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Abstract

In this paper, a new method for clustering analysis of QRS complexes is proposed. We present an efficient Arrhythmia Clustering and
Detection algorithm based on medical experiment and Ant Colony Optimization technique for QRS complex. The algorithm has been
developed based on not only the general signal detection knowledge, but also on the ECG signal’s specific features. Furthermore, our
study brings the power of Ant Colony Optimization technique to the ECG clustering area. ACO-based clustering technique has also been
improved using nearest neighborhood interpolation. At the beginning of our algorithm, we implement signal filtering, baseline wandering
and parameter extraction procedures. Next is the learning phase which consists of clustering the QRS complexes based on the Ant Col-
ony Optimization technique. A Neural Network algorithm is developed in parallel to verify and measure the success of our novel algo-
rithm. The last stage is the testing phase to control the efficiency and correctness of the algorithm. The method is tested with MIT-BIH
database to classify six different arrhythmia types of vital importance. These are normal sinus rhythm, premature ventricular contraction
(PVC), atrial premature contraction (APC), right bundle branch block, ventricular fusion and fusion. Our simulation results indicate that
this new approach has correctness and speed improvements.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Computer-based analysis, classification and interpreta-
tion of electrocardiography (ECG) arrhythmias have been
the subject of considerable research effort in the recent
years. Besides, one of the most difficult problems in these
researches is the large variation in the morphologies of
ECG waveforms, not only of different patients or patient
groups but also within the same patient. The ECG wave-
forms may differ for the same patient to such an extent that
they are dissimilar to each other and at the same time are
alike for different types of beats [1]. In the last decades,
cluster analysis has been combined with other techniques,
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and has been used to overcome these difficulties in many
areas of ECG processing, such as classification of ECG
arrhythmias [1–6], ECG feature selection [7], ECG charac-
ter points detection [8], and classification of QRS morphol-
ogy [9].

One of the other major problems in automatic ECG
analysis is the difference between algorithmic approaches
and cardiologist’s point of view. Most of the researches
try to cluster data into the same groups that are labeled
by cardiologists and attempt to make cluster results consis-
tent with clinical categories. However, because of the vari-
ations of ECG complexes’ morphology, overlapping
between clinical categories and cluster results often occurs.
The ECG clustering methods, and the relationship between
clustering results and clinical categories need further inves-
tigation [6].

The objective of this work is to achieve a better cluster-
ing analysis of ECG complexes using a new method that
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Fig. 1. The relation ship between RR interval and arrhythmia type [10].
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aimed on closing the gap between general signal detection
techniques and medical knowledge. Theoretically, a normal
ECG is assumed to be a periodical signal in a long interval
of time according to its period. As mentioned before, many
modern researchers have attempted to analyze the ECG
signals periodically using just one QRS period’s parame-
ters. However, these approaches are too general to solve
classification problems about QRS morphologies. Accord-
ing to the medical point of view, the detection of arrhyth-
mia depends on two or more ECG signal periods [23] as
shown in Fig. 1 [10]. The previous period of an ECG signal
has many indicators of current arrhythmia. For example,
detecting arrhythmia types including PVC, T on R and
Bigeminy depends on two or three periods of the ECG sig-
nal as shown in Fig. 1.

So in our approach, two QRS periods’ parameters are
considered: RRtn, RRt(n+1). Also, QRS amplitude,
QRShtn, is used as the third parameter as shown in
Fig. 2. We also used QSR area and QT interval features
in order to distinguish right bundle branch block and
fusion arrhythmias. RR parameter is used for controlling
rhythm change. And QRS amplitude parameter indicates
the correlation of rhythm and amplitude. We compared
the results of one and two periods approach from many
perspectives in Section 4.
Fig. 2. Two QRS periods and the chosen parameters of an ECG signal
[22].
For implementing our methodologies, firstly, QRS sig-
nal is separated from the noise using an FIR filter. And
then QRS baseline correction algorithm consisting of a
median filter approach is used. RR distance and RR height
parameters are extracted temporally. After that, a novel
clustering algorithm based on Ant Colony Optimization
(ACO) is developed for clustering arrhythmia types. A
Neural Network algorithm is developed in parallel to verify
and measure our novel algorithm success. The last step is
the k-nearest neighborhood classification algorithm which
is used to test the algorithm’s efficiency mathematically.

2. Model

2.1. General system model

The system contains learning and test phases. The learn-
ing phase consists of three stages and is constructed as
shown in Fig. 3. The first stage of learning phase involves
filtering the QRS signal to remove noise effect, baseline cor-
rection and parameter extraction. The second stage
involves the storage of information over Relational Data-
base Management System (RDBMS) [11]. The last stage
involves the clustering of QRS parameters using the ACO
technique to construct arrhythmia classes. A Neural Net-
work algorithm is developed in parallel with our new
approach to verify and measure the success of our novel
algorithm.

Test or control phase is used to control algorithm’s effi-
ciency and correctness as shown in Fig. 4. The first stage of
testing phase is cleaning the QRS signal, baseline detection
and parameter extraction. Previously built cluster informa-
tion serves as an input to the testing system.

2.2. Preprocessing

Preprocessing stage contains filtering, baseline detection,
QRS complex detection and normalization. A low pass
linear phase filter is applied for impulsive noise. Filter
characteristic is shown in the following Eqs. (1)–(5):

y ¼ F ðb; a; xÞ ð1Þ
yðnÞ ¼ bð1Þ � xðnÞ þ . . .þ bðnbþ 1Þ � xðn� nbÞ
� . . .� aðnaþ 1Þ � yðn� naÞ ð2Þ

B ¼ ½ 1 0 0 0 0 0 �1 � ð3Þ
A ¼ ½ 1 �1 � ð4Þ

If we chose the z domain to show the filter function, then

Y ðzÞ ¼ 1� z�6

1� z�1
X ðzÞ ð5Þ

After removing noise from the ECG signal, a median filter
with 500 samples wide is designed for baseline estimation
as shown in Fig. 2.

After baseline correction, an adaptive QRS detection
algorithm is used. Adaptive threshold is applied to the rec-
tified signal. ECG time samples and a window function are



Fig. 3. Training system model.

Fig. 4. Testing system model.
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convolved. This window is 100 samples length and the
height of the window is 40% of the mean of the last four
R wave’s height. The place of the sample which has maxi-
mum height value at the inside of the window shows the
candidates of the R point place. After detecting the candi-
dates of the R point, a control vector, which covers 20 sam-
ples before the R wave peak and 20 samples after that, is
used to verify the real R point place according to the
QRS shape. After real R point is verified, it is used as the
reference point and the next 100 samples following this
point are discarded (closing eye) from researching a new
R point.
2.3. Normalization of ECG signals

ECG signal parameters are normalized according to the
last eight normal ECG records. Normalization is done
using the following equations:

QRShmðtÞ ¼
Pt

i¼t�7QRShðiÞ
8

; QRShðtÞ 2 ‘NormalECG’ ð6Þ

RRmðtÞ ¼
Pt

i¼t�7RRðiÞ
8

; RRðtÞ 2 ‘NormalECG’ ð7Þ
Fig. 5. The ACO algorithm’s general structure [16].
2.4. Clustering using Ant Colony Optimization technique

2.4.1. ACO algorithm

Inspired by the collective behavior of an ant colony,
Dorigo designed the ant system (AS) [12], and later contin-
ued to develop this system [13–16]. The ACO technique has
emerged recently as a novel meta-heuristic in the class of
naturally derived problem solving strategies (other catego-
ries include neural networks, simulated annealing, and evo-
lutionary algorithms). The AS optimization algorithm is
basically a multi-agent system in which low level interac-
tions between single agents (i.e., artificial ants) result in
the complex behavior of the colony as a whole. AS optimi-
zation algorithms are inspired by the behavior of real ants,
which deposit a chemical substance (called pheromone) on
the ground. Ants lay pheromone (in varying quantities) on
the ground as they move, thus creating a trail. The general
parts and structure of ACO algorithm are shown in Fig. 5.
2.4.2. The proposed algorithm for clustering
ACO technique can be applied to clustering successfully.

The ACO algorithm has been utilized with different favors
to solve the clustering problem [17]. In this approach’s first
stage, ants visit other cities randomly and they lay the pher-
omone according to inverse proportionality of Gaussian
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distance. After several iterations (cycles), trail intensity
(pheromone) between close nodes of trails will be
increased; on the other hand, the trail intensity (phero-
mone) far between the nodes of trails will be decreased.
In the second stage, ants will favor to visit the closer nodes
and then reinforce the trail with their own pheromone.
Every ant only needs to visit (1/10) cities not all of the cit-
ies, then the ants decreasingly visit the cities every time.
Finally, a number of clans (clusters) will be built. The tour-
nament selection technique is used for a proportionate
selection mechanism, and the selection of a new node is
based on randomly selection of some lines among the avail-
able lines; then, selection of the shortest line among the
previous randomly selected lines is continued as shown in
Fig. 6. The choice of the previous path jXSj as a next path
is prohibited.

Our study is based on these techniques, and some
improvements have been implemented. Iteration number
is smartly increased and the first and second stages are inte-
grated. Besides, algorithm simplicity is also increased.

The proposed ACO algorithm for clustering can briefly
be illustrated as follows. The ACO clustering algorithm
usually consists of the following steps:

Step 1: Initialize: Input n data sets and assign m ants ran-
domly to m nodes, and initially m is equal to n/10.

Step 2: Find the candidate nodes the next time for the
ants to visit. These nodes are chosen randomly.

Step 3: Each ant visits the other nodes according to the
nearest neighborhood interpolation depending
on the Gaussian distribution. Select the nearest
neighborhood node.

Step 4: Update the pheromone quantity of visited trail.
Step 5: Repeat Step 2 through Step 5 until the iteration

number is reached.
Step 6: Perform clustering using the value of pheromone

quantity.
2.5. Classification of ECG features using clustering Neural
Network

Neural Network is one of the most used methods of
ECG beat recognition and classification [1–3,5,6,18].
Fig. 6. The tournament selection mechanism of ACO algorithm [17].
Multi-layer perception (MLP) [19–21] based on the neural
networks has been chosen to be able to recognize and clas-
sify the ECG signals [3]. In our study, a backpropagation-
based Neural Network algorithm is developed in parallel to
verify and measure the success of our algorithm. The struc-
ture of such a network is presented in Fig. 7. Different sam-
ples sets having time domain features are selected for each
arrhythmia type.

Neural network structure consists of (number of input
parameters) � 10 � 25 � 6) nodes. Feed forward algorithm
is used for training.

Tan-sigmoid transfer function tansig is used in the hid-
den layers and the linear transfer function purelin is used
in the output layer. The characteristics of tansig and pure-
lin are shown in Fig. 8a and b.

2.6. k-Nearest neighborhood classifier

Nearest neighborhood classifier is used for testing pur-
poses. After a new beat is input to the system, the cluster
list is scanned to determine the clusters to which it belongs.
If there are two or more such clusters, the beat is placed
into the cluster which has the maximum number of nearest
members. k is the total number of beat’s nearest neighbors
and chosen as 5 in this work.

Step 1: Set the member list of the clusters.
Step 2: Take the next input vector and find its k nearest

members according to the minimum distance
measure.
Fig. 7. Optimum Neural Network architecture used for classification of
ECG signals.

Fig. 8. Function characteristics of NN transfer functions. (a) tansig used
in hidden layers; (b) purelin used in output layer.



Fig. 9. The relational data model of system.
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Step 3: Find the cluster which the maximum number of
nearest members belong.

Step 4: Assign this cluster as the input vector’s cluster.
Step 5: Repeat 2 to 4 for all input vectors.
2.7. Relational data model of system

A generic relational data model of system is developed
to store the necessary information as shown in Fig. 9.
Trained set is written to the database and the RDBMS
stores processed medical data and the results of the tests
and look-up definitions. Using RDBMS, many different
types of learning sets and testing sets can be obtained para-
metrically with the help of SQL commands easily. Cluster-
ing results are written to the RDBMS also.

The education and tests information are stored in the
EDUCATION and TEST tables. EDUCATION and
TEST tables have ID columns for referencing the special
instances and using in the future works. ARRHYTH-
MIA_TYPES table is used to store arrhythmia types as a
lookup table. EDUCATION_CLUSTERS table is used
to store learning phase results. Each signal point’s value
is stored in separate columns as SIGNAL_NO, SIGNAL_
VALUE1, SIGNAL_VALUE2 and SIGNAL_VALUE3.
TEST_CLUSTERS table is used to store test results, which
shows the found cluster information. The results are stored
in a separate table named RESULTS. RESULTS table
data are populated programmatically, and there is no phys-
ical relationship between RESULTS, EDUCATION_
CLUSTERS, and TEST_CLUSTERS tables because of
increasing flexibility. RESULT_TYPE column in
RESULTS table is used to store success or failure of test.

When an education result’s success is investigated in the
system, it can be done using a simple SQL command as
follows:
SELECT success. total_number / all.total_number total_success_factor 

(SELECT COUNT(*) total_number 

FROM results 

WHERE actuel_arrhythmia_type=result_arrhythmia_type  

AND education_id=:p_education_id) success, 

(SELECT COUNT(*) total_number 

  FROM results 

WHERE education_id=:p_education_id) all 

(:p_education_id is the variable of education instance) 

ð8Þ
3. Methods and results

3.1. Software program

A Windows-based real-time software program was writ-
ten using MATLAB�. Fig. 10 shows the form of software.
The software project supports learning and testing phases
from one interface. The program is initiated by clicking
on ‘‘Start Learning” upon which the ECG data are
obtained from the MIT-BIH database.

Clustering results can be viewed visually on the screen of
the software. Different arrhythmia types are shown with
different symbols and different clusters of arrhythmia types
are shown with different grades.

A program has been developed on modular architecture.
Each algorithm is developed in a separate MATLAB�

function. The modular classifier approach allows the paral-
lel development of all component classifiers. Moreover, we
choose to divide the training data samples into different
data subsets, and therefore further reduction of the training
time is obtained for individual classifiers.

Oracle XE�, which is Oracle� corporation free database
product, is used as RDBMS.
3.2. Result

The ECG signals are taken from MIT-BIH [22] ECG
database, which are used to classify six different arrhyth-
mias for training. Sampling frequency is f = 360 Hz. These
are normal sinus rhythm, premature ventricular contrac-
tion (PVC), atrial premature contraction (APC), right bun-
dle branch block, ventricular fusion and fusion. These
records have been taken for 32 different patients.

Totally 8771 ECG periods are used to test our algo-
rithms’ correctness. The distribution of records is shown
in Table 1. Different training and testing sets have been
built from these record sets using random sampling. When
choosing these sets, the numbers of training and testing
sample sizes have been considered to reflect the actual
number of arrhythmias inside the medical area. The
number of i. Arrhythmia samples in the training set is
calculated using



Fig. 10. A sample clustering result is shown on the interface of software.

Table 1
The number of sample records according to arrhythmia type

Arrhythmia type Number of samples

Normal 6622
Fusion (of paced and normal beat) 127
PVC 1395
Right bundle branch block beat 127
APC, atrial premature beat 323
Fusion of ventricular and normal beat 177
Total 8771
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Arrhythmia Number in SetðiÞ

¼ round r�The Total Number Of Arrhythmia TypeðiÞ
Total Number Of Samples

�l
� �

ð9Þ
Table 2
The sensitivity analysis results from patient test data classified by NN using o

Training set Normal PCV APC Right bundle

TP FN TP FN TP FN TP

1 5762 553 1129 117 113 41 62
2 5651 746 1079 179 126 35 76
. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

25 5762 527 1053 205 124 30 63

Table 3
The sensitivity analysis results from patient test data classified by ACO using

Training set Normal PCV APC Right bundle

TP FN TP FN TP FN TP

1 5875 440 1108 138 98 56 62
2 5759 638 1115 143 102 59 75

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

25 5847 442 1118 140 102 52 63
where r is the selected number of samples in the training
set. The rest of the samples are used for testing purposes.
l is the deviation constant used for creating different record
sets. Its value changes 1 ± 0, 25 (default is one).

In our works, sensitivity is considered as the most criti-
cal success factor. The description of sensitivity is the frac-
tion of real events that are correctly detected in

Sensitivity ¼ 100�ðTP=ðTPþ FNÞÞ ð10Þ

True positive (TP) means that the number of the true
events of arrhythmia that has been successfully detected,
and false negative (FN) is the count of missed beats. This
is because missing a life-threatening ECG beat is consid-
ered to be more serious than missing a few false alarms
which can later be screened out manually [23]. The total
sensitivity of an arrhythmia class is calculated as follows:
ne period’s parameters

branch block Ventricular fusion Fusion Sensitivity(%)

FN TP FN TP FN

2 55 30 35 28 90.03
1 64 21 31 32 87.40
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

1 67 18 39 24 89.80

one period’s parameters

branch block Ventricular fusion Fusion Sensitivity(%)

FN TP FN TP FN

2 56 29 30 33 91.21
2 56 29 38 25 88.90
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

1 56 29 35 28 91.25



Table 4
The sensitivity analysis results from patient test data classified by NN using two periods’ parameters

Training set Normal PCV APC Right bundle branch block Ventricular fusion Fusion Sensitivity(%)

TP FN TP FN TP FN TP FN TP FN TP FN

1 5970 345 1144 102 132 22 63 1 64 21 47 16 93.60
2 5879 518 1185 73 150 11 74 3 65 20 48 15 92.00

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25 5954 335 1143 115 142 12 64 0 67 18 52 11 93.81

Table 5
The sensitivity analysis results from patient test data classified by ACO using two periods’ parameters

Training set Normal PCV APC Right bundle branch block Ventricular fusion Fusion Sensitivity(%)

TP FN TP FN TP FN TP FN TP FN TP FN

1 6073 242 1171 75 132 22 62 2 61 24 33 30 95.02
2 6032 365 1163 95 137 24 74 3 65 20 41 22 93.42

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25 6039 250 1177 81 138 16 63 1 64 21 42 21 95.07

Table 6
The comparison of system wide sensitivity results

Algorithm type Normal PCV APC Right bundle branch block Ventricular fusion Fusion Total (%)

NN classifier Two periods 93.70 92.29 90.41 98.05 76.86 77.78 93.05
One period 90.39 86.68 77.40 98.05 72.94 55.56 88.90

ACO based Two periods 95.49 93.33 86.78 97.07 74.51 84.06 94.40
One period 92.00 88.81 64.39 97.56 65.88 59.01 90.50

Table 7
The comparison of computational time

The number of
iteration for each
data set

Time for one
period’s parameters
used (s)

Time for two
period’s parameters
used (s)

Neural
Network
classifier

10000 550 600

ACO 1000 15 18
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Total Sensitivity of an ArrhythmiaðiÞ

¼
Pm

k¼1TP ðk; iÞPm
k¼1TP ðk; iÞ þ

Pm
k¼1FNðk; iÞ � 100 ð11Þ

where TP(k,i) is the number of TP belonging to the ith
arrhythmia in kth test set and m is the number of test sets.
The total sensitivity of the system belonging to all arrhyth-
mia classes is calculated as follows:

Total Sensitivity of the System

¼
Pm

k¼1TTPðkÞPm
k¼1TTP ðkÞ þ

Pm
k¼1TFNðkÞ � 100 ð12Þ

where TTP(k) is the total number of TP in the k. test set.
The simulation results are listed in Tables 2–5.
These are normal sinus rhythm, premature ventricular

contraction (PVC), atrial premature contraction (APC),
right bundle branch block, ventricular fusion and fusion
(see Table 1).

The total result is shown in Table 6 (after mean of 25
trials).

As shown in Table 6 using the ACO algorithm and two
period parameters together improves correctness of QRS
arrhythmias at a higher level.

A comparison of the computational time result is shown
in Table 7 (after mean of 25 trials).

The MSE training error is 10�3 for Neural Network sys-
tem. As shown in Table 7, ACO algorithm outperforms
NN on the same hardware. All of the results have been
stored in a computer which has a 3 GHz P4 processor,
and 1 GB RAM.

In this work, every beat is normalized with preceeding
normal beats of the signal. For this reason, any arrhythmic
beat should have at least two preceeding normal beats. It is
difficult to find out enough training samples for some
arrhythmia types in MITBIH data base that ensure this
condition. In order to overcome this condition, we col-
lected as much normal beats as possible before the arrhyth-
mic beats even they are not so nearby.

Every tested arrhythmia should be learned before by the
classifiers by means of its partners. It is important to note
that; ACO is over YSA, with compared to their detection
time, the stability of the results and the successes of the
classification.
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4. Future discussion

In this work, we have shown that the ECG signals’
analyze results can be improved using the medical sig-
nals’ special properties. Moreover, our results show that
our new approach outperforms other methodologies,
especially for arrhythmias which occur depending on
two or more ECG signal periods. In our study, time
dependent morphological parameters are used as fea-
tures. In future, using different parameter sets such as
wavelet parameters within our approach, correctness of
classification can be improved. Furthermore, the pro-
posed techniques have been developed for ECG signals.
But it can be applied to the different types of data such
as EEG and EMG analysis. Besides, the usage of ACO
in the biomedical area is relatively new and needs further
investigations.

We used RDBMS as a medical signal storage system,
and we show the benefits of RDBMS. We propose a gen-
eric data model for medical signals and use SQL to create
many different types of data sets. In the future, the role of
RDBMS in medical storage area needs further investiga-
tion, and the RDBMS can store and handle different types
of medical signals natively. So the role of RDBMS will be
increased in the medical area.
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