communities). The results clearly show the very good performance of ACC-FP with respect to other approaches. In fact,
on the Karate network, ACC-FP can obtain the best result 7 out of 10 times which are 100% respectively on NMI and FVCC
measures, clearly higher than 57.98% and 97.06% of GN, 69.25% and 97.06% of FN, 69.49% and 97.06% of FEC, and competes
with those of ACOMRW, FA, and iMeme-Net. Even in the worst case, ACC-FP also gets 81.62% and 100%, which are superior
to those of GN, FN, and FEC. On the Dolphin network, ACC-FP obtains 3 times the best results over 10 runs. Its best NMI
and FVCC values are both 100%, which are the same as results of iMeme-Net and better than those of other algorithms. The
worst result of our algorithm on FVCC is higher than both of FN and FEC, equal to the result of GN, ACOMRW, and FA, and is
only worse than that of iMeme-Net. Though our algorithm is inferior to ACOMRW, FA, and iMeme-Net in terms of the NMI
metric, it is still well ahead of GN, FN, and FEC. On the American Football network, our algorithm obtains an average NMI of
90.14% over the 10 runs, with a worst value of 87.03% and a best value of 93.84%. The average NMI value of our algorithm
is only inferior to 92.69% of ACOMRW and 92.42% of FA, and superior to that of other algorithms. Moreover, our algorithm
obtains an average FVCC of 90.17% over the 10 runs, with the worst value of 86.96% and the best value of 93.04%. At worst,
our algorithm is able to get the result better than that of GN, FN, and FEC. In other words, our algorithm outperforms the
GN, FN, and FEC algorithms and has comparative performance with the ACOMRW, FA, and iMeme-Net algorithms on three
real-world networks in terms of the NMI and FVCC metrics.

Fig. 4 gives the best clustering results of ACC-FP on three real-world networks with a known community structure. The
Karate Club network is a simple structure of the network; thus, it is easy for ACC-FP to get the best result.

For the dolphin network, though most of the algorithms recently proposed always put the SN89 into a wrong category
when thewhole network is divided into two large categories, ACC-FP can classify it into its proper category. The reason is that
many algorithms always use the connection relationship such as the number of common neighbors between two nodes as a
heuristic rule to induct the clustering process, which may result in a wrong decision when the connection relationship does
not provide useful information for the clustering process. Fortunately, the ACC-FP algorithm has a goodmoving mechanism
to overcome the shortcoming. We take the SN89 as an example to explicate our moving strategy. The SN89 is connected to
only two nodes: node SN100 which belongs to the first category and nodeWeb that belongs to the second category. Neither
of the two nodes has common neighborwith SN89; thus themembership to one of the two communities is indistinguishable
formany algorithmswithout adding information. Our algorithm not only uses a combination of heuristic informationwhich
includes the common neighbor information and the degree of the node, but also employs the aggregation pheromone to
reflect the clustering situation. Since the degree of the SN100 is 7 while that of the Web is 9, it is difficult for the heuristic
information to play a role in ants moving. However, the quantity of aggregation pheromone laying on the two nodes will
induce ants to move in the right direction; thus, the ACC-FP algorithm can get the exact partitioning of dolphins.

For the American College Football network, our algorithm divides it into 12 clusters which correspond exactly to 12
communities, where only 3 clusters such as Conference USA, Independents, and Sun Belt have some minor errors and 8
nodes including 28, 36, 42, 59, 63, 90, 97 and 110 are grouped into wrong communities. There are two cases for wrong
partitioning: (1) a node has no connection with other nodes in its own community, whichmeans there is no regular game in
the located conference. Both nodes 28 and 110 belong to this case, so ants incorrectly divide them into Sun Belt community
and Western Athletic community, respectively. (2) the number of connections in the same community is less than that of
connections between communities. For example, the Sun belt teams (59, 63 and 97) played nearly as many games against
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Fig. 4. The best clustering results of ACC-FP on three real-world networks. (a) The Zachary’s Karate Club network. (b) The Bottlenose Dolphin network. (c)
The American College Football network.

Conference USA teams as they did in their own conference. The Independents teams (36, 42 and 90) also played quite a
large fraction of their interconference games against Mid-American teams or Mountain West teams. Naturally, both cases
have a common feature, that is, the network structure genuinely does not correspond to the conference structure. In such
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Fig. 5. The NMI and FVCC performances averaged over the 10 runs for different values of ϕ and N . (a) The NMI performances. (b) The FVCC performances.

two cases, our algorithm also fails to correctly cluster these nodes just like some state-of-the-art algorithms. However, the
ACC-FP algorithm performs remarkably well in all other cases.

4.4. Performance on computer-generated networks

As a further test on the algorithm ACC-FP, we applied it to the computer-generated networks with a known community
structure. These networks may have different topological properties than the real-world ones. Here we use four types
of networks in different scales, LFR(N, k, γ , φ, ϕ), to perform our experiments. According to the meaning of the mixing
parameter ϕ, the degree of intra-communities of a node is larger than that of inter-communities of a node when ϕ is less
than 0.5, and it is obvious that as ϕ increases from zero, community structures of networks become more diffused and
the generated networks present greater and greater challenges to community identification algorithms. For each scale of
networks, we generated 9 different networks for the value of ϕ ranging from 0 to 0.6 and used the NMI and FVCC metrics
to measure the similarity and the accuracy between the true communities and the detected ones. For each network, we
computed the average performances over 10 independent runs.

Fig. 5 shows the NMI and FVCC performances averaged over the 10 runs for different values of ϕ and N . Fig. 5(a) points
out that until ϕ ≤ 0.4 the ACC-FP algorithm is successful in detecting the true communities in almost 100% of cases for
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three types of networks with N = 128, 300 and 500. Even for the networks with N = 1000, the ACC-FP algorithm still gets
at least 90% of the true communities. When ϕ ≥ 0.45, the NMI of the ACC-FP algorithm gradually goes worse; however, it
should be noted that the fall degree of larger scale networks (N = 500 or 1000) is less than that of the smaller networks
(N = 128 or 300) when ϕ ≥ 0.5, which shows that the ACC-FP algorithm has better stability when it solves the larger
scale networks. As is shown in Fig. 5(b), we also get the similar variation on FVCC performance, and the ACC-FP algorithm
can still correctly classify almost 100% of nodes into their correct communities for types of networks when ϕ = 0.4. On
the whole, though the higher the number of interconnections, the more indistinguishable the network structure is because
communities are mixed with each other; the ACC-FP algorithm is still able to effectively identify the hidden communities,
especially for large-scale networks.

Nomatter on the real-world networks or on the computer-generated networks, the results obtained show the capability
of our algorithm to effectively deal with community identification in networks, and the algorithm performance is
competitive with that of state-of-the-art approaches on the real-world networks.

5. Conclusions

The identification of community structures in complex networks is of great interest because they often reveal unknown
relationships between nodes and provide useful information for unknown nodes. However, how to accurately predict
community structures by computational methods is still a highly challenging issue. The paper presents an ant colony
clustering algorithm with high accuracy for identifying a community in complex networks. The algorithm focuses on the
strategy of ant perception andmovements and themethodof pheromonediffusion andupdating, and searches for an optimal
partitioning of the network by ant colony movements. The underlying community structure of the complex network will
become clearly visible at the end of the algorithm by selectively exploring the search space, without the need to know in
advance the exact number of groups. The performance of our algorithmwas tested on three real-world networks, as well as
on a set of computer-generated networks. Experimental results confirm the validity and advantage of this approach. Future
research will aim at combining our method with other methods to improve the quality of results.
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