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ARTICLE INFO ABSTRACT

Keywords: Clustering is an unsupervised learning procedure and there is no a prior knowledge of data distribution. It
Clustering organizes a set of objects/data into similar groups called clusters, and the objects within one cluster are
K-means

highly similar and dissimilar with the objects in other clusters. The classic K-means algorithm (KM) is the
most popular clustering algorithm for its easy implementation and fast working. But KM is very sensitive
to initialization, the better centers we choose, the better results we get. Also, it is easily trapped in local
optimal. The K-harmonic means algorithm (KHM) is less sensitive to the initialization than the KM algo-
rithm. The Ant clustering algorithm (ACA) can avoid trapping in local optimal solution. In this paper, we
will propose a new clustering algorithm using the Ant clustering algorithm with K-harmonic means clus-
tering (ACAKHM). The experiment results on three well-known data sets like Iris and two other artificial
data sets indicate the superiority of the ACAKHM algorithm. At last the performance of the ACAKHM algo-
rithm is compared with the ACA and the KHM algorithm.

K-harmonic means clustering
Ant clustering algorithm
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1. Introduction

Clustering is a popular data analysis method and plays an
important role in data mining. So far it has been widely applied
in many fields, like web mining, pattern recognition, machine-
learning, spatial database analysis, artificial intelligence, and so on.

The existing clustering algorithms can be simply classified into
the following two categories: hierarchical clustering and partition-
al clustering (Jain, Murty, & Flynn, 1999). The classic K-means algo-
rithm (KM) is the most popular clustering algorithm due to its
simplicity and efficiency.

Though the K-means algorithm is widely used to solve problems
in many areas, KM is very sensitive to initialization, the better cen-
ters we choose, the better results we get. Also, it is easily trapped in
local optimal (Khan & Ahmad, 2004). Recently much work was
done to overcome these problems.

Simulated annealing (SA) algorithm was proposed to find the
equilibrium configuration of a collection of atoms at a given tem-
perature, and it is always used to solve the combinatorial prob-
lems. Simulated annealing heuristic was used with K-harmonic
means to overcome local optimal problem (Giingér & Unler, 2007).

Tabu search (TS) is a search method used to solve the combina-
torial optimization problems, and the algorithm TabuKHM (Tabu
K-harmonic means) was developed in 2008 (Giingdr & Unler,
2008).
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A hybrid technique was proposed by Kao, Zahara, and Kao
(2008). It is based on the K-means algorithm, Nelder-Mead sim-
plex search, and particle swarm optimization (K-NM-PSO). The
K-NM-PSO searches for cluster centers of an arbitrary data set as
does the KM algorithm, but it can effectively find the global
optima.

Particle swarm optimization (PSO) is a popular stochastic opti-
mization technique developed by Kennedy and Eberhart, and a
new hybrid algorithm based on PSO and KHM was proposed (Yang
& Sun, 2009).

Moreover, some other hybrid heuristic methods like genetic
simulated annealing or tabu-search with simulated annealing were
ever used with clustering algorithm to solve local optimal problem
(Chu & Roddick, 2003; Huang, Pan, Lu, Sun, & Hang, 2001).

In this paper we propose a new algorithm using the Ant cluster-
ing algorithm with K-harmonic means clustering (ACAKHM). This
paper is organized as follows. Section 2 describes the clustering
algorithms and gives prominence to the K-harmonic means clus-
tering. Section 3 introduces the Ant clustering algorithm. In Section
4, our new algorithm, Ant clustering algorithm with K-harmonic
means clustering, is presented. Section 5 explains the data sets
and the experimental results. Finally, Section 6 summarizes the
main conclusion of this study.

2. Clustering

Clustering is an unsupervised learning procedure and there is
no a prior knowledge of data distribution (Liu, 2006). It is the
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process of organizing a set of objects/data into groups called clus-
ters, and the objects within one cluster are similar as much as pos-
sible according to a predefined criterion which is always defined
with similarity measure.

There are two categories of clustering, the hierarchical cluster-
ing and the partitional clustering. The hierarchical clustering can
be either agglomerative or divisive. The process of the hierarchical
clustering is grouping a set of objects with a sequence of partitions,
either from singleton clusters to a cluster including all individual
or vice verse. In this paper we pay more attention to the partitional
clustering.

2.1. The partitional clustering

The partitional clustering can be described as follows (Xu,
2005):

Given a set of input patterns X ={xq,...,X;...,Xny}, Where x; =
(X1, X2, - . .. Xia)T € R* and x; is the feature (attribute, dimension, or
variable) of the data.

Partitional clustering attempts to seek a K-partition of
X,C={C,GC,,...,C}, (k< N), and

(M G#=¢, j=1,...k
@) ULG =X, j=1....k
(3)GNGCG=¢, ij=1,...k i#].

The above partitional clustering is a kind of hard partitional
which means each pattern only belongs to one cluster. However,
in most cases the pattern may be allowed to belong to two or more
clusters. This is known as fuzzy clustering which characteristic is
that a pattern belongs to all clusters with a degree of membership
m(cj/x;), where ¢; is the center of cluster G;.

m(cj/x;) presents the degree of membership of the object x; be-
longs to the cluster j. And it satisfies the following constraints:

m(c/xi) = 1, Vi; XN:m(cj/x,») <N, Vij.

i=1

k
j=1

K-means and K-harmonic means are both center-based cluster-
ing algorithms. Particularly, K-means algorithm was first presented
over three decades ago. It makes use of minimizing the total mean-
squared distance from each point of the data set to the point of
closest center. It is hard partitional clustering. On the contrary,
the K-harmonic means is fuzzy clustering, and it was presented re-
cently by Zhang, Hsu, and Dayal (1999, 2000) and modified by
Hammerly and Elkan (2002). It minimizes the harmonic average
from all points in the data set to each center. It will be explained
in detail in the following section.

2.2. The K-harmonic means clustering

The K-harmonic means was proposed by Zhang et al. (1999,
2000) and modified by Hammerly and Elkan (2002). It is a cen-
ter-based clustering algorithm. The difference between KM and
KHM is that the KM algorithm gives equal weight to all of the data
points and the KHM algorithm every time gives dynamic weight to
each data point with a harmonic average. The harmonic average
assigns a large weight to a data point that is not close to any cen-
ters and a small weight to the data point that is close to one or
more centers. Because of this principal, the KHM algorithm is less
sensitive to the initialization than the KM algorithm.

Before we introduce the K-harmonic means clustering, we ex-
plain some notations used in the procedure of clustering at first
(Giingdr & Unler, 2008; Hammerly & Elkan, 2002; Yang & Sun,
2009):

x;: ith data point,i=1,...,N.

¢j: jth cluster center, j=1,...,k.

KHM(X, C): The objective function of the KHM algorithm.
m(cj/x;): The grade of membership value of the point x; belongs
to cluster j.

w(x;): The grade of influence value of the point x; to the position
of center ¢; in the next iteration.

The detail of the K-harmonic means clustering algorithm is
shown as follows:

1. Initialize the KHM algorithm by choosing the initial centers

randomly.
2. Calculate objective function value according to
N k
KHM(X,C) =Y ———— (1)
i 2 [

p is an input parameter and it was proved that KHM works bet-
ter with the value of p > 2.

3. Calculate the membership of each data point x; to each center ¢;
according to

% — ¢l P
mG/x) =——— 3>
2;:1”)‘1 -l

4. Calculate the weight of each point according to
Sl =gl
R —— 3)
(Zhalx -l ™)

5. Calculate the new center location with the membership and
weight of each point according to

o = Ziam(G/x)  wixi) - Xi
= .
SiLmic/x) - wix)

6. Repeat steps 2-5 until it reaches the predefined number of iter-
ations or until the objective function KHM(X, C) does not change
significantly.

7. Assign the point x; to the cluster j with the biggest m(c;j/x;).

m(c;/xi) € 0,1]. (2)

(4)

Due to m(cj/x;), the KHM algorithm is particularly useful when
the boundaries of the clusters are not well separated and ambigu-
ous. Also, the KHM algorithm is less sensitive to the initialization
than the KM algorithm.

3. Ant clustering algorithm

The standard Ant clustering algorithm (ACA) was proposed by
Lumer and Faieta (1994), and it closely mimics the ant behavior
described in Ant-based clustering written by Deneubourg et al.
(1991). The idea of the Ant-based clustering is gathering the
corpses and sorting the larval of ants. The principle of gathering
or sorting is the positive feedback of the behavior of the ants.
The ACA technique provides a relevant partition of data without
any knowledge of initial cluster centers, which is the merit of this
technique. Given that agent ants perform random walks on a two-
dimensional grid on which the objects are scattered randomly, and
the size of grid is dependent on the number of objects. The agent
ants are allowed to move throughout the grid, picking up and drop-
ping the objects influenced by the similarity and density of the ob-
jects within the agent ant’s immediate current neighborhood, as
well as the agent ant’s state (whether it is or is not loading an ob-
ject) (Handl & Meyer, 2007).

The probability of picking up an object will be increased with
low density neighborhoods, and decreased with high similarity
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Algorithm ACAKHM

1. Scatter the objects randomly on the grid

2. Initialize the related parameters p. X, ks, 005, Gamw. Gacn . Gaeps

3. While (Grpw < G jmpnsas)
(ACA algorithm)
3.1 Initialize the position of the agent ants

31.11f T ppy =1Place the agent ant with random position on the grid Else
3.1.2 Place the agent ant on the grid based on the results of KHIM algorithm

3T Whils: (035020 jaginis)

3.2.1 For each agent ant Do
3.2.1.1 Movwve the agent ant

3.2.1.2Ifthe agent ant is loading an object?, then possibly drop the object? with P 4,y Else

3.2.1.3 Possibly pickup an object with 2 e

3.3 Compute the heap centers ¢
(FEHM algotithim)

3.4 Take the result of the ACA algorithm as the initial cluster centers of the KHM algorithm

3.5While (Gpmy < Grmpay)
3.5.1 For each data point Do

3.5.1.1 Compute the KHM(X, C),w(x;),m(c; Ix;)

3.5.1.2 Update the ¢

3.6 Assign the data point to the cluster J with the biggest ¥ae; /x;)

Fig. 1. The ACAKHM algorithm.

among objects in the surrounding area. On the contrary, the prob-
ability of dropping an object will be increased with high density
neighborhoods. The agent ants and the objects on the grid may
be in two situations: (a) one agent ant holds an object i and eval-
uates the probability of dropping it in its current position; (b) an
agent ant is unload and evaluates the probability of picking up
an object. Finally, the agent ants cluster the objects on the grid
to form heaps, the objects in which are similar with each other
(Handl, Knowles, & Dorigo, 2003; Kanade & Hall, 2003; Vizine &
de Castro, 2005).
The picking up and dropping function is described as follows:

. k 2

Pl = (=575 )
o [2f() if f(i) < ka,

Parop (1) = { 1 otherwise, ©

where k, and kg are constants and that f{i) is similarity density mea-
sure for object i in a particular grid locationz. It is defined as:

(%% (—di)/e) iffQ) >0,
f(l) = jeNeigh(t) (7)
0 otherwise,

where s? is the size of local neighborhood 7 around the agent ant’
current position and o is a constant explained the dissimilarity
measure d(i,j) (it is the Euclidean distance) between objects i and j.

4. Ant clustering algorithm with K-harmonic means clustering

Although the K-harmonic means algorithm (KHM) can over-
come the drawback of the KM algorithm in some degree, it also
easily runs into local optimal. The Ant clustering algorithm (ACA)
provides a partition of data points without any prior knowledge.
However, it may take a long time to get a better result. In this sec-
tion we will propose and describe a new algorithm based on Ant
clustering algorithm and K-harmonic means clustering (ACAKHM).
Because of the characteristic of ACA, the ACAKHM algorithm will

avoid trapping in local optimal solution. Meanwhile, the KHM algo-
rithm can receive good initializations from the ACA, and provide
better input to ACA in turn to accelerate it. So, the ACAKHM algo-
rithm makes a better use of the advantage of both ACA and KHM
algorithm.

The detail of our ACAKHM algorithm is explained in Fig. 1.

5. Experimental studies

We present a set of experiments with C++ on a Pentium (R) CPU
2.50 GHZ with 512 MB RAM. In order to prove the ACAKHM algo-
rithm, five data sets are run with ACA, KHM and ACAKHM algo-
rithm, and the results are evaluated and compared respectively
in terms of the objective function of KHM and KM algorithm. The
initialization of the parameters used in the ACAKHM algorithm is
summarized in Table 1.

5.1. Data sets

The data sets we used, Artset1, Artset2, Glass, Iris, and Wine, are
summarized in Table 2.

The Artset1 and Artset2 are artificial data sets, and the other
three well-known data sets are all available at ftp://ftp.ics.uci.edu/
pub/machine-learning-databases/. The details of data sets in the
experiments is described as follows:

Table 1
The initialization of the parameters used in the
ACAKHM algorithm.

Parameter Value
kp 0.15
kq 0.15
s 5

o 4
GNEwMAX 4
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Table 2
Characteristics of data sets considered.

Data set No. of data classes No. of features Size of data set

Artset1 3 2 300 (100,100,100)
Artset2 3 3 300 (100,100,100)
Glass 6 9 214 (70,17,76,13,9,29)
Iris 3 4 150 (50,50,50)

Wine 3 13 178 (59,71,48)

Artsetl (n =300, d =2, k=3), this is an artificial data set. It is a
two-featured problem with three unique classes. A total of 300
patterns are drawn from three independent bivariate normal

distributions, where classes are distributed according to N, (,u =

H. Jiang et al./ Expert Systems with Applications 37 (2010) 8679-8684

(ZZ)’Z = {834 824})7 i=1,2,3, fyy = [ =2, Uy =
Uy =2, U3 = U3, =6, pand > being mean vector and covari-
ance matrix, respectively. The data set Artsetl is illustrated in
Fig. 2.

Artset2 (n =300, d =3, k =3), this is an artificial data set. It is a
three-featured problem with three classes and 300 patterns,
where every feature of the classes is distributed according to
Class1 ~ Uniform (10,25), Class2 ~ Uniform (25,40), Class3 ~ Uni-
form (40,55). The data set Artset2 is illustrated in Fig. 3.

Glass (n=214, d=9, k =6), which consists of 214 objects and
each has nine features, which are refractive index, sodium,
magnesium, aluminum, silicon, potassium, calcium, barium, and
iron. There are six different types of glass.

Artsetl

e el e

TTTTTT¥
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N
P
) I
cols

Fig. 2. The dataset of Artset1.

Fig. 3. The dataset of Artset2.
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Iris (n =150, d = 4, k = 3), which consists of three different spe-
cies of iris flowers: Iris Setosa, Iris Versicolour and Iris Virginica.
For each species, 50 samples with four features (sepal length, sepal
width, petal length, and petal width) were collected.

Wine (n=178, d =13, k=3), which is the result of a chemical
analysis of wines grown in a region in Italy but derived from three
different cultivars. The data set consists of 178 objects each with
13 continuous attributes.

5.2. Experimental results

We will compare the results of ACA, KHM, and ACAKHM algo-
rithm in terms of the objective function of the KHM and KM algo-
rithm respectively. In order to prove the performance of the
algorithm, we employ the following two criteria:

(a) The objective function of the KHM and KM algorithm,
KHM(X,C), KM(X,C). The smaller the objective function is,
the higher the quality of clustering algorithm is.

(b) The F-Measure, which is related with the precision and the
recall from the information retrieval (Dalli, 2003; Handl
et al., 2003). The precision and the recall are defined as:

.. n;j .. n;

p(lv.]) *Fjv r(’v]) *Ev (8)
where each class i (given by the class labels of the used data set) is
regarded as the set of n; items desired for a query, and each cluster j
(generated by the algorithm) is regarded as the set of n; items re-
trieved for a query. n; is the number of data points of the class i
within cluster j. For a class i and a cluster j, the F-Measure is defined
as:

(b +1) - p(i,j) - r(i.j)
b - p(i.j) +r(i.j)

where we choose b = 1 to obtain equal weighting for p(i,j) and r(i,j).
The overall F-Measure for the data set of size n is given by

F=Y %maxj{F(Lj)}. (10)

F(i,j) = 9

The bigger the F-Measure is, the better the clustering algorithm
is.

Table 3
Results of ACA, KHM, and ACAKHM algorithm according to the objective function of
KHM on five data sets when p = 3.5.

In this section, five data sets are employed to prove the effec-
tiveness of the clustering algorithm. We run all data sets 10 times
with the ACA, KHM, and ACAKHM algorithm, and the results are
averages of 10 runs.

Table 3 summarizes the results of ACA, KHM, and ACAKHM
algorithm on five data sets when p = 3.5. The quality of clustering
is evaluated using the objective function of KHM algorithm and
the F-Measure. The runtime of the algorithms are additionally pro-
vided. Besides, the figure in the brackets shows the standard devi-
ations for 10 independent runs.

Because of the importance of the parameter p to the perfor-
mance of KHM, we test the clustering algorithm respectively with
different values of p. Table 4 shows the results with p = 4. The per-
formance of ACA, KHM, and ACAKHM algorithm can be easily com-
pared from Tables 3 and 4. For the data set of Artset1 and Artset2,

Table 4
Results of ACA, KHM, and ACAKHM algorithm according to the objective function of
KHM on five data sets when p = 4.

Source ACA KHM ACAKHM
Artset1
KHM 21309.9(10051) 1025.58(29.52) 993.096(30.8)
F-Measure 0.35(0.2) 1.00(0.00) 1.00(0.00)
Runtime 5.44(0.013) 0.21(0.013) 12.47(0.018)
Artset2
KHM 48,547,302(1065) 1,750,831(0.80) 1,750,830 (0.53)
F-Measure 0.39(0.37) 1.00(0.00) 1.00(0.00)
Runtime 6.31(0.012) 0.25(0.021) 12.37(0.029)
Glass
KHM 51114(491) 2556.38(0.18) 2556.28(0.00)
F-Measure 0.27(0.17) 0.34 (0.01) 0.35(0.00)
Runtime 4.93(0.006) 4.34(0.050) 16.27(0.031)
Iris
KHM 2432.2(138) 117.52(0.22) 116.73(1.41)
F-Measure 0.31(0.16) 0.78(0.01) 0.79(0.01)
Runtime 4.32(0.002) 0.32(0.031) 13.26(0.010)
Wine
KHM 4.88E +12 1.32E+11 8.39E + 10
(3.89E+11) (6.22E+9) (4.08E +9)
F-Measure 0.20(0.12) 0.50(0.03) 0.53(0.02)
Runtime 5.78(0.040) 2.52(0.025) 15.81(0.082)
Table 5

Results of ACA, KHM, and ACAKHM algorithm according to the objective function of
KM on five data sets.

Source ACA KHM ACAKHM Source ACA KHM ACAKHM
Artset1 Artset1

KHM 4849(14638) 807.548(0.08) 807.514(0.06) KM 721.75(822) 247.73(4.81) 246.81(4.6)
F-Measure 0.31(0.12) 1.00(0.00) 1.00(0.00) F-Measure 0.36(0.2) 1.00(0.00) 1.00(0.00)
Runtime 5.39(0.015) 0.19(0.005) 12.53(0.017) Runtime 5.56(0.018) 0.20(0.003) 12.96(0.018)
Artset2 Artset2

KHM 11,870,423(1157) 697,005(0.00) 697,005(0.00) KM 2985(5194) 2193.13(0.00) 2193.13(0.00)
F-Measure 0.37(0.26) 1.00(0.00) 1.00(0.00) F-Measure 0.34(0.26) 1.00(0.00) 1.00(0.00)
Runtime 6.51(0.015) 0.26(0.012) 12.19(0.027) Runtime 6.61(0.011) 0.25(0.011) 12.08(0.029)
Glass Glass

KHM 76125(1415) 1871.811617(0.00) 1871.811617(0.00) KM 601(663) 694.27(251.26) 572.9(0.00)
F-Measure 0.27(0.3) 0.40(0.00) 0.40(0.00) F-Measure 0.28(0.3) 0.38 (0.01) 0.40(0.00)
Runtime 4.67(0.010) 4.27(0.070) 16.28(0.037) Runtime 4.35(0.008) 4.39(0.053) 17.89(0.025)
Iris Iris

KHM 2089.38(1619) 112.699(3.42) 112.466(1.2) KM 189.9(250) 154.18(5.87) 143.34(19.5)
F-Measure 0.23(0.09) 0.77(0.06) 0.80(0.07) F-Measure 0.33(0.16) 0.78(0.01) 0.79(0.01)
Runtime 4.27(0.003) 0.22(0.011) 13.70(0.021) Runtime 4.05(0.002) 0.23(0.013) 13.59(0.017)
Wine Wine

KHM 7.28E +10(3,757,847) 8.56E +9(490) 3.54E + 9(169.98) KM 32169.86(43447.1) 28449.72(1476.1) 8764.78(923.2)
F-Measure 0.21(0.2) 0.50(0.00) 0.52(0.00) F-Measure 0.28(0.12) 0.51(0.03) 0.53(0.02)
Runtime 5.46(0.031) 2.32(0.022) 15.57(0.050) Runtime 5.89(0.026) 2.32(0.019) 16.28(0.050)
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Table 6
Comparison of results in terms of the objective function of KM and KHM algorithm
when the data set of Wine is normalized.

Data set (Wine) ACA KHM ACAKHM

KM 111.61(59) 38.63(65.52) 34.79(24.54)

KHM 32.93(20) 2.76(4.37) 2.49(0.6)

F-Measure 0.23(0.24) 0.52(0.04) 0.54(0.04)
Table 7

Comparison of results in terms of the objective function of KM and KHM algorithm
when the data set of Iris is normalized.

Data set (Iris) ACA KHM ACAKHM

KM 56.21(29.22) 41.15(5.36) 40.61(9.15)
KHM 4.98(1.75) 0.93(0.03) 0.92(0.02)
F-Measure 0.28(0.11) 0.79(0.06) 0.81(0.08)

the average values of the objective function of KHM and ACAKHM
algorithm are almost the same, even the value of the ACAKHM
algorithm is smaller than the value of the KHM and both of the
F-Measures are 1. For the data set of Glass, Iris and Wine, though
the ACAKHM algorithm runs with more time than the ACA and
the KHM, the KHM(X, C) is lower and the F-Measure is higher than
the other two algorithms. Particularly, the ACAKHM algorithm can
effectively and efficiently find the global optima.

Table 5 summarizes the results of ACA, KHM, and ACAKHM
algorithm on five data sets, and the quality of clustering is evalu-
ated using the objective function of KM algorithm and the F-Mea-
sure. We can see clearly that the performance of the ACAKHM
algorithm is better than the results of the other two algorithms.

Let the real data sets of Iris and Wine be normalized according
to

X X — min(x)
" max(x) — min(x)

In terms of KM(X,C), KHM(X,C) and F-Measure, the results of
ACA, KHM and ACAKHM algorithm are compared in Tables 6 and
7. It can be clearly seen that the performance of ACAKHM algo-
rithm is superior to ACA and KHM when the data sets are
normalized.

(11)

6. Conclusions

In this paper we present a new algorithm using the Ant cluster-
ing algorithm with K-harmonic means clustering (ACAKHM). This
algorithm makes full use of the merits of the ACA and the KHM
algorithm. It overcomes initialization sensitivity of KM and KHM,

and reaches a global optimal effectively. Five data sets are em-
ployed to prove the performance of ACAKHM algorithm. The result
of ACAKHM algorithm is better than the ACA and the KHM algo-
rithm, especially when the data sets are normalized. But the run-
time of the ACAKHM algorithm is a little longer than two others.

In the future, we intend to improve the Ant clustering algorithm
so as to reduce the runtime of the ACAKHM algorithm. Moreover,
we are planning to study the KHM algorithm with other combina-
torial optimization techniques.
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