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a  b  s  t  r  a  c  t

Ant-based  clustering  is  a type  of  clustering  algorithm  that  imitates  the  behavior  of  ants.  To improve
the  efficiency,  increase  the  adaptability  to  non-Gaussian  datasets  and  simplify  the  parameters  of the
algorithm,  a novel  ant-based  clustering  algorithm  using  Renyi  Entropy  (NAC-RE)  is  proposed.  There  are
two aspects  to application  of Renyi  entropy.  Firstly,  Kernel  Entropy  Component  Analysis  (KECA)  is applied
to  modify  the  random  projection  of  objects  when  the algorithm  is  run  initially.  This  projection  can  create
rough  clusters  and  improve  the  algorithm’s  efficiency.  Secondly,  a novel  ant  movement  model  governed
by  Renyi  entropy  is  proposed.  The  model  takes  each  object  as  an  ant. When  the  object  (ant)  moves  to  a
new  region,  the  Renyi  entropy  in  its  local  neighborhood  will  be changed.  The  differential  value  of entropy
governs  whether  the  object  should  move  or be moveless.  The  new  model  avoids  complex  parameters  that
ernel
he Friedman test

have influence  on  the  clustering  results.  The  theoretical  analysis  has  been  conducted  by kernel method
to show  that  Renyi  entropy  metric  is feasible  and  superior  to distance  metric.  The  novel algorithm  was
compared  with  other  classic  ones  by  several  well-known  benchmark  datasets.  The Friedman  test  with
the  corresponding  Nemenyi  test  are  applied  to compare  and  conclude  the  algorithms’  performance  The
results  indicate  that  NAC-RE  can get  better  results  for non-linearly  separable  datasets  while  its  parameters
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. Introduction

Swarm intelligence is one kind of intelligent behavior shown by
he cooperation of collective insects, such as ants and bees. Since
990, several collective behavior inspired algorithms have been
roposed. Particle Swarm Optimization (PSO) [1,2] and Ant Colony
ptimization (ACO) [3,4] are the most popular in this domain.
ecently, prey models [5] also show an increase popularity. PSO is
esigned to simulate the choreography of bird flocking. The birds
re represented by a population of particles and each particle has a
ertain location and velocity within the search space [1].  Particles
y through the search space in search of high quality solutions. ACO

s inspired by the behavior of ant colonies for food searching. The
heromone trails between the ants enables them to find the short-
st path between their nest and food source [3,4]. In the prey model,

 forager needs to decide whether to attack the prey or to continue
earching. The foraging agent should maximize the energy intake
ith respect to the probability to attack [5].

The application areas of these algorithms include NP hard
Please cite this article in press as: L. Zhang, et al., A novel ant-based
(2012), http://dx.doi.org/10.1016/j.asoc.2012.11.022

ptimization problems (such as the traveling salesman problem),
he quadratic assignment, the network routing, clustering and
ob scheduling. The general review of swarm intelligence in data
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mining such as rule induction, classification and clustering, can
refer to [6,7]. In this paper, we mainly focus the algorithms to 

imitate the ants’ behavior for clustering purpose. 

Clustering is a method that divides a dataset into groups of 

similar objects, thereby minimizing the similarities between dif- 

ferent clusters and maximizing the similarities between objects 

in the same cluster. Clustering is widely applied in data mining, 

such as in document clustering and Web  analysis. Classic clustering 

approaches include partition-based methods, such as K-means, K- 

medoids, and K-prototypes [8,9]; hierarchy-based methods, such 

as BIRCH [10]; density-based methods such as LDBSCAN [11,12]; 

grid-based methods such as GGCA [13]; and model-based methods, 

such as neural networks and Self-Organizing Map (SOM) [14,15].  

Recently, ant-based clustering, which is a type of clustering algo- 

rithm that imitates the behavior of ants, has earned researchers’ 

attention. Ant-based clustering can be divided into two classes. 

The first class imitates the ant’s foraging behavior, which involves 

finding the shortest route between a food source and the nest. 

This intelligent behavior is achieved by means of pheromone trails 

and information exchange between ants [16,17].  The algorithms 

treat clustering as an optimization task and utilize ACO methods 

to obtain optimal clusters. A variant of ACO, called the Aggre- 
 clustering algorithm using Renyi entropy, Appl. Soft Comput. J.

gation Pheromone density-based Clustering algorithm (APC), was 63

also suggested [18]. Similar to ACO, APC is based on the aggrega- 64

tion pheromones found in ants. The advantage of these methods 65

is that the objective function is explicit. The key elements of these 66
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 L. Zhang et al. / Applied Sof

lgorithms are the pheromone matrix updating rule and the heuris-
ic function.

The second class imitates ants’ behavior of clustering their
orpses and forming cemeteries. Some ants can pick up dead bod-
es randomly distributed in the nest and group them into different
izes. The large group of bodies attracts the ants to deposit more
ead bodies and becomes larger and larger. The essence of this phe-
omenon is positive feedback [19]. One of the first studies related
o this domain is the work of Deneubourg [20], who came up
ith the Basic Model (BM) to explain the ants’ movement. In the
M,  the ants move randomly and pick up or drop objects accord-

ng to the number of similar surrounding objects to cluster them.
umer and Faieta [21] extended the model and applied it to data
nalysis (they called this the LF algorithm). In their analysis, an
bject with n attributes can be viewed as a point in the Rn space.
he point is projected into a low-dimensional space (often a two-
imensional plane). The similarity of the object with those in the

ocal neighborhood is calculated to determine whether the object
hould be picked up or dropped by ants. As a basic algorithm,
F was followed and improved by a number of modified algo-
ithms in different applications. Wu et al. [22] further explained
he idea of the similarity coefficient (this coefficient defines the
cale for objects’ similarity) and suggested a more simple probabil-
ty conversion function. Ramos and Merelo [23] studied ant-based
lustering with different ant speeds to cluster text documents. Yang
t al. [24,25] suggested multiple ant colonies consisting of indepen-
ent colonies and a queen ant agent. Each ant colony had a different
oving speed and probability conversion function. The hyper-

raph model was used to combine the results of all parallel ant
olonies.

In addition to the above-mentioned studies, a series of research
y Handl deserves special attention. She came up with a set of
trategies for increasing the robustness of the LF algorithm and
pplying it to document retrieval [26]. She performed a compara-
ive study of ant-based clustering with K-means, average links, and
d-SOM [27,28]. An improved version, ATTA, which incorporates
daptive and heterogeneous ants and time-dependent transport-
ng activity, was proposed in her latest paper [29]. The main feature
f this kind of algorithm is that the algorithm directly imitates
he ant’s behavior to cluster data and the clustering objective is
mplicitly defined [30].

Beyond these two classes of ant-based clustering, Tsang and
wong [31] proposed Ant Colony Clustering for anomaly intru-
ion detection. This method integrates the characteristics of the
wo above-mentioned classes. Specifically, cluster formation and
earching for an object are regarded as nest building and food
oraging, respectively. The ant exhibits picking up and dropping
ehaviors while simultaneously depositing cluster-pheromones on
he grid. Xu et al. [32] suggested a novel ant movement model
herein each object was viewed as an ant. The ant determines its

ehavior according to the fitness of its local neighborhood. Essen-
ially, this model is similar to that in the second class of ant-based
lustering.

Combinations of ant-based clustering with other clustering
ethods can also be found. For example, ant-based clustering

as been combined with K-means [33] and with K-harmonic
eans [34]; ant colonies have been hybridized with fuzzy C-
eans [35]; fuzzy ants have been endowed with intelligence in

he form of IF-THEN rules [36]; and the hybrid approach has
een generated based on Particle Swarm Optimization (PSO), ACO,
nd K-means [37]. In these methods, the role of ant-based clus-
ering is mainly to create initial clusters for other clustering
Please cite this article in press as: L. Zhang, et al., A novel ant-based
(2012), http://dx.doi.org/10.1016/j.asoc.2012.11.022

lgorithms.
A comprehensive overview of ant-based and swarm-based clus-

ering can be found in [30]. Our particular interest is in the
econd kind of ant-based clustering discussed above. The process
 PRESS
puting xxx (2012) xxx–xxx

of this kind of algorithms can be generalized as five steps (detailed 

description is in Section 2): 

(1) Projection:  All objects and ants are randomly projected onto the 

toroidal grid. 

(2) Calculating the similarity: Each ant calculates the object’s simi- 

larity to others in the object’s local neighborhood. 

(3) Picking up or dropping objects. 

(4) Ants move. 

(5) Repeat (2)–(4). 

Although this kind of ant-based clustering has been modified 

gradually, there are still some problems needed to be solved. The 

focus of our work is on the following three important problems. 

• Improving the algorithm’s efficiency 

It is not highly efficient because of the randomness in the
algorithm. Because the objects are randomly projected onto the
toroidal grid at the initial time of the algorithm, the similarities 

of the objects in a local neighborhood are very low. Therefore, the
objects are easily picked up but not easily dropped by the ants. It 

takes a long time to go from the inception of the algorithm to the 

moment when the rough clusters are created. Commonly, tens 

of thousands of iterations are needed for ant-based clustering 

algorithms [17,29,39].  

• Improving the adaptability of the algorithm to the datasets with 

special structures 

In the essence, ant-based clustering algorithms are distance- 

based because the similarity of the objects is computed by 

Euclidean distance or Cosine distance. Just like other distance- 

based clustering algorithms, it is effective for the datasets with 

ellipsoidal or Gaussian structure. If the separation boundaries 

between clusters are nonlinear, it will fail [38]. 

• Simplifying the parameters in the algorithm 

There are several parameters in ant-based clustering, such as 

the similarity coefficient, the constants in the probability con- 

version functions (which will be described in Section 2). Some 

parameters are difficult to set properly, while they have an impor- 

tant effect on the clustering results. For example, a too small 

choice of the similarity coefficient  ̨ prevents the formation of 

clusters; on the other hand, a too large choice results in the fusion 

of individual clusters [22,26–29].  As mentioned in [39], the com- 

plex parameter setting should be avoided to simplify the use of 

the algorithm. 

To solve these problems, a novel ant-based clustering algorithm 

integrated with Renyi entropy (NAC-RE) is proposed. The appli- 

cations of Renyi entropy in NAC-RE are shown in two  aspects. 

First, Kernel Entropy Component Analysis (KECA) is used to modify 

the initial projection of all objects. Second, a novel ant movement 

model governed by Renyi entropy is created. These two  applica- 

tions are geared toward solving the problems mentioned above. 

Various attempts have been made to utilize information theory 

in clustering [40,41]. Tsang and Kwong [31] first introduced the 

application of local regional entropy in ant-based clustering. Liu 

et al. [38] proposed entropy-based metrics in ant-based cluster- 

ing. Entropy governs the ant’s picking up and dropping behaviors. 

They pointed out that entropy-based ant clustering required fewer 

training parameters than density-based. However, they used tra- 

ditional Shannon entropy. First, the attributes of the objects must 

be independent. Second, the computation of the entropy needs dis- 

cretization of each attribute of the object. They did not indicate how
 clustering algorithm using Renyi entropy, Appl. Soft Comput. J.

to set the resolution of each attribute. Different from their work, we 191

use Renyi entropy in our study. Renyi entropy lends itself nicely to 192

non-parametric estimation and overcomes the difficulty in com- 193

puting Shannon entropy [42]. In our proposed method, each object 194

dx.doi.org/10.1016/j.asoc.2012.11.022
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Table 1
The pseudo-code of the LF algorithm.

/*initialization*/
Randomly scatter the objects on the toroidal grid
Randomly place the ants on the toroidal grid
Initialize all parameters: r,tmax,˛,k1,k2

/* main loop*/
for t = 1 to tmax do
for all ants do
if (ant unladed) and (grid occupied by object oi) then
compute f(oi) and Pp(oi)
draw a random real number p ∈ (0, 1)
if (p ≤ Pp(oi) then
pick up object oi

end if
else
if (ant carrying object oi) and (grid empty) then
compute f(oi) and Pd(oi)
draw a random real number p ∈ (0, 1)
if (p ≤ Pd(oi) then
drop object oi

end if
end if
end if
Randomly move to one neighboring grid not occupied by other ants
end for
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Fig. 1. the local neighborhood of the object oi .

s taken as an ant, and the ant’s movement was  governed by the
hange of Renyi entropy in its local neighborhood. Because Renyi
ntropy is only dependent on the dataset, the parameters in the
lgorithm are simple. Meanwhile, entropy metric takes the place of
istance metric, which makes the algorithm superior in clustering
ome nonlinearly separable datasets.

The remainder of this paper is organized as follows: Sec-
ion 2 describes the basics and problems of ant-based clustering
lgorithm. Section 3 introduces Renyi entropy, KECA and their
pplications in clustering. Section 4 proposes a novel ant-based
lustering algorithm using Renyi entropy (NAC-RE). Section 5 pro-
ides the theoretical analysis of NAC-RE algorithm using kernel
ethod. Section 6 reports the evaluating results of NAC-RE algo-

ithm compared with other algorithms. Finally, Section 7 gives the
onclusions and future work.

. The basics and problems of ant-based clustering
lgorithm

The algorithm introduced by Lumer and Faieta [21] represents
he basic ant-based clustering method. Some important concepts
re firstly introduced through Fig. 1.

The projecting plane: The objects and ants are initially projected
nto a two-dimensional plane. Each object or ant is projected ran-
omly. The size of the plane can be determined based on the
umber of objects.

The local neighborhood of object oi: It is a neighboring region
f the object oi and written as Neigh(oi). It is often a square with
ize s × s(s = 2r + 1), where r is the radius of Neigh(oi). The center of
eigh(oi) is the position of oi.

The local similarity: The similarity of the object oi with other
bjects in Neigh(oi). It is often measured by the distance between
bjects. In Fig. 1, assume that an ant finds an object oi at the coor-
inates (xi,yi). The local similarity of oi is given by

 (oi) =

⎧⎪⎨
⎪⎩

1
s2

∑
oj ∈ Neigh(oi)

[
1 − d(oi, oj)

˛

]
, when f > 0

0 otherwise

, (1)

where d(oi,oj) is the distance between two  objects. Typically
uclidean distance is used.  ̨ is a factor that defines the scale for
issimilarity. The setting of  ̨ is an important research focus in the
ublications [22,26,27,29,39].

The probability conversion function: It is a function that converts
he local similarity of oi into the probability of being picked up (or
ropped) by ants. The probability that an ant will pick up or drop
Please cite this article in press as: L. Zhang, et al., A novel ant-based
(2012), http://dx.doi.org/10.1016/j.asoc.2012.11.022

he object is

p(oi) =
(

k1

k1 + f (oi)

)2

, (2)
adjust r, ˛
end for
Output locations of all objects;

Pd(oi) =
{

2f (oi) when f (oi) < k2

1 when f (oi) ≥ k2

, (3) 

where k1, k2 are two constants. k1 and k2 adjust the probabilities 

of picking up and dropping objects. Pp(oi) and Pd(oi) are compared 

with a random real number p(p ∈ [0,1]) and the comparing results 

determine whether the object oi should be picked up or dropped. A 

high-level description of the LF algorithm is presented in Table 1. 

A number of modifications have been introduced to the basic 

LF algorithm to improve clustering quality and convergence speed 

[25–29,31,32,39]. But some modifications make the algorithm 

more complex in parameters. In the following sections, we  will 

show how Renyi entropy is used to create a novel ant movement 

model. 

3. Renyi entropy, KECA and their applications in clustering

3.1. Renyi entropy and its application in clustering 

Alfred Renyi [42] proposed in the 1960s a new information mea- 

sure, which became known as Renyi’s entropy (written as Renyi 

entropy for simplicity in the paper). For a stochastic variable Z with 

a probability density function (pdf) fZ, its Renyi entropy is 

HR(Z) = 1
1 − ˛

log

∫
f ˛
Z dz,  ̨ > 0,  ̨ /= 1. (5) 

If  ̨→ 1, there is a well relation between Renyi entropy and
Shannon’s entropy HS: 

lim
˛→1

HR(Z) = HS. (6) 

Compared to Shannon’s entropy, Renyi entropy provided an eas-
ier nonparametric estimator for entropy. Detailed analysis on the
relation between Shannon’s entropy and Renyi entropy has been 

described [43]. 

If  ̨ = 2, (5) becomes 
 clustering algorithm using Renyi entropy, Appl. Soft Comput. J.

HR(Z) = − log

∫
f 2
Z dz, (7) 264

which is called as Renyi’s quadratic entropy. 265

dx.doi.org/10.1016/j.asoc.2012.11.022
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Fig. 2. Assigning an object to a cluster.

Let {z} (zi ∈ RM, i = 1, 2, . . .,  N), be a set of samples from the vari-
ble Z in M-dimensional space and assume that the data points in
z} are drawn from the pdf fZ. Renyi quadratic entropy of {z} is writ-
en as H({z}). The calculation of H({z}) needs to estimate pdf fZ. A
ample-based estimator of Renyi quadratic entropy can be obtained
y replacing the actual pdf fZ by the Parzen window estimator

Ẑ =
1
N

∑
zi ∈ {z}

W�(z, zi), (8)

where N is the number of data points in {z}, W�(· , ·) is the Parzen
indow. The scale parameter � governs the width of the Parzen
indow.

Note that the quantity V({z}) =
∫

f 2
Z dz may  be expressed as

({z}) = Ef {fZ}, where Ef {·} denotes expectation with respect to
he density fZ. By approximating the expectation operator by the
ample mean, an estimator for V({z}) may  be defined as

ˆ ({z}) = 1
N

∑
zi ∈ {z}

f̂Z =
1
N

∑
zj ∈ {z}

W�(zi, zj) = 1
N2

∑
zi ∈ {z}

∑
zj ∈ {z}

W�(zi, zj)

= 1
N2

N∑
i=1

N∑
j=1

W�(zi, zj). (9)

Typically, the Parzen window with a Gaussian kernel function
s used [41,44].

�(z, zi) = G(z − zi, �2I), (10)

where a symmetric Gaussian kernel with covariance matrix
= �2I is used

(z, �2I) = 1

(2�)M/2�M
exp

(
− zT z
2�2

)
, (11)

where M is the dimension number of z. By substituting (10)
nto (9) and utilizing the properties of the Gaussian kernel, Renyi
ntropy of {z} is obtained as

({z}) = − log V̂({z}), (12)

where

ˆ ({z}) = 1
N2

N∑
i=1

N∑
j=1

G(zi − zj, 2�2I). (13)

If {z} is a cluster, H({z}) can be referred as the within-cluster
ntropy because it is calculated based on points belonging to the
ame cluster. Based on this definition, Jenssen [41] introduced a
ifferential entropy clustering. Consider the situation depicted in
ig. 2, they proposed to cluster the object x based on a simple obser-
ation. If x is wrongly assigned to C2, the uncertainty or the entropy
Please cite this article in press as: L. Zhang, et al., A novel ant-based
(2012), http://dx.doi.org/10.1016/j.asoc.2012.11.022

f C2 will increase more than that of C1 will. Hence, if there are initial
lusters Ck(k = 1,·  · ·,K), assign x to cluster Ci if

(Ci + x) − H(Ci) ≤ H(Ck + x) − H(Ck), (14)
 PRESS
puting xxx (2012) xxx–xxx

where H(Ck) denotes the entropy of cluster Ck(k = 1,·  · ·,K and 

k /= i). 

Compared to Shannon’s entropy, the advantage of differential 

Renyi entropy in clustering is that the entropy is estimated directly 

from the data samples without imposing assumptions about the 

pdf. Shannon’s definition of entropy (the sum of terms which are 

weighted logarithms of probability) is not amenable to simple esti- 

mation, while Renyi entropy (the sum of the power of probability) 

is much easier to estimate. This merit enlightened us to use Renyi 

entropy, rather than Shannon’s entropy, to create a novel ant move- 

ment model, which will be described in Section 4. 

3.2. Kernel entropy component analysis 

Data transformation is important in data analysis. For the high- 

dimensional data, data transformation can transform them into an 

alternative and typically lower dimension, which may  reveal the 

underlying structure of the data. Then further pattern analysis can
be performed. 

The most well known method of data transformation is prin-
cipal component analysis (PCA) [45], which is based on the data 

correlation matrix. It is a linear method ensuring that the trans- 

formed data are uncorrelated and preserve maximally the second 

order statistics of the original data. Another very popular method 

is Kernel PCA (KPCA) [46]. KPCA performs traditional PCA in a ker- 

nel feature space, which is nonlinearly related to the input space. 

Recently, a new method called Kernel Entropy Component Analy- 

sis (KECA) was proposed [47]. KECA is a data transformation that 

reveals the structure related to Renyi entropy of the input data. 

Compared to KPCA, KECA is not corresponding to the top eigenval- 

ues and eigenvectors of the kernel matrix. Indeed, KECA typically 

produces a transformed dataset with a distinct angular structure, 

thus reveals the cluster structure and information about the under- 

lying labels of the data. Based on KECA, a new spectral clustering 

algorithm has been proposed [47]. 

4. A novel ant-based clustering algorithm using Renyi 

entropy 

4.1. Projection of the objects based on KECA 

In ant-based clustering algorithms, the objects are randomly 

projected onto the plane. As a result, that one pattern corresponds 

randomly with a pair of coordinates in the plane. This random pro- 

jection leads to few similarities between the objects in the local 

neighborhood at the beginning of the algorithm. Therefore, the 

objects are easily picked up but not easily dropped by the ants. 

It takes a long time for an object to be similar to nearby objects 

from the inception of the algorithm. 

To reduce the influence of randomness in this stage, we  have 

suggested the modified projection based on PCA [48] and KPCA [49], 

and the results show they are effective to improve the algorithm’s 

efficiency. In this paper, we applied KECA to replace PCA and KPCA. 

As the proposer Jessen mentioned, KECA can extract features with 

a distinct angular structure, thus reveal cluster structure and infor-
mation about the underlying labels of the data [47]. After the first 

two Kernel Entropy Components (KECs) are obtained, they need to 

be processed as the projection coordinates. The process method is 

similar to that applying PCA and KPCA [48,49],  which will not be 

described here. 
 clustering algorithm using Renyi entropy, Appl. Soft Comput. J.

4.2. The ant movement model using Renyi entropy 359

We  propose a novel ant movement model governed by Renyi 360

entropy. It is shown in Fig. 3. 361
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Table 2
The pseudo-code of the NAC-RE algorithm.

/*initialization*/
All objects are placed on the toroidal grid based on KECA
Initialize all parameters: r, tmax, ı0

/* main loop*/
for t = 1 to tmax do
for i = 1 to N do (N is the number of the objects(ants))
find all objects in oi ’s local neighborhood
compute H(Ci + oi) and H(Ci)
if (17) or (18) is satisfied
the object(ant) oi doesn’t move
else
the object(ant) oi move to next place in Neigh(oi)
end if
end for
Adjust r and ı0

t ← t + 1;
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Fig. 3. The change of Renyi entropy in Neigh(oi).

In this model, each object is taken as an ant. Assume that the
bject (ant) oi is located at the point (xi,yi) at cycle t. Its local neigh-
orhood is signed as Neigh(oi). When oi moves to a new place, the
ntropy of the dataset composed by the objects in Neigh(oi) will
e changed. Suppose Ci is the dataset composed by all objects in
eigh(oi) before oi joins. Ci + oi is the dataset after oi joins. Then the
ifferential Renyi entropy is

H(Ci) = H(Ci + oi) − H(Ci). (15)

Let

(Ci) =
∣∣∣�H(Ci)

H(Ci)

∣∣∣ . (16)

Based on the analysis in Section 3.1,  if oi is similar to other
bjects in Neigh(oi), the entropy will be decreased or changed in

 small range. Therefore, the object oi should stay in its location
nd not move if one of following inequalities is satisfied

H(Ci) < 0, (17)

(Ci) < ı0 (18)

where ı0 is a positive and small real number. Otherwise, the
bject oi should move to next place.

For example, in the Fig. 3, there are four objects signed as“*” and
wo objects signed as “o”. Suppose the data items represented by
he object are (In Ci, the “*” objects are firstly listed, then the “o”
bjects. In fact, the order of the objects can be random and has no
nfluence on the results):

Ci =

⎡
⎢⎢⎢⎢⎣

5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
6.3 2.9 5.6 1.8
6.5 3.0 5.8 2.2

⎤
⎥⎥⎥⎥⎦ , Ci + oi =

5.1 3.5 1.4 0.2
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
6.3 2.9 5.6 1.8
6.5 3.0 5.8 2.2
4.6 3.1 1.3 0.2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let � = 0.8, the entropy and its change can be calculated as
(Ci) = 4.9651, H(Ci + oi) = 4.8856, �H(Ci) = −0.0795, ı(Ci) = 0.016.
Please cite this article in press as: L. Zhang, et al., A novel ant-based
(2012), http://dx.doi.org/10.1016/j.asoc.2012.11.022

rom the results, we can know the Renyi entropy of the local neigh-
orhood is decreased after the object oi joined in, so oi should stay

n this place and not move in this cycle.
The novel ant movement model has following features:
end for
Output locations of all objects;

• The local similarity of the object is measured by entropy rather 

than distance in the old model. 

• Ant’s movement is governed by the change of Renyi entropy in 

its local neighborhood. 

• The model eliminates the parameter  ̨ and the probability con- 

version functions in LF algorithm, which makes the algorithm 

simple. 

Because Renyi entropy can be computed directly by the data 

samples, it avoids the assumptions when using Shannon’s entropy. 

For example, the attributes of the objects need not be independent. 

Moreover, the Shannon’s entropy needs discretization. For exam- 

ple, if the object’s ith attribute has value x, we have to calculate the 

sample probability of x in Xi (where Xi is the set of possible discrete 

values for the ith attribute). If there are n attributes, the statistical 

analysis has to be done n times. Renyi entropy avoids this problem. 

4.3. The process of the NAC-RE algorithm 

Based on the model in Section 4.2, a novel ant-based clustering 

algorithm using Renyi Entropy (NAC-RE) is proposed. The high level
description of the algorithm is shown in Table 2. 

It should be noted that for a dataset, W�(zi, zj) in (9) can be calcu-
lated beforehand and stored in the matrix [Wij] once � is given. This 

means that the following calculations are simple matrix manipula- 

tions, which saves the algorithm’s time greatly. 

There are several parameters in the NAC-RE algorithm. The most 

important two parameters, the radius r and the kernel width � will 

be discussed in Section 6. Other parameters are set as follows: The 

size of the projecting plane is set as N × N, where N is the size of 

the dataset; The maximum cycle number are set as 10,000–50,000; 

The threshold value ı0 indicates the permitted degree with which H 

changes after the object moves to a new place. In our experiments, 

the initial value of ı0 is 0.08. With the continuance of clustering, 

the similar objects will be clustered together. Therefore, the value 

of ı0 can be decreased accordingly. 

ı0(t + 1) =
{

0.95 ı0(t) if Mod(t, 200) = 0

ı0(t) otherwise
(19) 

5. The theoretical analysis of the NAC-RE algorithm using 

kernel method 
 clustering algorithm using Renyi entropy, Appl. Soft Comput. J.

In the essence, the local similarity of the object is measured by 429

Renyi entropy in NAC-RE rather than Euclidean distance or Cosine 430

distance in the old model. In this section, we will show that entropy 431
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Table 3
The change of d̄F and H for the sample in Fig. 3.

Item The dataset The changing trend

Ci Ci + oi
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etric is feasible and superior to distance metric from the kernel’s
oint of view.

.1. The relation between Renyi entropy and the mean vector in
he kernel feature space

Kernel-based clustering is proposed to cluster some datasets
ith nonlinear separable classes. It transforms the data into a
igh-dimensional feature space and performs the clustering in this

eature space [50].
Consider a smooth, continuous nonlinear mapping  ̊ from the

ata space to the feature space F:

 : RN → F.

Then, the data samples in the input space zi ∈ RN(i = 1, 2, . . .,  N)
re mapped into ˚(z1), ˚(z2), . . .,  ˚(zN). Note that the dot produc-
ion in the feature space can be computed using Mercer kernel in
he input space:

(zi, zj) =< ˚(zi), ˚(zj) > . (20)

In other words, by employing a specific kernel function, the dot
roduct that it returns implicitly defines the nonlinear mapping ˚
o the feature space [50].

Let us assume that the Parzen window is a positive semi-definite
ernel function, for example, the Gaussian Parzen window in Sec-
ion 3 [51]. Then the Parzen window obeys Mercer’s conditions.
ence, an inner-product in kernel induced feature space can be
omputed

�(·, ·) = K(·, ·) =< ˚(·), ˚(·) > . (21)

Then it is possible to interpret the Renyi entropy-based infor-
ation theoretic measures in terms of Mercer kernel feature

pace [51]. The estimator for V({z}) in (9) can be re-examined
y

ˆ ({z}) = 1
N2

N∑
i=1

N∑
j=1

W�(zi, zj) = 1
N2

N∑
i=1

N∑
j=1

< ˚(zi), ˚(zj) >

=
〈

1
N

N∑
i=1

˚(zi),
1
N

N∑
j=1

˚(zj)

〉
=< m, m >= ‖m‖2, (22)

where m = (1/N)
∑N

i=1˚(zi) is the mean vector of the
ata points in {z} after mapping to the feature space. Then
he Parzen window-based estimator for the Renyi entropy
s

({z}) = − log V̂({z}) = − log ‖m‖2. (23)

This means that the Renyi entropy of {z} equals minus the log
f the squared norm of the mean vector of all items in the kernel
eature space. The relation indicated by (23) will be used in next
ection to get the relation between Renyi entropy and the mean
istance of dataset in the kernel space.

.2. The relation between Renyi entropy and the mean distance of
he kernel space

Suppose data samples zi and zj in {z}, the Euclidean distance in
he input space is√
Please cite this article in press as: L. Zhang, et al., A novel ant-based
(2012), http://dx.doi.org/10.1016/j.asoc.2012.11.022

(zi, zj) =
∥∥zi − zj

∥∥2
, (24)

After the samples are mapped into the feature space, the
uclidean distance between �(zi) and �(zj) in the feature space

511
H 4.9651 4.8856 ↓
d̄F 0.0173 0.0158 ↓

becomes 

dF (zi, zj) =
√∥∥˚(zi) − ˚(zj)

∥∥2

=
√

˚(zi) · ˚(zi) − 2˚(zi) · ˚(zj) + ˚(zj) · ˚(zj). (25) 

As for all data items in the dataset {z}, we  define the average dis-

tance of {z} in the feature space is d̄F = (1/N2)
∑N

i=1

N∑
j=1

dF (zi, zj)
2. 

Based on (20), if standard Gaussian kernel is used, then 

K(zi, zj) = G(zi − zj, �2I) = exp

(∥∥zi − zj

∥∥2

2�2

)
. (26) 

d̄F can be computed as 

d̄F =
1

N2

N∑
i=1

N∑
j=1

dF (zi, zj)
2 = 1

N2

N∑
i=1

N∑
j=1

(K(zi, zi) − 2K(zi, zj) 

+ K(zj, zj)) = 1
N2

N∑
i=1

N∑
j=1

(2 − 2K(zi, zj)) 

= 2(1 − 1
N2

N∑
i=1

N∑
j=1

K(zi, zj)) = 2(1 − ‖m‖2). (27) 

Through (23), then we can get the relationship of d̄F , H and m 

(here H({z}) is written as H to show concisely). 

d̄F = 2(1 − ‖m‖2) = 2(1 − e−H). (28) 

Or 

H = − log

(
1 − d̄F

2

)
. (29) 

It can be seen that d̄F is proportional to H. Therefore, H ↓⇒ d̄F ↓ 

The means of (17) can be re-explained that the mean distance 

of all objects in Neigh(oi) in the feature space is decreased when oi
joins its neighborhood. It has been well known that applying the 

distance in the feature space is more reasonable than applying that 

in the input space, because non-linearly separable objects in the 

input space may  be linearly separable in the feature space. This is 

the basic principle of kernel-based clustering. The applications of 

kernel in K-means, fuzzy K-means, have been proved to be effective 

to improve the clustering performance [50]. Therefore, the relation 

gotten by (29) provides the theoretic support for our method using 

Renyi entropy in ant-based clustering. In Section 6, we  will show 

the distance comparison between the input space and the feature 
 clustering algorithm using Renyi entropy, Appl. Soft Comput. J.

space. 512

As for the sample in Section 4.2,  the changes of d̄F and H are 513

listed in Table 3. 514
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Table  4
The datasets used for assessing all clustering algorithms.

Name C D N Ni

Square 4 2 400 100,100,100,100
Ring 2 2 200 100,100
Line 2 2 200 100,100
Moon 2 2 210 105,105
Iris 3 4 150 50,50,50
Wine 3 13 178 59,71,48
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number). The time complexity of the algorithm is mainly affected 595

T
T

Wisconsin 2 9 699 458,241
Zoo 7 16 101 41,20,5,13,4,8,10

. Experimental results and analysis

.1. The experimental condition

.1.1. Evaluation functions
The following functions are used to evaluate the performance of

he NAC-RE algorithm and other clustering algorithms.

1) The F-measure (F)
2) The Dunn Index (DI)
3) The Error Rate (ER)
4) Time cost (T)

F and DI are to be maximized while ER and T are to be minimized
29].

.1.2. Experimental data
Eight datasets, four synthetic and four real, are used for assessing

he algorithms. Some of these datasets are benchmarks and widely
pplied in ant-based clustering. The datasets are briefly introduced
n Table 4 (C is the number of the clusters, D is the dimensionality,

 is the total number of the data items, Ni is the number of items
f cluster i).

Square:  The Square dataset has been used in many ant-based
lustering algorithms. The dataset is two-dimensional and consists
f four clusters arranged as a square. The data are generated accord-
ng to a normal distribution N(u, �2). The normal distributions of
he four clusters in our study are as follows: (N(− 5, 2), N(− 5, 2)),
N(5, 2), N(5, 2)), (N(− 5, 2), N(5, 2)), and (N(5, 2), N(− 5, 2)).

Ring: This dataset is generated by two distributions: an isotropic
aussian and a uniform “Ring” distribution. A total of 100 data
oints were drawn for each distribution.

Line: The dataset is composed by two clusters. One is Gaussian
nd one is linear with two parts.

Moon: The dataset includes two parts of data with a valley struc-
ure, which is often used for testing some clustering algorithms
uch as spectral clustering and manifold clustering.
Please cite this article in press as: L. Zhang, et al., A novel ant-based
(2012), http://dx.doi.org/10.1016/j.asoc.2012.11.022

The real datasets Iris, Wine, Wisconsin and Zoo, are all from the
atabase of UCI for machine learning [52]. These datasets are often
sed for testing the performance of all kinds of algorithms.

able 5
he comparison of the parameters in several algorithms.

Algorithm Parameters 

Adjusted Constant 

K-means – K 

KK-means – K, � 

LF  r,  ̨ n,tmax,k1,k2

ATTA r,˛  n,tmax,tstart ,tend stepsize, 

ACK  r,˛,  ̌ tmax,K1,� 

NAC-RE-K r,ı0 tmax,� 

NAC-RE r,ı0 tmax,� 
 PRESS
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6.1.3. The comparison clustering algorithms 

The NAC-RE algorithm was compared with the following algo- 

rithms: 

• The classic clustering algorithm 

◦ K-means 

• The classic kernel-based algorithm 

◦ Kernel-based K-means (KK-means) 

• The ant-based clustering algorithms 

◦ LF Algorithm [21] 

◦ ATTA [29], which represents the latest modified algorithm of 

ant-based clustering. 

◦ ACK [49], which is ant-based clustering algorithm integrated 

with kernel method and proposed by us. 

◦ NAC-RE-K: The algorithm is designed for comparing KPCA and 

KECA. The initial projection of the objects is modified by KPCA, 

and the ant’s clustering part is the same as that in NAC-RE.

Another algorithm ACAM is not included here because its modi- 

fications are complex. We  cannot program ACAM algorithm by our 

codes. Its experimental results on published papers are not suffi- 

cient for our comparison. ATTA can be as the example of the latest 

ant-based clustering and its performance is superior to ACAM. The 

program of ATTA can be downloaded from the author’s website 

[53]. ATTA is programmed in C++ and executed in the Linux oper- 

ating system. LF and ACK are programmed in Matlab and performed 

on an Intel core E7200 2.53 GHz personal computer. All presented 

results by evaluation functions have been averaged over 10 runs. 

6.2. The simplification of NAC-RE in the parameters

In this section, we will indicate that NAC-RE has simpler param-
eters than other ant-based clustering algorithms and discuss how 

the parameters are selected.
Table 5 shows the comparison of the number of the parameters 

in different algorithms. K-means is the simplest. Compared with K- 

means and KK-means, ant-based clustering algorithms are relative 

complex. Among ant-based clustering, the number of parameters 

in NAC-RE is the smallest, which prevents that complex parame- 

ters setting affects the clustering results. The modifications in ATTA 

have improved the clustering quality, but at the same time, the 

complexity of the algorithm has been increased. For example, the 

author Handl has pointed out that the modified threshold func- 

tions have been experimentally derived [29]. Moreover, by applying 

entropy metric, NAC-RE eliminates the similarity parameter ˛, 

which is difficult to be adjusted properly [29–31,39].  

Table 5 also shows the comparison of algorithms in time com- 

plexity(N is the total number of the data items, nant is the number 

of ants, K is the number of clusters, tmax is the maximum iteration 
 clustering algorithm using Renyi entropy, Appl. Soft Comput. J.

by the number of iteration. Commonly, tens of thousands of iter- 596

ations are needed for LF and ATTA [17,29,39].  For ACK, NAC-RE-K 597

and NAC-RE, their time complexity is relative to the number of data 598

Time complexity

Number

1 O(N · K · tmax)
2 O(N · K · tmax)
6 O(nant · tmax)

memorysize 8 O(nant · tmax)
6 O(N · tmax)
4 O(N · tmax)
4 O(N · tmax)

dx.doi.org/10.1016/j.asoc.2012.11.022
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Table 6
The comparison of NAC-RE with non ant-based clustering algorithms.

Dataset Evaluation parameter Algorithms

K-means KK-means NAC-RE

Square

F 0.983 0.984 0.981
DI 3.702 3.717 3.772
ER 0.99 0.99 1.05
T 25.16 28.78 210.26

Ring

F  0.664 0.893 0.880
DI 1.349 1.714 1.897
ER 19.65 7.02 3.94
T  25.26 27.69 90.83

Line

F  0.637 0.818 0.814
DI 1.252 1.297 1.395
ER 15.45 5.54 4.93
T  23.35 23.46 134.66

Moon

F  0.794 0.890 0.882
DI 2.165 2.454 2.469
ER 9.05 6.72 6.92
T  30.10 30.12 92.84

Iris

F  0.822 0.830 0.815
DI 2.669 2.686 2.746
ER 10.72 8.02 11.84
T  30.75 31.66 91.28

Wine

F  0.813 0.859 0.862
DI 1.932 3.927 4.209
ER 5.24 3.14 3.14
T  30.10 31.25 90.36

WI

F  0.956 0.960 0.980
DI 4.155 4.872 5.454
ER 4.24 4.20 3.05
T 33.64 46.55 203.69

Zoo

F  0.774 0.804 0.816
DI 1.284 1.386 1.446
ER 23.40 14.39 13.02
T  10.58 10.69 76.36
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Table 7
The comparison of NAC-RE with ant-based clustering algorithms.

Dataset Evaluation parameter Algorithms

LF A

Square

F 0.894 

DI 2.896  

ER  2.05 

T  450.72 

Ring

F  0.842 

DI  1.478 

ER  12.67 

T  238.45 

Line

F  0.593 

DI  0.973 

ER  17.23 1
T  296.46 

Moon

F  0.748 

DI  2.044 

ER  11.30 

T  199.51 

Iris

F  0.772 

DI  2.118 

ER  14.49 1
T  186.15 

Wine

F  0.856 

DI 2.034  

ER  3.90 

T  199.51 

WI

F  0.874 

DI  4.963 

ER  6.03 

T  356.65 1

Zoo

F  0.785 

DI 1.147  

ER  21.98 1
T 166.65  
 PRESS
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item because each item is taken as an ant. The tmax in these three 

algorithms is far less than that in LF and ATTA because of modified 

projection. The detailed comparison of time cost will be shown in 

Section 6.3.  

There are three important parameters in NAC-RE, which are sim- 

ple and easily controlled. The parameter ı0 has been discussed in 

Section 4.3,  other two parameters r and � are discussed here. 

• The radius r 

The radius r determines the region that the ant perceives. A 

larger radius means that it takes in more information but there is 

a higher time cost. Furthermore, a larger radius inhibits the quick 

formation of clusters in the initial phase. We  applied a changing
radius that gradually increases over cycles [27–29,39].  The initial 

value r1 is 1, and the maximum rmax is 5. 

• The kernel size � 

The kernel size � is another important parameter because it 

determines the width of the Parzen window. How to set � is 

an important research focus in the applications of Gauss func- 

tion in Support Vector Machine (SVM) and other kernel-based 

methods [54]. There are no good ways to solve this problem. 

Cross-validation and the leave-one-out technique are usually 

used. Sometimes, � can be selected by experience. In this paper, 

we  applied the cut and trial method, and the value that generated 

a good result in KECA was selected. 

A general guideline to choose � can be given by analyzing the
Gauss function G(zi− zj, 2�2I) in (12). Assume the distance zi− zj is 

indicated as d and processed in the range of [0 1]. Fig. 4(a) shows the 
 clustering algorithm using Renyi entropy, Appl. Soft Comput. J.

curves of Gauss function when � is constant and M is changing (M is 626

the dimension number of z). The less M is, the more obviously that 627

curve declines. Fig. 4(b) shows the curves of Gauss function when 628

M is constant and � is changing. The less � is, the more obviously 629

TTA ACK NAC-RE-K NAC-RE

0.980 0.989 0.983 0.981
3.654 3.926 3.824 3.772
1.02 0.97 1.01 1.05
5.14 204.78 223.54 210.26
0.843 0.982 0.876 0.880
1.895 1.900 1.802 1.897
8.48 3.06 4.64 3.94
8.46 85.66 83.78 90.83
0.602 0.826 0.811 0.814
1.058 1.489 1.320 1.395
5.78 5.42 5.12 4.93
7.97 163.26 136.27 134.66
0.838 0.882 0.880 0.882
2.466 2.453 2.454 2.469
9.47 7.43 7.14 6.92
7.62 101.22 93.38 92.84
0.818 0.835 0.827 0.815
2.923 2.898 2.670 2.746
2.64 7.45 9.02 11.84
3.30 80.42 126.42 91.28
0.855 0.868 0.860 0.862
4.242 4.197 4.022 4.209
3.85 3.02 3.26 3.14
4.25 101.22 113.49 90.36
0.968 0.972 0.968 0.980
5.488 5.428 5.343 5.454
4.08 3.42 3.58 3.05
0.27 252.95 237.88 203.69
0.825 0.818 0.810 0.816
1.396 1.562 1.339 1.446
1.27 12.83 14.02 13.02
6.62 80.95 80.44 76.36

dx.doi.org/10.1016/j.asoc.2012.11.022
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Table 8
�2

F
and FF distribution.

�2
F
(2) FF(2,14) �2

F
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684

The statistical testing is conducted on evaluation parameters. 685

The results are listed in Table 11.  686

Based on the values of �2
F and FF (for DI and T, FF is non-existent 687

because the denominator in (31) is null. �2
F distribution can be 688

Table 9
Critical values for the two-tailed Nemenyi test and Bonferroni–Dunn test.

#algorithms Nemenyi test Bonferroni–Dunn test
(a) σ =0.5                         

Fig. 4. The effect of �

hat curve declines. Gauss function is hoped to be distinct when
istances are different, that means the change of entropy (�H) will
e obvious. In Fig. 4, � = 0.3 is proper when M is 4. If M is larger, �
an be set a less value.

It should be noted that the differential value and the ratio value
f entropy are used in our application. Although � is variant, the
hanging trends of differential value and the ratio value of entropy
re the same. So � can be selected in a range, which does not affect
he final clustering results.

.3. The comparison results and discussion

.3.1. Statistical testing on the comparison results
The comparison results of NAC-RE with non ant-based cluster-

ng and ant-based clustering algorithms are shown in Tables 6 and
.

Statistical testing is used for comparing the algorithms. Demšar
xamined several statistical tests and studied their suitability for
omparison of two or more classifiers over multiple datasets [55].
he Friedman test with the corresponding post hoc tests recom-
ended in [55] is used here.
The Friedman test ranks the algorithm for each data set sepa-

ately. The best performing algorithm gets the rank of 1, the second
est rank 2. In case of ties, average rank is assigned. Let rj

i
be the

ank of the jth of k algorithms on the ith of N data sets. The Fried-
an  test compares the average ranks of algorithm, Rj = (1/N)

∑
ir

j
i
.

nder the null-hypothesis, which states that all the algorithms are
quivalent and so their ranks Rj should be equal. The Friedman
tatistic

2
F =

12 · N

k · (k + 1)

⎡
⎣∑

j

R2
j −

k · (k + 1)2

4

⎤
⎦ (30)

is distributed according to �2
F with k − 1 degrees of freedom.

riedman’s �2
F is undesirably conservative. So another statistic was

uggested by Iman and Davenport [56] is

(N − 1) · �2
F

Please cite this article in press as: L. Zhang, et al., A novel ant-based
(2012), http://dx.doi.org/10.1016/j.asoc.2012.11.022

F =
N · (k − 1) − �2

F

(31)

It is distributed according to the F-distribution with k − 1 and
k − 1) · (N − 1) degrees of freedom.
 ̨ = 0.05 5.991 3.74 9.488 2.71
˛ = 0.1 4.605 2.73 7.779 2.16

Two  cases will be analyzed in the paper, one is comparing three
algorithms for eight data sets in Table 6; the other is comparing 

five algorithms for eight data sets in Table 7. The selected �2
F and FF

distributions are listed in Table 8. 

If the null-hypothesis is rejected, a post hoc test can proceed. The 

Nemenyi test is used when all the algorithms are compared to each 

other. The performance of two clustering algorithms is significantly 

different if the corresponding average ranks differ by at least the 

critical difference 

CD = q˛

√
k · (k + 1)

6 · N
(32) 

When all clustering algorithms are compared with a control 

clustering algorithm for example, comparing the newly proposed 

algorithm with several existing methods, Boferroni–Dunn test can 

replace the Nemenyi test, which is more powerful in this specific 

case. The CD can be calculated using the same way  for the Nemenyi 

test, but the critical values is different. For convenience, in the cases 

of the paper (three and five algorithms, eight datasets), the critical 

values of two tests are listed in Table 9, which are partly selected 

from the tables in [55]. The corresponding critical differences are 

listed in Table 10.  

6.3.2. Summary of algorithms’ performance 
 clustering algorithm using Renyi entropy, Appl. Soft Comput. J.

k = 3 k = 5 k = 3 k = 5

 ̨ = 0.05 2.343 2.728 2.241 2.498
˛  = 0.1 2.052 2.459 1.960 2.241

dx.doi.org/10.1016/j.asoc.2012.11.022
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Table 10
Critical differences for the two-tailed Nemenyi test and Bonferroni–Dunn test (N = 8).

#algorithms Nemenyi test Bonferroni–Dunn test

k = 3 k = 5 k = 3 k = 5

 ̨ = 0.05 1.172 2.156 1.121 1.249
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(b) Comparison of all  ant-bas ed cl uste ring algorit hms on DI

12345

ACK
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(c) Comparison of all  ant-bas ed cl uste ring algorit hms on ER

12345

NAC-RE

ACK

ATTALF
NAC-RE-K

CD=1.944

(d) Comparison of all  ant-bas ed cl uste ring algorit hms on T

726

727

728

729

730

as LF or the better NAC-RE and NAC-RE-K. The same analyses can 731

T
TQ4

T
T

˛  = 0.1 1.026 1.944 0.980 1.121

sed in this condition), all null-hypotheses are rejected. Therefore
he algorithms are different. The Nemenyi test for pairwise com-
arisons can be conducted. In terms of F, the difference between
-means and KK-means 1.375 is larger than critical difference
.172(  ̨ = 0.05), we can conclude that the performance of KK-means

s significantly better than K-means. As for NAC-RE, because its dif-
erences with other two algorithms(0.875 and 0.5) are smaller than
.172(1.026 when  ̨ = 0.1), so we cannot tell which group NAC-RE
elongs to. In terms of DI,  the best one NAC-RE is obviously different
rom the worst one K-means. The difference between KK-means
ith the others is 1, which is less than 1.026(  ̨ = 0.1), so this dif-

erence is not significant. In this case, NAC-RE can be looked as a
ewly proposed algorithm and Boferroni–Dunn test is used to com-
are it with the other two existing methods. Because 1 is larger
han 0.980(  ̨ = 0.1), we can conclude that NAC-RE performs signif-
cantly better than existing two ones. The similar analysis can be
onducted on terms of T, we can see NAC-RE is obviously worse
han the others. Based on the average rank, NAC-RE is the best one
n DI while K-means is in T. In terms of ER,  KK-means and NAC-RE
elong to the same group. Their performance is significantly better
han K-means.

The general descending order of the algorithms based on
verage rank is KK-means, NAC-RE and K-means. The improved
erformance of KK-means shows that the application of kernel is
ffective. K-means and KK-means are highly efficient compared
ith NAC-RE. But it should be noted that these two algorithms

equire a priori knowledge of the number of clusters. In our experi-
ent, they were run by being given the correct number of clusters.
hile NAC-RE does not need know this priori knowledge, which is

n important merit.
The statistical testing results of five ant-based clustering algo-

ithms on eight datasets are listed in Table 12.  For convenience, the
2
F and FF distribution, the Critical Value and the Critical Difference
ave been computed and listed in Tables 8–10. Using the same ana-

yzing way in Section 6.3.2, we can know that all null-hypotheses
Please cite this article in press as: L. Zhang, et al., A novel ant-based
(2012), http://dx.doi.org/10.1016/j.asoc.2012.11.022

re rejected, which means that the algorithms are different in terms
f four parameters.

able 11
he statistical testing of three algorithms.

Evaluation parameter Average rank 

K-means KK-means 

F 2.75 1.375 

DI  3 2 

ER 2.6875 1.625 

T  1 2 

able 12
he statistical testing of five algorithms.

Evaluation parameter Average rank 

LF ATTA ACK 

F 4.875 3.5625 1.3125 

DI  5 2.375 2 

ER 5  3.5 1.75 

T  5 1 3.25 
Fig. 5. Comparison of all ant-based clustering algorithms with Nemenyi test (groups
of  algorithms that are not significantly different are connected,  ̨ = 0.1).

The graphical presentation of results suggested by Demšar [55] 

is applied here. 

The analysis on F reveals that LF performs significantly worse
than ACK, NAC-RE and NAC-RE-K. ATTA is significantly worse than 

ACK. The data is not sufficient to conclude whether ATTA performs 
 clustering algorithm using Renyi entropy, Appl. Soft Comput. J.

be conducted on DI,  ER and T. The general description of the com- 732

parison of algorithms can be described as: 733

�2
F

FF

NAC-RE

1.875 7.75 6.576
1 16 –
1.6875 5.6825 3.849
3 16 –

�2
F

FF

NAC-RE-K NAC-RE

2.6875 2.3125 18.4 9.471
3.5 1.125 10.1 3.228
2.625 2.125 21.5 14.333
3.25 2.5 26.8 36.077

dx.doi.org/10.1016/j.asoc.2012.11.022
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Fig. 6. The projectio

The significant difference of ACK, NAC-RE, NAC-RE-K, com-
pared with LF in terms of F and ER (the difference is larger
Please cite this article in press as: L. Zhang, et al., A novel ant-based
(2012), http://dx.doi.org/10.1016/j.asoc.2012.11.022

than CD) indicate that the application of kernel or entropy is
effective.
NAC-RE and ACK have similar performance, since they are not
significantly different in four parameters.
A           Moon-KECA

 synthetic datasets.

• The significant difference between NAC-RE and NAC-RE-K in DI 

shows that KECA plays an important role in improving the per- 
 clustering algorithm using Renyi entropy, Appl. Soft Comput. J.

formance in DI. 742

• ACK is significantly better than ATTA in F while worse in T, which 743

indicates that the clustering accuracy sometimes is at the cost of 744

time. (it should be noted that ATTA codes are written in C++ and 745

dx.doi.org/10.1016/j.asoc.2012.11.022
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Fig. 7. The comparisons of three

run in the Linux operation system, which saves time compared
to Matlab codes in the Windows.)

If NAC-RE is seen as a newly algorithm and Boferroni-Dunn test
s used to compare it with the others, we can conclude that it is
Please cite this article in press as: L. Zhang, et al., A novel ant-based
(2012), http://dx.doi.org/10.1016/j.asoc.2012.11.022

ignificantly different from LF and ATTA in all terms (the difference
s larger than 1.121 in Table 10 when  ̨ = 0.1). Instead, the difference
etween NAC-RE and ACK is not obvious in all terms. The difference
etween NAC-RE and NAC-RE-K is also not obvious except DI.
A Zoo-KECA

essing methods of real datasets.

6.3.3. KECA vs. KPCA and PCA 

Fig. 6 shows the projections based on PCA, KPCA and KECA of 

synthetic datasets. Some conclusions can be drawn from Fig. 6. 

• The projections based on PCA, KPCA and KECA can create 
 clustering algorithm using Renyi entropy, Appl. Soft Comput. J.

rough clusters, which saves the algorithm’s time. Especially 758

for the datasets Square and Ring, the initial projections 759

clearly create clusters, and even no further clustering is 760

required. 761

dx.doi.org/10.1016/j.asoc.2012.11.022
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Fig. 8. The comp

Compared with PCA, KPCA and KECA are superior because the
non-linearly separable objects in PCA can be linearly separable in
KPCA and KECA, which is shown in Ring, Line and Moon.
Compared with KPCA, KECA projection shows a distinct angle-
based structure. The two clusters in Ring, Line and Moon are
Please cite this article in press as: L. Zhang, et al., A novel ant-based
(2012), http://dx.doi.org/10.1016/j.asoc.2012.11.022

almost separated by a 90◦ angle (the proposer of KECA, Jenssen,
had pointed this feature in his research [40]). Moreover, each
cluster in KECA is more compacted than KPCA, which is almost
compacted to a line.
on

 of the distances.

Because the data items in real datasets are multi-dimensional, 

to compare the role of PCA, KPCA and KECA, the first three principal 

components of datasets are shown in Fig. 7. 

Some conclusions can be drawn from Fig. 7: 
 clustering algorithm using Renyi entropy, Appl. Soft Comput. J.

• Iris and Wine are almost linearly separable for three clusters 775

while Wisconsin and Zoo are not linearly separable. 776

• As for all datasets, KPCA and KECA have superiority over 777

PCA. The clusters are more separable after KPCA and KECA, 778

dx.doi.org/10.1016/j.asoc.2012.11.022
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especially for dataset Wisconsin. It proves that kernel map  is
effective.
Compared with KPCA, the clusters in KECA are distributed in an
angle structure. Moreover, each cluster is more compacted in its
angle direction.

Comparing NAC-RE-K, NAC-RE, ACK in Table 6, Table 7 and Fig. 5,
e can see

NAC-RE is superior to NAC-RE-K which indicates the initial pro-
jection based on KECA can improve not only clustering quality
but also efficiency.
The clustering quality of ACK is better than NAC-RE-K, which indi-
cates the clustering quality is more dependent on the late part of
clustering method than the projection.
The significant difference between NAC-RE and NAC-RE-K in DI
shows that KECA plays an important role in improving the per-
formance in DI.

.3.4. Distance similarity vs. entropy similarity
As for non-linearly separable datasets, such as Ring, Line and

oon, the clustering using the distance measure in the input
pace cannot get satisfied results. However, the objects will be
inearly separable in the feature space after kernel mapping.
he improved performance of KK-means to K-means has proved
his conclusion. As analyzed in Section 5, the similarity mea-
ured by entropy is in essence direct with the distance in kernel
pace, which means that NAC-RE integrates the merits of kernel
ethod.
Suppose two clusters in datasets Ring, Line and Moon are C1 and

2. The distance between every point in cluster C1 and that in clus-
er C2 is computed and processed in the range [0,1]. Fig. 8 shows the
omparison of all distances of two clusters in input space with those
n feature space (to show more clearly, the values larger than 0.5
re shown by red color while the others are shown by blue color).
t can be seen from the figures, for each dataset, the distances in
he input space smaller than 0.5 are almost equal to those larger
han 0.5, which means there are many objects difficult to recognize
ts true cluster. In contrast, the distances smaller than 0.5 become

 very smaller part in the feature space. Especially for dataset Line
nd Moon, most distance values are approximate to 1, which means
he most objects become separable in the feature space. So ant-
ased clustering using entropy metric can get better clustering
esults.

. Conclusion

Compared with other clustering algorithms, the most advan-
age of ant-based clustering algorithms is they do not need any
rior knowledge about clustering [19]. The clustering process is
rganized by ants’ behavior [16,19–21].  The clustering results are
isible [19,22,27,29]; the algorithm can be performed by parallel
omputing [25,31].

This paper proposed a novel ant-based clustering algorithm
ntegrated with Renyi entropy (NAC-RE). The algorithm used KECA
o modify the random projection of objects, and applied a novel
nt movement model governed by Renyi entropy. NAC-RE shows a
omparable performance with ACK and ATTA. Because it integrates
he merits of kernel method in essence, it can get good results for
on-linearly separable datasets. Compared with KPCA, the projec-
ion based on KECA can create more compacted clusters, therefore,
Please cite this article in press as: L. Zhang, et al., A novel ant-based
(2012), http://dx.doi.org/10.1016/j.asoc.2012.11.022

AC-RE is time saving. Moreover, NAC-RE is simpler than other
nt-based algorithms in parameters. The theoretic analysis and
xperimental comparison show the novel algorithm is reasonable
nd effective.
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The algorithm gives a novel application of information entropy 

in ant-based clustering. The implemental style of the algorithm is 

original. The following items are needed to be further studied: 

• How to improve the clustering efficiency by modifying the ant’s 

movement model based on entropy. Although random projection 

was  modified, NAC-RE is not efficient compared with K-means 

and KK-means. The ant’s movement must be optimized. Local 

optimization methods should be developed. 

• How to set the parameters suitably. The setting of � and its effect 

on clustering results need further study. 

• The assessment of NAC-RE using more and large datasets. The 

algorithm should be evaluated using more datasets. Especially, 

some complicated datasets with a larger number of objects’ 

attributes should be collected. 
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55] J. Demšar, Statistical comparisons of classifiers over multiple data sets, Journal 994

of Machine Learning Research 7 (2006) 1–30. 995

56] R.L. Iman, J.M. Davenport, Approximations of the critical region of the Friedman 996

statistic, Communications in Statistics (1980) 571–595. 997

dx.doi.org/10.1016/j.asoc.2012.11.022
http://www.antsearch.univ-tours.fr/public/MonSliVen99b.pdf
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://dbkgroup.org/handl/ants/

	A novel ant-based clustering algorithm using Renyi entropy
	1 Introduction
	2 The basics and problems of ant-based clustering algorithm
	3 Renyi entropy, KECA and their applications in clustering
	3.1 Renyi entropy and its application in clustering
	3.2 Kernel entropy component analysis

	4 A novel ant-based clustering algorithm using Renyi entropy
	4.1 Projection of the objects based on KECA
	4.2 The ant movement model using Renyi entropy
	4.3 The process of the NAC-RE algorithm

	5 The theoretical analysis of the NAC-RE algorithm using kernel method
	5.1 The relation between Renyi entropy and the mean vector in the kernel feature space
	5.2 The relation between Renyi entropy and the mean distance of the kernel space

	6 Experimental results and analysis
	6.1 The experimental condition
	6.1.1 Evaluation functions
	6.1.2 Experimental data
	6.1.3 The comparison clustering algorithms

	6.2 The simplification of NAC-RE in the parameters
	6.3 The comparison results and discussion
	6.3.1 Statistical testing on the comparison results
	6.3.2 Summary of algorithms’ performance
	6.3.3 KECA vs. KPCA and PCA
	6.3.4 Distance similarity vs. entropy similarity


	7 Conclusion
	Acknowledgements
	References


