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Jayawan H.B. Wijekoon∗, Piotr Dudek

School of Electrical and Electronic Engineering, The University of Manchester, United Kingdom

Received 8 August 2007; received in revised form 1 December 2007; accepted 14 December 2007

Abstract

A silicon neuron circuit that produces spiking and bursting firing patterns, with biologically plausible spike shape, is presented. The circuit
mimics the behaviour of known classes of cortical neurons: regular spiking (RS), fast spiking (FS), chattering (CH) and intrinsic bursting (IB).
The paper describes the operation of the circuit, provides simulation results, a simplified analytical model, and a phase-plane analysis of its
behaviour. The functionality of the circuit has been verified experimentally. The paper introduces a proof-of-concept analogue integrated circuit,
implemented in a 0.35 µm CMOS technology, and presents preliminary measurement results. The neuron cell provides an area and energy efficient
implementation of the silicon cortical neuron, and could be used as a universal neuron circuit in VLSI neuromorphic networks that closely resemble
the circuits of the cortex.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Cortical microcircuits are capable of performing sophis-
ticated information processing, handling high computational
throughput of sensory perceptions, cognitive processes, con-
trol and decision making with low energy consumption. The
basic components of the cortical microcircuits are neuron cells.
Mimicking their operation in silicon circuits is a subject of on-
going research interest (Bofill-i-Petit & Murray, 2004; Chicca
et al., 2003; Indiveri, Chicca, & Douglas, 2006; Liu & Douglas,
2004; Merolla & Boahen, 2004; Tenore, Etienne-Cummings, &
Lewis, 2004; Vogelstein, Mallik, & Cauwenberghs, 2004). It
is hoped that analogue VLSI (Very Large Scale of Integration)
models of neural circuits will provide very efficient brain emu-
lation engines, and could potentially lead to the development of
novel brain-inspired computer architectures.

It is an important consideration to design a neuron circuit
with the least number of transistors and with least energy
consumption, especially due to the fact such circuits are
I An abbreviated version of some portions of this article appeared in
Wijekoon and Dudek (2007) as part of the IJCNN 2007 Conference
Proceedings, published under IEE copyright.
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intended to be used in large-scale VLSI neural networks that
consist of many thousands of neurons. When considering
presently available neuron models the Integrate-and-Fire
(I&F) neuron model is widely used due to its simplicity—
typical I&F neuron cells use approximately 20 transistors
to implement low power adaptive neuron circuitry (Indiveri,
2003; Schultz & Jabri, 1995). However, I&F neurons exhibit
simple firing behaviour only—this might not be adequate for
the development of VLSI circuitry which would be capable
of imitating the processing of the cortex, which is made
of a large number of more complex non-linear oscillatory
neurons exhibiting a variety of inherent firing patterns. At a
certain level of abstraction in modelling, it is important to
account for this variety. Circuits implementing conductance-
based neuron models (Hodgkin–Huxley type) have been
reported in the literature (Mahowald & Douglas, 1991; Simoni
& DeWeerth, 1999), however, these circuits consume a
large number of transistors. The circuit implementations of
oscillatory neuron models such as FitzHugh–Nagumo (Linares-
Barranco, Sanchez-Sinencio, Rodriguez-Vazquez, & Huertas,
1991), Morris–Lecar (Patel & DeWeerth, 1997), Resonate-and-
Fire (Nakada, Asai, & Hayashi, 2005), Hindmarsh–Rose (Lee
et al., 2004) or Hardware Oregonator (Nakada, Asai, &
Amemiya, 2004) use around 20 transistors. However, all these
models do not accurately reproduce the shapes of the spikes
that have been observed in the biological neurons and are also
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Fig. 1. The proposed cortical neuron circuit.
not capable of generating different types of spiking and bursting
behaviour in a single circuit with tuneable parameters.

This paper elaborates the work published in Wijekoon and
Dudek (2007). It presents a simple CMOS circuit model that
exploits underlying non-linear characteristics of MOSFETs
(Metal-Oxide-Semiconductor Field-Effect Transistors) to im-
plement the neuron using only 14 transistors. The spiking shape
given by the circuit resembles that of real neurons. The circuit
is capable of producing linear and non-linear responses (firing
rate vs input current), with spike frequency adaptation, and a
variety of spiking patterns such as regular spiking, fast spiking,
low threshold spiking, intrinsic bursting, chattering etc.

2. Firing patterns of cortical neurons

Neurons in the cortex are found with great variety
of dendritic morphology, ion channel distribution and
composition. Hence, these neurons exhibit different electrical
behaviour, transforming the same input signals into different
firing patterns. A number of approaches to classifying
neurons based on the electrophysiological recordings have
been introduced (Connors & Gutnick, 1990; Markram, Toledo-
Rodriguez, Wang, & Gupta et al., 2004; Nowak, Azouz,
Sanchez-Vives, Gray, & McCormick, 2003; Petilla Convention,
2005; Toledo-Rodriguez, Gupta, Wang, Wu, & Markram,
2003). Many parameters, such as spike frequency, inter-
spike-interval histogram, spike width, intra-burst frequency,
adaptation index etc. can be used to classify the neurons. The
basic classification used in this paper is given below.

The neuronal response to a step stimulus of supra-
threshold current (post-synaptic input current that causes action
potentials) displays either spiking or bursting firing behaviour.
The spiking neurons are of two types: regular spiking (RS) and
fast spiking (FS) (Nowak et al., 2003). The RS cells exhibit
an accommodation (also known as adaptation) property: in a
response to a supra-threshold current step they fire repeatedly,
with a decreasing frequency, until the firing rate reaches a
stable value, which depends on the input current. The RS
cell class can be further sub-divided into two sub-types,
the weak accommodating cells are called RS1 and strong
accommodating cells are called RS2 (Toledo-Rodriguez et al.,
2003). Examples of morphological cell that behave as RS1 type
are neocortical layer II–VI pyramidal cells. The RS2 type cells
are neocortical layer IV–VI pyramidal cells and spiny stellate
cells (Connors & Gutnick, 1990).

The FS cells fire repetitively at high frequency with little
or negligible accommodation to a sustained supra-threshold
current injection. The action potentials of FS cells exhibit
faster rise rate, fall rate and distinct fast after-hyperpolarisation
(AHP) (Connors & Gutnick, 1990). Some neurons with FS
behaviour commonly found in the cortex are, for example,
neocortical small basket cells, nest basket cells, bitufted cells
and large basket cells (Toledo-Rodriguez et al., 2003).

The basic bursting cell types are chattering (CH) and
intrinsic bursting (IB) (Nowak et al., 2003). The CH neurons
usually display repetitive long clusters of spikes to a sustained
supra-threshold current injection. The IB neurons respond to a
step current injection with a cluster of three to five initial spikes
followed by an AHP, and then by either single spikes or burst at
more or less regular intervals (Toledo-Rodriguez et al., 2003).
These types are observed in sub-populations of bitufted cells,
bipolar cells and Martinotti cells in the neocortex (Connors &
Gutnick, 1990).

3. Proposed circuit

The circuit presented in this paper has been inspired by the
mathematical neuron model proposed by Izhikevich (2003).
That model attempted to provide a biologically realistic spike
shape, using the simplest (from numerical computation point of
view) set of mathematical equations. The required non-linear
oscillatory behaviour is achieved using differential equations of
two state variables and a separate after-spike reset mechanism.
Our aim is to provide a similar, biologically plausible spike
shape, using the simplest possible circuitry of the analogue
VLSI implementation. We thus retain the basic form of the
model formulae (Izhikevich, 2003), but use the non-linear
functions readily available as device characteristics.

The proposed silicon cortical neuron circuit is shown in
Fig. 1. The circuit contains 14 MOSFETs. The two state
variables: “membrane potential” (V ) and “slow variable”
(U ), are represented by voltages across capacitors Cv and
Cu respectively. The circuit consists of three functional
blocks: membrane potential circuitry (transistors M1–M5),
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Fig. 2. Sub-circuits of the silicon cortical neuron: (a) Membrane potential circuit, (b) Slow variable circuit, (c) Comparator circuit.

Fig. 3. Example waveforms of the membrane potential (V ), slow variable (U ) and the reset pulses (VA and VB ).
slow variable circuitry (transistors M1, M2 and M6–M8) and
comparator circuitry (M9–M14) as shown in Fig. 2(a), (b) and
(c) respectively. Fig. 3 shows an example of how the key signals
of the circuit (membrane potential, slow variable potential and
resetting pulses) interact in order to provide an IB spike train.
A qualitative explanation of circuit behaviour is given first,
followed by a more detailed circuit analysis and simulation.

3.1. Membrane circuit

Fig. 2(a) illustrates the membrane potential circuit where the
magnitude of the current through M3, Iv , is controlled by the
membrane potential V . Transistors M2 and M3 form a current
mirror circuit, with input current generated by M1. The current
Iv acts as a positive feedback to generate spikes. The current Il
is the leakage current generated by M4 and the value of Il is
mostly controlled by the slow variable U . The current I is the
post-synaptic input current (excitatory or inhibitory) and it is
supplied by an external synapse. The net sum of these currents
is integrated on the membrane capacitor Cv:

Cv

dV

dt
= Iv − Il + I. (1)
The membrane potential V evolves as given in Eq. (1) above.
In particular, positive input current leads to the increase in
V , which becomes more rapid as V increases, generating the
spike. There is no explicit spike-generation threshold voltage,
however, the process is affected by the slow variable U . The
reset mechanism is implemented as follows. Once the spike is
detected (by the comparator circuit) a pulse on VA is generated.
Consequently transistor M5 opens and membrane voltage is
rapidly hyperpolarised. The transistor M5 size is designed
so that the capacitor CV is fully discharged during the VA
pulse, thus the value of V after-hyperpolarisation is entirely
determined by the value set by the voltage Vc.

3.2. Slow variable circuit

The slow variable circuit is shown in Fig. 2(b). The
magnitude of the current provided by M7, Ivu is determined
by the membrane potential, in a way similar to the membrane
circuit. (Transistors M2, and M7 form a current mirror circuit,
with input current generated by M1). The transistors are scaled
so that the drain current of transistor M7 is lower than that
of M3 and capacitance value of Cu is selected as larger than
that of Cv . This ensures that potential U will vary more slowly
than V . The transistor M6 operates as a non-linear resistor and
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the current through M6, Iu , is a function of the slow variable
potential U . The net sum of these currents is integrated on the
slow variable capacitor Cu :

Cu
dU

dt
= Ivu − Iu . (2)

The slow variable, U evolves as given in Eq. (2)
above. However, following a membrane potential spike, the
comparator generates a pulse, VB (as shown in Fig. 3(d)) to
open the transistor M8. The narrow size of M8 and short
duration of pulse VB ensure that the capacitance Cu is not fully
reset to Vd , but instead an extra amount of charge, controlled
by Vd , is transferred onto Cu . Therefore each membrane spike
provides a quick increase in the slow variable potential (as seen
in Fig. 3(b)) which in turn increases the leakage current of the
membrane potential and slows down the depolarisation after
the spike. This mechanism is used, in particular, to provide the
accommodation property of the spike train.

3.3. Comparator

The comparator circuit is shown in Fig. 2(c). The voltage
Vth is the spike-detection threshold of the membrane potential.
The voltage Vbias controls the bias current in the comparator.
When the membrane potential increases above Vth the voltage
at VB is decreased and VA is increased, generating reset signals.
Due to the limited speed of the comparator and switches the
reset is delayed, so the membrane potential V (in the membrane
potential circuit) continues to increase beyond Vth, up to VDD,

but once VA is increased, the membrane potential is reset to
Vc which is lower than Vth . Consequently, voltages VA and
VB return to their resting voltage level, completing reset pulses
as shown in Fig. 3(c) and (d) respectively. The transistor M14
increases the comparator current during the spike, providing the
required amplitude and duration of the reset pulse VB .

4. Mathematical model

The behaviour of the circuit can be verified via numerical
circuit simulations, which take into account detailed device
models. However, useful insights can be obtained from circuit
analysis using simplified first-order equations. Assuming long
channel MOSFET devices, the following transistor model can
be used:

|Ids | =
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where Ids is the drain current of the transistor, Vgs is the
gate–source voltage, Vds is the drain–source voltage, Vt is the
threshold voltage of the device, W is the gate width, L is the
Fig. 4. Parameter values for Eqs. (4)–(6).

gate length, µ is the charge carrier mobility, and Cox is the gate
oxide capacitance per unit area.

Using the above equation set of the MOSFET, the
mathematical model of the proposed circuit can be deduced as
follows (Wijekoon, 2007)
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If V > Vth then
{

V ← Vc
U ← U + D

(6)

where, α, β and γ depend on Vt , V and U as given in Fig. 4. k =
µ × Cox of the nMOSFETs and Cv and Cu are membrane and
slow variable capacitance values respectively. The (W/L)Mx
is the gate width to length ratio of the MOSFET Mx . I is
the post-synaptic current and Vc and D are externally tuneable
parameters, where D = f (Vd).

It should be noted that the ‘V < U −Vt ’ region of operation
occurs sporadically. Simulations reveal that it only happens
during a silent period after a burst of spikes in a CH type neuron.
The Eq. (4)b provides a very slow increase in membrane voltage
depending less on the variable U than V . This results in a lower
inter-burst frequency. For the purpose of simplicity, however,
Eq. (4)b can also be replaced by Eq. (4)a.

By selecting different values of (W/L) of transistors and
capacitance values of Cu and Cv , diverse neural properties
can be obtained (Wijekoon & Dudek, 2006). In the follow-
ing analysis the following values are used (W/L)M1 = 2.3/1,
(W/L)M2 = 2.3/1, (W/L)M4 = 1.3/22, (W/L)M6 = 1.3/18,
(W/L)M7 = 1.3/14, Cu = 1 µF Cv = 0.1 µF and 0.35 µm
CMOS process parameters: k = 168 µAV−2, Vt = 0.5 V. Us-
ing these values in Eqs. (4)–(6) in the MATLAB simulation en-
vironment, a variety of neural response types were obtained for
various values of parameter VC , as illustrated in Figs. 5 and 6.



528 J.H.B. Wijekoon, P. Dudek / Neural Networks 21 (2008) 524–534
Fig. 5. The firing patterns obtained from the mathematical model derived from the proposed circuit: Vc values used to obtain these waveforms are given in Fig. 6.
Fig. 6. The parameter space of the tuning variable Vc used to obtain different
firing patterns shown in Fig. 5 (Vd = 1.9 V).

5. Phase-plane analysis

A phase plane analysis provides insight into the dynamics
that take place in the circuit and facilitates the identification of
circuit parameters directly related to a property of a spike or
spike trains. The sequence of state points of the two variables
(V, U ) forms a trajectory in the 2D phase plane. The phase
portrait can be drawn in the phase plane using the vector field of
derivatives values dV/dt and dU/dt , showing the direction in
which the state variable evolves for any given state point in the
phase plane. The set of points with dV/dt = 0 (i.e. V -nullcline)
and dU/dt = 0 (i.e. U -nullcline) is important in identifying the
dynamics of the system. The phase portrait, obtained using a
SPICE simulation of the circuit, is shown in Fig. 7. The method
used to obtain this plot is as follows. The comparator sub-circuit
is removed from the circuit and two capacitors, Cu and Cv

are replaced with two voltage-controlled voltage sources, with
voltages U and V respectively. Currents through these sources,
ICu and ICv , correspond to the total currents that would be
charging/discharging the capacitances, as shown by Eqs. (1)
and (2), i.e. they can be used to determine the derivatives of
Fig. 7. Phase portrait of the proposed circuit with a 0.1 µA supra-threshold
input current.

the state variables. Values of ICu and ICv are obtained from
SPICE simulation for different sets of (U, V ). These values are
used to calculate the direction and magnitude of the vectors (log
values of the vector magnitudes are plotted as arrows). As the
phase portrait is obtained without the resetting operation, the
direction of resetting is shown in Fig. 7 using dashed arrows.

5.1. Circuit operation

Consider the case when the circuit is biased so that it
produces the CH firing pattern. When 0.1 µA post-synaptic
current step is applied to the circuit, the phase-plane trajectories
of the CH cell are shown in Fig. 8(a) and the time domain
variations of the membrane potential and the slow variable
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Fig. 8. Generation of the CH firing pattern: (a) State trajectory (b). Membrane potential and respective slow variable potential waveforms.

Fig. 9. State trajectories of (a) CH, (b) IB, (c) FS and (d) RS firing patterns.
potential are shown in Fig. 8(b). These plots have been obtained
using a SPICE simulation of the full cortical neuron circuit.

As seen in Fig. 8(a), initially the membrane potential
increases at a higher rate than that of the slow variable potential.
At first it increases due to the input current, but beyond a
certain value (for example, approximately 0.5 V in the example
shown in the Fig. 8) the circuit’s positive feedback results
in the rapid increase of the membrane potential producing
the rising edge of the spike. When the membrane potential
reaches the spike-detection threshold Vth , this is detected by
the comparator, which activates the resetting circuitry. The
membrane potential reaches its maximum (≈3.2 V) before the
reset pulse discharges the membrane to its resetting voltage (in
this example V c ≈ 0.6 V). As Vc < Vth this also deactivates
the resetting circuit, completing one cycle of spike generation.
The membrane starts increasing its potential again, repeating
the dynamics of voltage building and resetting (this section is
labelled as ‘A’ in Fig. 8(a) and (b)). Each spike also increases
the slow variable potential U and the spiking continues until
the variable U reaches a higher voltage so that the trajectory
intersects the V -nullcline. When the V -nullcline is crossed, the
orbit follows a new dynamic-route (Section ‘B’ in Fig. 8(a) and
(b)) causing a fast discharge of the slow variable (AHP) until
the trajectory reaches the U -nullcline where the rate of increase
in V becomes dominant and significant. Once V becomes
dominant, since the slow variable U is at a lower potential, it
follows similar cycles as the initial Section ‘A’ but starting at a
higher value (Section ‘C’). These dynamics repeat as long as the
supra-threshold current is sustained and the overall dynamics
produce chattering behaviour. The dynamics of the initial phase
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Fig. 10. 3D state trajectories of (a) CH, (b) IB, (c) FS and (d) RS firing patterns.
(Section ‘A’) are responsible for accommodation and the rest
corresponds to the steady state dynamics. In a similar way, the
IB, FS and RS neurons’ trajectories and their dynamics can be
explained from the figures shown in Fig. 9.

The system evolves with two state variables following
Eqs. (4) and (5). However, in a practical circuit, the delayed
resetting mechanism is more complex than the one expressed
by Eq. (6), and can be analysed introducing an additional
state variable. Hence the complete circuit operation can be
represented clearly in a 3D geometry. The trajectories, where
the resetting current (drain current of M5 in Fig. 1) has been
used as the third state variable, are shown in Fig. 10.

6. Results

A VLSI chip containing 202 neurons with various circuit
parameters (transistor sizes and capacitances) has been
designed and fabricated in a 0.35 µm CMOS technology
(CSI from Austria Micro-Systems) to experimentally verify
the variation of neural properties with variation of the circuit
parameters. The simulation and experimental results presented
below are taken from a single neuron cell. The microphotograph
showing the layout of a fabricated cell is shown in Fig. 11. This
cell consumes 70 × 40 µm2 silicon area and contains a neuron
and its control and output buffer circuits.

The post-layout SPICE simulations of the circuit illustrate
various types of cortical neuron firing patterns, obtained by
changing the values of the voltages Vc, and Vd . Fig. 12 shows
different responses of the circuit to a post-synaptic input current
step of 0.1 uA; respective parameters of the tuning voltages Vc
and Vd are provided in Fig. 13. The circuit parameters of this
particular simulation are (W/L)M1 = (2.3/1), (W/L)M2 =

(2.3/1), (W/L)M3 = (2.3/1), (W/L)M4 = (1.3/22),
(W/L)M5 = (5.3/1), (W/L)M6 = (1.3/18), Vth = 1.70 V,
Fig. 11. Microphotograph of the fabricated neuron circuit with the control
circuitry and output buffers.

(W/L)M7 = (1.3/14), (W/L)M8 = (1.3/1), (W/L)M9 =

(1/3.8), (W/L)M10 = (1.8/1.3), (W/L)M11 = (1/4.3),
(W/L)M12 = (2.8/1.3), (W/L)M12 = (1.3/1), (W/L)M13 =

(2.3/3), (W/L)M14 = (2.3/3), Vdd = 3.3 V, Vbias = 0.6 V,
Cv = 0.1 pF and Cu = 1 pF. The typical mean (TM)
technology parameter set was used.

Variations of firing patterns of selected CH, RS2, RS1, IB,
LTS (Bacci, Rudolph, Huguenard, & Prince, 2003) and FS cell
types with the variation of post-synaptic current step value are
shown in Fig. 15.

It should be noted, that the firing patterns of VLSI neurons
are on the microsecond scale rather than the millisecond scale
of biological neurons. For comparative purposes, scaled time
domain is considered in order to adopt biological classifications
methods given in Nowak et al. (2003). The classification of
spiking and bursting firing patterns using inter-spike-interval
histograms obtained from the simulations was presented
in Wijekoon and Dudek (2006). The RS neuron’s spike
frequency and the accommodation (spike frequency adaptation
index) variation with the variation of the post-synaptic input
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Fig. 12. Waveforms of CH, IB, FS, LTS and RS cells. Each plot shows voltage
response of the proposed circuit to a 0.1 µA current step. Parameters Vc and Vd
of each response are given in Fig. 13.
Fig. 13. Values of the parameters Vc and Vd which were used to obtain cortical
neuron firing patterns shown in Figs. 12 and 15.

current were also provided in Wijekoon and Dudek (2006)
which further illustrated the RS neuron’s behavioural similarity
with the biological RS neuron.

It is seen that some fast spiking continues even after the
supra-threshold current is removed (Fig. 15(h) & (j)). However
these cells shut off if the inhibitory post-synaptic current is
provided. Bursts of three to five spikes are not present in IB1
patterns shown in Figs. 12 and 15(e). However, there are other
points in the parameter space in which these bursts of three to
five spikes train can be obtained. This is clearly seen in the
experimental result in Fig. 16(b). Furthermore, by reducing the
rate of slow variable (U ) increase, either by increasing the Cu to
Cv ratio (by changing the capacitance) or by reducing the flow
of current to Cu (by increasing W/L of M6 or/and decreasing
W/L of M7) produces more spikes in the initial burst if more
flexibility is required. However, the flexibility of obtaining IB
characteristics is somewhat limited, as they occur in a narrow
range of tuning voltages, when compared with the other cell
classes.

As seen in Figs. 12 and 15, different known types of cortical
neurons are obtained using different values of Vc and Vd . It
is also possible to obtain each type of neuron with different
characteristics (frequency of spiking and accommodation),
changing the width to length ratio of the transistors M4, M6
and M7 (Wijekoon & Dudek, 2006).

For practical implementations it is important to assess the
robustness of the design with respect to process variability.
As shown in Fig. 14, all firing patterns are obtainable by
appropriate tuning of Vc across four process parameter corners:
worst case power (WP), worst case one (WO), worst case zero
(WZ) and worst case speed (WS).

Preliminary experimental test results obtained from a neuron
cell in the fabricated VLSI chip are shown in Fig. 16. The
waveforms were recorded using a digitising oscilloscope, from
the output of the on-chip amplifier/buffer connected to the
membrane potential of the neuron circuit fabricated with
transistor sizes identical to the ones used in the simulations.
The post-synaptic input current step was applied using an on-
chip synapse (a single pMOS transistor), connected to a pulse
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Fig. 14. Effect of process variation on the value of Vc required to obtain various
behaviours (Vd = 1.9 V).

generator. The voltages Vc and Vd are varied using external
voltage sources, so that main types of characteristic firing
patterns can be observed, as detailed in Fig. 16. Overall the
experiments show a reasonable agreement with the simulations
and it has been verified that the circuit is capable of generating
all types of cortical neuron behaviour.

7. Comparisons of VLSI neurons

In order to provide a comparison between various VLSI
neuron models, the number of MOSFETs used, the possibility
of obtaining different spiking and bursting patterns, the pattern
of the spike shape as compared with biological neurons and the
power consumption of various circuits are listed in Table 1.
Amongst these models, the proposed circuit is not only the
simplest, but also most versatile in terms of its biologically
plausible behaviour, and most energy efficient. It should be
noted, that the power consumption figures depend on the
number of spikes per second, and the technology used to
implement these circuits. Furthermore, comparison is difficult
due to absence of power consumption data in most of the
literature. From the figures shown in Table 1, the I&F neuron
in Indiveri (2003) appears to consume the least power, but its
frequency of spiking is 100 Hz, much lower than the MHz
spiking rate of the proposed circuit. Therefore energy per spike
should be used as a figure of merit, as it provides a fair
comparison of power consumption with respect to neuron’s
computational ability. This gives a 3–15 nJ energy consumption
per spike for the I&F neuron circuitry (Indiveri, 2003) whereas
the proposed compact silicon cortical neuron consumes only
8.5–9.0 pJ/spike.

8. Conclusion

We have presented a CMOS neuron circuit, which is capable
of generating spiking and bursting firing behaviours, with a
biologically plausible spike shape. The circuit behaviour has
been verified via SPICE simulations and analysis of a simplified
analytical model; and then confirmed through experiments with
fabricated CMOS integrated circuits. The single circuit mimics
most of the electrophysiological cortical neuron types and is
capable of producing a variety of different behaviours, with
diversity similar to that of real biological neuron cells. The
behaviour of this universal cortical neuron cell can be adjusted
using two external basing voltages. The circuit is implemented
using 14 MOSFETS only, and consumes a small silicon area.
Fig. 15. Selected spiking and bursting firing pattern behaviour with the increase in step post-synaptic current (a) CH1, (b) CH2, (c) RS2-2, (d) RS1-1, (e) IB1, (f)
IB2, (g) LTS, (h) FS1, (i) FS4 and (j) FS3. The respective Vc and Vd circuit parameters of these plots are given in the parameter space provided in Fig. 13. The plots
shows responses to three increasing steps of dc-currents: 0.05 µA, 0.1 µA, and 0.15 µA except plot (b) is 0.05 µA, 0.1 µA, and 0.12 µA and plot (e) is 0.05 µA, 0.1
µA, and 0.25 µA.
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Table 1
Comparison of the performances of the proposed neuron circuit and other VLSI neuron models

Neuron model Approximate number
of transistors used

Spiking and bursting
(FS, RS,CH & IB)

Shape of the spike Power (µW) Reference

Conductance-based 27–30+ Simple spiking Good 60 (Mahowald & Douglas, 1991)
Integrate-and-fire 18–20 Simple spiking Fair 0.3–1.5 (Indiveri, 2003)
FitzHugh–Nagumo 21 Oscillatory Envelope – (Linares-Barranco et al., 1991)
Morris–Lecar 22 Oscillatory Envelope – (Patel & DeWeerth, 1997)
Resonate-and-Fire 20 Oscillatory Pulse – (Nakada et al., 2005)
Hindmarsh–Rose 90 Bursting (CH) Fair 163.4 (Lee et al., 2004)
Proposed circuit 14 All the types Good 8–40

Fig. 16. Waveforms of experimental firing patterns obtained from a neuron circuit (waveforms are taken after the output buffer): (a) CH when V c = 0.6 V,
V d = 1.9 V, (b) IB when V c = 0.5 V, V d = 2.95 V, (c) FS when V c = 0.45 V, V d = 0 V, (d) RS2 when V c = 0.2 V, V d = 1.9 V, (e) LTS when V c = 0.47 V,
V d = 0.07 V, (f) RS1 when V c = 0.1 V, V d = 0 V. Each plot shows voltage response of the fabricated circuit to a 0.1 µA step current.
Furthermore, the energy consumption per spike is extremely
low, making the circuit suitable for integration in large-
scale massively parallel analogue VLSI systems implementing
cortical microcircuits.
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