
Applied Mathematics and Computation 247 (2014) 266–280
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc

Biogeography-based optimization for optimal job scheduling
in cloud computing
http://dx.doi.org/10.1016/j.amc.2014.09.008
0096-3003/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author at: Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093, USA.
E-mail addresses: kimss@kangwon.ac.kr (S.-S. Kim), benjy86@nate.com (J.-H. Byeon), yuhong@dlou.edu.cn (H. Yu), hongbo@sccn.ucsd.edu (H.
Sung-Soo Kim a, Ji-Hwan Byeon b, Hong Yu c, Hongbo Liu d,e,⇑
a Department of Industrial Engineering, Kangwon National University, Chunchon 200-701, Republic of Korea
b Kaiem Co., LTD., Seoul 152-780, Republic of Korea
c School of Information Engineering, Dalian Ocean University, Dalian 116023, China
d School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
e Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093, USA

a r t i c l e i n f o a b s t r a c t
Keywords:
Biogeography-based optimization (BBO)
Swarm intelligence
Job scheduling
Cloud computing
In cloud computing, the resources are dynamic and their performance or load can change
frequently over time. Cloud resource management needs the functionality for NP-complete
scheduling of jobs. The objective of this paper is to optimize the job scheduling using bio-
geography-based optimization (BBO). BBO migration is used to change existing solutions
and to adapt new good solutions. BBO offers the advantage of adaptive process, which is
developed for binary integer job scheduling problem in cloud computing. Experimental
results show that the performance of the proposed methods are better than the considered
other methods in job scheduling problems.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Cloud computing is a large-scale distributed computing paradigm. It is the evolution of the traditional distributed com-
puting and grid computing [1,2]. The computing resources available in cloud are highly dynamic and possibly heteroge-
neous. It differs from traditional distributed computing [3]. The computational resources are geographically distributed
and are shared among jobs in cloud. Job scheduling is one of the important activities performed in grid and cloud computing
environments, as its objective is to deliver available computing resources as services over networks [4,5]. Job scheduling is
known to be NP-complete [6]. It is drawing researcher’s attention worldwide because of its practical importance and its com-
plexity [7,8]. Unfortunately, scheduling algorithms in traditional distributed computing cannot work well in cloud comput-
ing as its large-scale and dynamic.

Swarm intelligence is an innovative distributed intelligent paradigm whereby the intelligence that emerges in nature
from the organic evolution and the collective behaviors of unsophisticated individuals interacting locally with their environ-
ment is exploited to develop optimization algorithms that identify optimum solutions efficiently in complex search spaces
[9,10]. Within these paradigm algorithms have been developed that mimic organic evolution process or swarming behaviors
observed in swarms of bees, colonies of ants, flocks of birds, and even human social behavior, from which intelligence is seen
to emerge [11–13]. The population based algorithm can be classified into two major categories. The first is evolutionary algo-
rithms, such as genetic algorithm (GA), simulated annealing (SA). The second is swarm intelligent based algorithms, such as
Liu).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2014.09.008&domain=pdf
http://dx.doi.org/10.1016/j.amc.2014.09.008
mailto:kimss@kangwon.ac.kr
mailto:benjy86@nate.com
mailto:yuhong@dlou.edu.cn
mailto:hongbo@sccn.ucsd.edu
http://dx.doi.org/10.1016/j.amc.2014.09.008
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280 267
artificial bee colony (ABC) and particle swarm optimization (PSO). These algorithms have been presented as a means of effi-
ciently scheduling job in traditional distributed computing and grid computing [14,8,15].

Recently, Simon has proposed a novel biology based optimization method called biogeography-based optimization (BBO)
and compared it with other population based optimization methods [16]. Simon has also mentioned that BBO has advanta-
ges for high-dimension problems [17]. We will discuss the related works and methodologies used in earlier studies in Sec-
tion 2. Motivation of our study is to present BBO algorithms for job scheduling in cloud computing. First, we introduce the
standard BBO for job scheduling as BBO1, which generates the valid solutions for initializing population. The BBO2 updates
the solutions if new generated solution is better than old ones after migrating for converged search and mutating for diver-
sified search.

The rest of the paper is organized as follows. Related works about job scheduling in distributed computing, grid comput-
ing and cloud computing environment is provided briefly in Section 2. We discuss the related theoretical foundations in Sec-
tion 3. In Section 4, our proposed BBOs are described in detail. Experiment results and analysis are presented in Section 5 and
some conclusions are provided towards the end.

2. Related work

Job scheduling is mapping a set of job to a set of resources to effectively and efficiently utilize the computing capabilities
and storage capabilities of parallel system, large-scale cluster system, distributed system, grid and cloud. In the past decades,
many researchers focus on job scheduling and a multitude of different algorithms have been proposed to solve this problem
[18–20]. Due to the NP-complete of the problem, no feasible exact solutions are proposed. Therefore the approximation
algorithms that are intent to find a near optimal solution are popular. Heuristic algorithms are suitable approach for solving
NP-complete problem [21,22]. The most popular heuristic algorithms are genetic algorithm (GA) [23], simulated annealing
(SA) [24], Particle swarm optimization (PSO) [25] and Artificial Bee Colony Optimization (ABC) [26].

Genetic algorithms based job scheduling approaches in distributed environments were studied by Hou [27] and Wang
[28]. Hou [27] proposed a genetic algorithm for deterministic model based multiprocessor scheduling problem, in which
the execution time and the relationship between jobs are known. Wang et al. [28] proposed a genetic algorithm based
approach for job scheduling in heterogeneous computing environments, in which the tasks are decomposed into subtasks
that have data dependencies. The proposed algorithm is effective to the static job scheduling. Liu et al. [14] proposed fuzzy
particle swarm optimization and verified the performance of PSO compared with GA and SA. The approach to scheduling jobs
in computational clouds is based on using fuzzy matrices to represent the position and velocity of the particles in PSO for
mapping the job scheduling and the particle. The object function of the scheduling model is to complete the tasks in a
minimum period of time as well as utilizing the resources. The performance of the fuzzy swarm optimization is better than
that of GA and SA. Kim et al. [8] introduced an efficient binary artificial bee colony algorithm as an enhancement of binary
artificial bee colony algorithm for solving the makespan minimization problem in grid computing job scheduling. They dem-
onstrate theoretically that the algorithm converges with a probability of 1 towards the global optimal. However, the job
scheduling in cloud is highly dynamic and massively scalable. The job scheduling algorithms in grid and traditional distrib-
uted systems cannot work well in cloud. It is necessary to explore effective and efficient algorithm for job scheduling in
cloud.

Recently, Simon [16] provided a general presentation of the new optimization method called biogeography-based opti-
mization (BBO). He compares and contrasts BBO with other population-based optimization methods. He also applies BBO
to the real-world problem of sensor selection for aircraft engine health estimation. Simon [29] develops a Markov analysis
of BBO, including the option of elitism. They also show that elitism is not necessary for all problems, but for some problems
it can significantly improve performance. They use elitism in order to retain the best solutions in the population from one
generation to the next. Simon [17] illustrated that BBO is a generalization of a GA/GUR (genetic algorithm with global uni-
form recombination) when immigration rate is 1. The authors of this paper mention that BBO outperforms genetic algo-
rithm with global uniform recombination for all problem sizes and all population sizes. They also mention that BBO has
advantages for high-dimension problems and with large populations and BBO performs significantly better than both
GA with single-point crossover and GA/GUR for lower mutation rates. They found that BBO consistently performs much
better on traveling salesman problem benchmarks, usually performs better on graph coloring benchmarks, and sometimes
performs better on bin packing benchmarks. Ma [30] proposed the blended BBO that generally outperforms standard BBO
on a set of benchmark problems. The offspring are obtained by combining parents’ genes instead of copying a parent’s gene
to a child chromosome in blended crossover. A new solution feature in a BBO solution is comprised of two components that
are the migration of features from another solution and itself. Roy [31] proposed BBO for solving constrained optimal
power flow problems in power systems. In this paper, we present BBO algorithms for job scheduling in cloud computing
effectively.

3. Problem definition

Cloud computing is a novel computation model, in which the resources are shared by using virtualization technolo-
gies over internet [32]. It makes required resources of job manifest in the form of a virtual machine. The open source

268 S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280
virtualization software such as Xen [33] is used for the Cloud providing virtualized computing infrastructure so that
multiple applications can share the same resources and each application is running within a cloud node that is a set
of computational resources with limited capacities. Every application is completely different and is independent and
has no link between each other. The cloud nodes are also independences. Each cloud node is scheduled as an indepen-
dence unit.

The general framework of cloud is shown in Fig. 1. The users submit their jobs to the job broker who maintains the meta-
data of jobs, such as the processing requirements. The cloud nodes manager monitors the cloud nodes, at the same time, the
cloud nodes manager maintains the states of the cloud nodes and the attributes of cloud nodes, such as the calculating speed.
The job manager maintains the states of the jobs and the scheduling information that is calculated by the processing require-
ments of jobs and the calculating speed of cloud nodes. It is usually easy to obtain information about the calculating speed of
the cloud nodes but quite challenging to determine the processing requirements of jobs. To address this problem, the pro-
cessing requirements of jobs are dynamically estimate according to the job lengths from user application specifications or
historical data [14,8]. The job scheduler maps the job to specific time intervals on the cloud nodes according to the state
s of jobs, the states of cloud nodes, the scheduling information of jobs. The job scheduling is to map job to cloud node accord-
ing to the object of the optimization. There are several criteria that are used to evaluate the efficiency and the effective of job
scheduling algorithm. The most popular of which are makespan and flowtime.

In order to formalize the problem, we explain the definition of the terminology relevant to our objective problem. A cloud
node (CN) is a set of computational resources with limited computation speed on the cloud. A job is considered as a single set
of user applications. A schedule is the mapping of the jobs to specific time intervals on the CN. Assumption the job set is
J ¼ fJ1; J2,. . .,Jn}, for any i; jði – jÞ; Ji and Jj are irrelevant and preemption is not allowed. Each job Jj has its corresponding
length (processing requirement). The set of job length is L ¼ fl1; l2; . . . ; ln}, lj is the length of job Jj. The unit of lj

ðj ¼ 1;2; . . . ;nÞ is the number of cycles. The CN set is C ¼ fC1;C2; . . . ;Cm}. Each CN has corresponding calculating speed.
The set of CN speed is S ¼ fs1; s2; . . . ; smg. The unit of si ði ¼ 1;2; . . . ;mÞ is the number of Cycles Per Unit Time (CPUT). si is
the speed of CN Ci. Individual jobs Jj ðj ¼ 1;2; . . . ;nÞ must be processed until completion on a single CN. We define
A ¼ ðai;jÞ ði ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;nÞ as the time it takes CN Ci to complete job Jj.

ai;j ¼
lj
si

ð1Þ
The binary assignment matrix X ¼ ðxi;jÞ ði ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;nÞ is used to denote decision variables.
xi;j ¼
1 if Jj is assigned to cloud node Ci

0 otherwise:

�
ð2Þ
Client 1 Client 2 Client n

 Cloud Node

Client i

Job m anager

Node
m anager

 Cloud Node Cloud Node

Fig. 1. General framework of cloud and job systems.

S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280 269
Because each job can only be executed on one cloud node, the following equation must be satisfied.
Xn

j¼1

xi;j ¼ 1 8i ð3Þ

In order to simplify the model, the setup and transfer times are ignored. The job scheduling is to map Jj ðj ¼ 1;2; . . . ;nÞ to
Ci ði ¼ 1;2; . . . ;mÞ so as to minimize the completion time. For example, we schedule 13 jobs (J1 � J13) on 3 nodes (C1;C2;C3).
The set of CN speed is S ¼ f4;3;2g and the set of job length is L ¼ f6;12;16;20;24;28;30;36;40;42;48;52;60g. In Fig. 2(a),
the jobs J3; J4; J6; J7; J8 and J9 are allocated on cloud node 1; J5; J11 and J13 are allocated on cloud node 2; J1; J2; J10 and J12 are
allocated on cloud node 3. The job execution time a1;3 ¼ 4; a1;4 ¼ 5; a1;6 ¼ 7; a1;7 ¼ 7:5; a1;8 ¼ 9; a1;9 ¼ 10; a2;5 ¼ 8; a2;11 ¼ 16;

a2;13 ¼ 20; a3;1 ¼ 3; a3;2 ¼ 6; a3;10 ¼ 21; a3;12 ¼ 26. For cloud node 1, its single node flowtime
PN

j¼1a1;j ¼ 42:5. The other two
cloud node flowtimes are 44 and 56, respectively. In job scheduling, the longest single node flowtime is called as makespan,
and the sum of all single node flowtimes is the schedule flowtime. So the makespan is 56 and the schedule flowtime is 142.5.
An optimal schedule is illustrated in Fig. 2(b), in which the jobs J3; J7; J8; J10 and J13 are allocated on cloud node 1; J1; J4; J5; J9

and J11 are allocated on cloud node 2; J2; J6 and J12 are allocated on cloud node 3. The job execution time
a1;3 ¼ 4; a1;7 ¼ 7:5; a1;8 ¼ 9; a1;10 ¼ 10:5; a1;13 ¼ 15; a2;1 ¼ 2; a2;4 ¼ 6:6667; a2;5 ¼ 8; a2;9 ¼ 13:3333; a2;11 ¼ 16; a3;2 ¼ 6; a3;6 ¼
14; a3;12 ¼ 26. The single node flowtime of cloud node 1 is

PN
j¼1a1;j ¼ 46. The other two cloud node flowtimes are also 46.

In this optimal schedule solution, the makespan is 46 and the schedule flowtime is 138. Makespan MS is the longest one
among all single node flowtimes, and the schedule flowtime SF is the sum of the finalization time of all jobs. In job shop
scheduling, a weighted aggregation is often used to achieve a balance between these two metrics, that is:
f ¼ w1 �MSþw2 � SF ð4Þ
where w1 and w2 are non-negative weights and w1 þw2 ¼ 1. The weights can either be fixed or adapted dynamically during
the optimization process. Unfortunately, MS� SF in a large-scale cloud environment. In other words, MS would vanish out of
SF unless w1 is much greater than w2. So w1 ¼ 1 and w2 ¼ 0 for job scheduling in cloud computing. An optimal schedule will
be one that optimizes the makespan, as illustrated in Fig. 2(b). Our job scheduling objective is to minimize the makespan in
this article.

For any schedule X, the makespan MS is formalized as follows.
MSðXÞ ¼ max
i21;2;...;m

Xn

j¼1

ai;j � xi;j ð5Þ
The objective of the job scheduling is to search the schedule X that minimizes the MS while satisfying the schedule fea-
sibility constraints. That is to say, the problem is formalized as follows.
Obj : f ðXÞ ¼min MSðXÞ ¼min max
i2f1;2;���;mg

Xn

j¼1

ai;j � xi;j ð6Þ
0 5 10 15 20 25 30 35 40 45 50 55 60

C3

C2

C1

J1 J2 J10 J12

J5 J11 J13

J3 J4 J6 J7 J8 J9

(a)

0 5 10 15 20 25 30 35 40 45 50 55 60

C3

C2

C1

J2 J6 J12

J1 J4 J5 J9 J11

J3 J7 J8 J10 J13

(b)
Fig. 2. An example about makespan and flowtime.

270 S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280
s:t:
xi;j 2 f0;1g ði ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ; nÞ ð7Þ

Xn

j¼1

xi;j ¼ 1 8i ð8Þ

4. Biogeography-based optimization

In this section, we present the biogeography-based optimization (BBO) for the job scheduling problems. Firstly, the basic
BBO is summarized in Algorithm 1. And then our BBO1 is presented as a baseline algorithm in Algorithm 2 to solve the dis-
crete job scheduling problem in cloud computing. We further upgrade the baseline algorithm BBO1 to BBO2 in Algorithm 3.

4.1. Biogeography-based optimization

BBO is a population-based optimization algorithm and maintains its set of solutions from one iteration to the next, relying
on migration to probabilistically adapt those solutions. On the other hand, genetic algorithm and evolutionary strategies are
reproductive strategies and ant colony optimization generates a new set of solutions with each iteration. In BBO approach,
solutions are maintained from one iteration to the next, but each solution is able to learn from its neighbors and adapt itself
as the algorithm progresses [16]. Algorithm 1 is the one generation of standard BBO [17].

Algorithm 1. BBO Algorithm

1: Initialize the BBO parameters.
There are some parameters to set which are n (habitat size), I (maximum immigration rate), E (maximum emigration
rate), e (number of elites to retain for elitism), and mmax (maximum mutation probability).

2: Initialize a random set of habitats, each habitat corresponding to a potential solution the given problem. The
population of habitats is initialized randomly using binary habitat representation. These habitats are not optimal but
a valid. Each job for the feasible habitats is assigned to only one cloud node.

3: For each habitat, map the HSI (habitat suitability index) to the number of species, the immigration rate using Eq. (9),
and the emigration rate using Eq. (10), where sk is the number of species for habitat k, and smax is the maximum
number of species.
kk ¼ I 1� sk

smax

� �
ð9Þ
lk ¼
Esk

smax
ð10Þ
4: Probabilistically use immigration and emigration to modify each non-elite habitat.
5: For each habitat, update the probability of its species count. Then, mutate each non-elite habitat based on its

probability using Eq. (11), where Ps is the probability that a habitat contains exactly s species, and Pmax is the
probability that a habitat contains maximum of species.
m sð Þ ¼ mmax 1� Ps

Pmax

� �
ð11Þ
6: Go to step 3 for the next iteration. This loop can be terminated after a predefined number of generations or after an
acceptable problem solution has been found.
4.2. Improved BBO for Job Scheduling in Cloud Computing

We present the BBO1 in Algorithm 2 for the discrete job scheduling problem in cloud computing by introducing the stan-
dard BBO of Algorithm 1. Each habitat should have only one Cloud node for each job for its feasibility of solution considering
Eq. (3) when initializing the population of solutions which are the two dimensional discrete representation with discrete
decision variables. This feasibility should be followed when generating the neighbors of habitats. BBO1 generates new hab-
itats by migration using randomly selected habitats. BBO1 updates the habitats anytime.

Our BBO1 is improved further into BBO2 in Algorithm 3, which generates new habitats by migration using the best hab-
itats for convergence. The BBO2 also updates the habitats if new generated habitat is better than old one after migration for
converged search and after mutation for diversified search to balance the harmony between exploitation and exploration.

S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280 271
Algorithm 2. BBO1 Algorithm for Job Scheduling in Cloud Computing

1: Initialize the parameters (n; I; E; e;mmax).
2: Initialize a population of habitats (non-optimal but a valid) randomly using binary habitat representation. The

feasible habitats have only one Cloud for each job.
3: cycle 1
4: repeat
5: Produce the new habitats by applying the immigration rate kk and emigration rate lk for each non-elite habitat.

The column of each job should be exchanged in migration (immigration and emigration) for habitat’s feasibility.
6: Evaluate the population using Eqs. (6)–(8).
7: Update the habitats.
8: Produce the new habitats by applying the mutation for each habitat. Select any job column based on mutation rate

mðsÞ and change the assigned Cloud to job randomly. The feasible habitats have only one Cloud for each job.
9: Evaluate the population using Eqs. (6)–(8).
10: Update the habitats.
11: Memorize the best habitat achieved so far.
12: cycle cycleþ 1
13: until cycle ¼ MCN

Algorithm 3. BBO2 Algorithm for Job Scheduling in Cloud Computing

1: Initialize the parameters (n; I; E;mmax).
2: Initialize a population of habitats (non-optimal but a valid) randomly using binary habitat representation. The

feasible habitats have only one Cloud for each job.
3: cycle 1
4: repeat
5: Produce the new habitats by applying the immigration rate kk and emigration rate lk for each non-elite habitat.

These new habitats are immigrated from the best habitats. The column of each job should be exchanged in migration
(immigration and emigration) for habitat’s feasibility.

6: Evaluate the population using Eqs. (6)–(8).
7: Update the habitats if new generated habitat is better than old one.
8: Produce the new habitats by applying the mutation for each habitat. Select any job column based on mutation rate

mðsÞ and change the assigned Cloud node to job randomly. The feasible habitats have only one cloud node for each
job.

9: Evaluate the population using Eqs. (6)–(8).
10: Update the habitats if new generated habitat is better than old one.
11: Memorize the best habitat achieved so far.
12: cycle cycleþ 1
13: until cycle ¼ MCN
5. Experiments and analysis

5.1. Experimental settings

The experiment simulation was run on Intel� Core™2 Duo CPU (2.66 GHz, 2G RAM) in this paper. We have used 7 differ-
ent job scheduling problems P11(3,13), P21(5,100), P31(8,60), P41(10,50), P51(10,100), P61(60,500), and P71(100,1000) which
Liu et al. [34] made. We used three more instances (P12 � P72; P13 � P73; P14 � P74) for every size which Kim et al. [8] made.
Each cloud node has a non-uniform capacity, which is constant along the period of simulation. Each job has also a constant
job length. Job scheduling is dependent on the capacity of could node and the length of the jobs assigned to it. The comple-
tion time of each job would be varying, when the job is assigned to different nodes in different scheduling solutions. Our
objective is to complete all the jobs to minimize the makespan. The specific parameter setting of BBO is described in Table 1
using several experiments.

5.2. Results and discussion

For small scale job scheduling problem, the speeds of 3 cloud nodes are 4, 3, 2 CPUT. The job lengths of 13 jobs are 6, 12,
16, 20, 24, 28, 30, 36, 40, 42, 48, 52, 60 cycles. Each completion time of each job can be different because there is different
capacity for each cloud node and each job has different job length. Fig. 3 is the trend of convergence for job scheduling (3,13)

Table 1
Parameter setting of BBO.

Parameter name Value

Habitat size n 50
Maximum immigration rate I 0.5
Maximum emigration rate E 1
Number of elites to retain for elitism e 1
Maximum mutation probability mmax 0.1

0 20 40 60 80 100
45.5

46

46.5

47

47.5

48

48.5

Generation

M
ak

es
pa

n

BBO1
BBO2

Fig. 3. Convergence trend for (3,13) using BBO1 and BBO2.

272 S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280

using BBO1 and BBO2. The optimal makespan is 46 that the total job length of each cloud node is divided by the speed of
each cloud.

Further, we considered the algorithms for other six (G; J) pairs, i.e. (5,100), (8,60), (10,50), (10,100), (60,500), and
(100,1000). Figs. 4–9 is the trend of convergence for job scheduling problems using BBO1 and BBO2.

The best makespans of job scheduling are 85.536, 41.668, 35.292, and 59.269 for (5,100), (8,60), (10,50), and (10,100)
using BBO1 and 50.942 and 63.114 for (60,500) and (100,1000) using BBO2, respectively. The best solutions are shown in
Tables 2–5 for the (5,100), (8,60), (10,50), and (10,100).

The performance of BBO1 and BBO2 are compared in Tables 6–9. The performance of these two methods are almost the
same for the small and middle size of problems. The performance of BBO2 is much better than that of BBO1 for the large size
job scheduling (60,500) and (100,1000) problems.

Table 10 is the comparison of simulation results using BBO with early study of Liu et al. [34] and Kim et al. [8]. The aver-
age value and standard deviation of makespan using BBO are more competitive comparing to the genetic algorithm (GA),
0 0.5 1 1.5 2 2.5
x 104

85.5

85.6

85.7

85.8

85.9

86

Generation

M
ak

es
pa

n

BBO1
BBO2

Fig. 4. Convergence trend for (5,100) using BBO1 and BBO2.

0 0.5 1 1.5 2 2.5
x 104

41.5

42

42.5

43

43.5

44

Generation

M
ak

es
pa

n

BBO1
BBO2

Fig. 5. Convergence trend for (8,60) using BBO1 and BBO2.

0 0.5 1 1.5 2 2.5
x 104

35

36

37

38

39

40

Generation

M
ak

es
pa

n

BBO1
BBO2

Fig. 6. Convergence trend for (10,50) using BBO1 and BBO2.

0 0.5 1 1.5 2 2.5
x 104

59.2

59.4

59.6

59.8

60

60.2

60.4

Generation

M
ak

es
pa

n

BBO1
BBO2

Fig. 7. Convergence trend for (10,100) using BBO1 and BBO2.

S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280 273

0 0.5 1 1.5 2 2.5
x 104

50

55

60

65

70

75

80

Generation

M
ak

es
pa

n

BBO1
BBO2

Fig. 8. Convergence trend for (60,500) using BBO1 and BBO2.

0 0.5 1 1.5 2 2.5
x 104

60

80

100

120

140

160

180

Generation

M
ak

es
pa

n

BBO1
BBO2

Fig. 9. Convergence trend for (100,1000) using BBO1 and BBO2.

Table 2
Best solutions for job scheduling problem (5,100).

Cloud node Assigned job number dataset

1 7, 9, 10, 13, 14, 19, 23, 36, 41, 45, 47, 54, 56, 61, 62, 70, 83, 84, 97, 98
2 20, 24, 63, 69, 82, 86, 88, 89, 94, 95, 99, 100
3 8, 15, 16, 22, 33, 40, 43, 48, 52, 55, 77, 79, 80, 81, 85, 87, 90,
4 1, 2, 3, 4, 11, 18, 29, 30, 32, 39, 42, 46, 49, 57, 58, 59, 64, 65, 71, 72, 75, 76, 91, 93, 96
5 5, 6, 12, 17, 21, 25, 26, 27, 28, 31, 34, 35, 37, 38, 44, 50, 51, 53, 60, 66, 67, 68, 73, 74, 78, 92

Table 3
Best solutions for job scheduling problem (8,60).

Cloud node Assigned job number dataset

1 5, 6, 14, 17, 19, 28, 29, 42, 43, 53, 59
2 7, 16, 31, 52, 55
3 1, 11, 15, 25, 30, 35, 38, 41, 46, 54
4 4, 23, 24, 32, 33, 34
5 10, 12, 13, 26, 27, 47, 48, 56, 58, 60
6 3, 9, 21, 22, 37, 40, 44, 45, 49, 50
7 2, 8, 20, 39, 51
8 18, 36, 57

274 S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280

Table 4
Best solutions for job scheduling problem (10, 50).

Cloud node Assigned job number dataset

1 1, 11, 18, 26, 42
2 4, 23, 24, 33
3 5, 15, 22, 32, 44, 48, 49
4 3, 19, 28
5 7, 16, 35, 40
6 8, 21, 36, 45
7 2, 31, 34, 39, 46, 50
8 6, 12, 14, 27, 29, 37
9 9, 10, 13, 25, 30, 43

10 17, 20, 38, 41, 47

Table 5
Best solutions for job scheduling problem (10, 100).

Cloud node Assigned job number dataset

1 2, 25, 30, 32, 35, 36, 43, 47, 65, 77, 82, 87, 89, 90, 93
2 4, 5, 10, 18, 24, 31, 59, 64, 67
3 6, 29, 39, 40, 62, 70, 85, 86, 92
4 1, 7, 9, 16, 19, 20, 41, 42, 48, 55, 56, 61, 66, 76, 78, 88
5 13, 22, 27, 28, 44, 46, 60, 72, 81, 83, 84, 91
6 12, 14, 26, 33, 49, 53, 73, 75, 100
7 11, 17, 23, 34, 37
8 21, 38, 45, 54, 58, 69, 71, 74, 79, 94, 98
9 52, 57, 63, 68, 95, 97, 99

10 3, 8, 15, 50, 51, 80, 96

Table 6
Performance comparison of BBO1 and BBO2 using Liu’s dataset [14] (P11 � P71).

Pa Algorithms minb
Sc rd

P11 BBO1 46.000 46.350 0.337
BBO2 46.000 46.250 0.354

P21 BBO1 85.536 85.551 0.014
BBO2 85.545 85.561 0.015

P31 BBO1 41.668 41.770 0.097
BBO2 41.709 41.784 0.055

P41 BBO1 35.292 35.459 0.145
BBO2 35.307 35.534 0.259

P51 BBO1 59.269 59.330 0.084
BBO2 59.302 59.343 0.036

P61 BBO1 58.450 59.030 0.348
BBO2 50.942 51.230 0.287

P71 BBO1 77.614 79.738 1.022
BBO2 63.114 63.335 0.241

a Scheduling problem.
b Minimum.
c Average.
d Standard deviation.

S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280 275

simulated annealing (SA), and particle swarm optimization (PSO) for the job scheduling problems with early study of Liu
et al. [34].

Table 11 is the comparative study of BBO with ABC for the job scheduling problems with early study of Kim et al. [8]. The
average value and standard deviation of makespan using biogeography-based optimization (BBO) are more competitive
comparing to the artificial bee colony (ABC) with less standard deviation for large size job scheduling (60,500) and
(100,1000) problems.

In order to assess the statistical significance of the performance differences between BBO1 and BBO2 as shown in Table 12
or between ABC and BBO as shown in Table 13 the results were evaluated using Mann–Whitney [35] tests by IBM SPSS

Table 7
Performance comparison of BBO1 and BBO2 using (P12 � P72).

Pa Algorithms minb
Sc rd

P12 BBO1 84.750 85.292 0.322
BBO2 84.750 85.033 0.158

P22 BBO1 96.919 96.947 0.023
BBO2 96.933 96.968 0.022

P32 BBO1 35.867 35.908 0.040
BBO2 35.870 35.915 0.030

P42 BBO1 39.879 40.020 0.107
BBO2 39.943 40.112 0.181

P52 BBO1 68.727 68.782 0.039
BBO2 68.695 68.848 0.070

P62 BBO1 53.304 53.847 0.362
BBO2 46.395 46.595 0.135

P72 BBO1 78.232 79.775 0.959
BBO2 63.149 63.357 0.164

a Scheduling problem.
b Minimum.
c Average.
d Standard deviation.

Table 8
Performance comparison of BBO1 and BBO2 using (P13 � P73).

Pa Algorithms minb
Sc rd

P13 BBO1 77.250 77.742 0.313
BBO2 77.250 77.400 0.156

P23 BBO1 99.360 99.372 0.013
BBO2 99.393 99.403 0.009

P33 BBO1 35.424 35.485 0.047
BBO2 35.467 35.518 0.041

P43 BBO1 38.287 38.486 0.164
BBO2 38.399 38.524 0.151

P53 BBO1 63.233 63.352 0.139
BBO2 63.329 63.390 0.053

P63 BBO1 54.107 55.221 0.537
BBO2 47.621 47.973 0.267

P73 BBO1 81.147 82.422 1.041
BBO2 65.315 65.682 0.282

a Scheduling problem.
b Minimum.
c Average.
d Standard deviation.

276 S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280

software to make a decision to accept or reject a hypothesis. The Mann–Whitney test is usually used to evaluate two
different data populations, such as performance results from two separate algorithms [36,37].

� Mann–Whitney Test for Table 12:
– H0 : There is no performance difference between BBO1 and BBO2.
– H1 : There is a performance difference between BBO1 and BBO2.
� Mann–Whitney Test for Table 13:
– H0 : There is no performance difference between ABC and BBO.
– H1 : There is a performance difference between ABC and BBO.

The results of the non-parametric tests for a 95% significance level (p < 0:05) are shown in Table 12. These indicate that
there are no statistically significant performance difference between BBO1 and BBO2 for the P11; P21; P31, P41, and P51. There
are statistically significant differences in performance between BBO1 and BBO2 for problems P61 and P71 as shown in

S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280 277
Table 12. BBO2 is much better than BBO1 for P61 and P71. We have almost the same results for the P12 � P72; P13 � P73, and
P14 � P74. The overall trend of differences become significant as job scheduling problems increase in sizes. We also do the
statistical tests to compare the performance difference of our proposed BBO with artificial bee colony (ABC) proposed by
Kim et al. [8] as shown in Table 13. There are statistically significant performance difference between ABC and BBO. ABC
is slightly better than BBO for P11; P21, P31; P41, and P51. But, BBO is much better than ABC for P61 and P71.

In the BBO paradigm we find a habitat (solution) which represents a position in the problem space. Since the positions are
in general different, the habitat group has the capability to explore the space searching for better solutions. The term Diver-
sity is introduced to quantify the diversity of the habitat group and is defined as follows:

Table 1
Compar

Pa

P11

P21

P31

P41

P51

P61

P71

a Sch
b Ave
c Sta
Diversity ¼ 1
n

Xn

i¼1

ffi
1
d

Xd

j¼1

ðxij � �xjÞ2
vuut ð12Þ
Here, n is the habitat group size, d is the dimension of the search space (coordinates of the food sources), �x is the centre
point of the habitat, and its jth dimension is denoted by �xj. Fig. 10 shows the typical evolution of habitat diversity for each of
the two algorithms during an optimization run. In the BBO2 algorithm the diversity undergoes a fluctuating decrease phase
before stabilizing at a very low value after 500 generations. Two different phases can be observed with the BBO1 algorithm.
The diversity decreases, but stabilizes after 200 generations at a low state of diversity. Considering Fig. 10, it can be seen that
our algorithms initially provide large habitat group diversity facilitating exploration of the global solution space and then
focuses on the current best solution with a refining step to achieve local exploitation. Experimental results illustrate that
the algorithm achieves the best balance between global exploration and local exploitation.
Table 9
Performance comparison of BBO1 and BBO2 using (P14 � P74).

Pa Algorithms minb
Sc rd

P14 BBO1 66.250 66.625 0.315
BBO2 66.250 66.383 0.105

P24 BBO1 99.545 99.562 0.019
BBO2 99.560 99.571 0.011

P34 BBO1 38.632 38.711 0.048
BBO2 38.686 38.728 0.029

P44 BBO1 39.290 39.501 0.206
BBO2 39.393 39.493 0.065

P54 BBO1 70.245 70.322 0.074
BBO2 70.365 70.411 0.038

P64 BBO1 58.223 58.529 0.394
BBO2 50.522 50.822 0.369

P74 BBO1 80.104 81.157 0.604
BBO2 64.199 64.620 0.229

a Scheduling problem.
b Minimum.
c Average.
d Standard deviation.

0
ative study of BBO with GA, SA and PSO of Liu et al. [14] and ABC of Kim et al. [8].

GA SA PSO ABC best BBO best

Sb rc
Sb rc

Sb rc
Sb rc

Sb rc

47.117 0.770 46.600 0.486 46.267 0.286 46.000 0.000 46.250 0.354
85.743 0.622 90.734 6.383 84.054 0.503 85.530 0.001 85.551 0.014
42.927 0.415 55.459 2.061 41.949 0.694 41.598 0.003 41.770 0.097
38.043 0.661 41.789 8.077 37.667 0.607 35.190 0.009 35.459 0.145
63.149 0.373 70.549 7.414 62.033 0.881 59.182 0.004 59.330 0.084
55.587 0.607 65.489 7.046 54.794 0.852 52.946 0.665 51.230 0.287
73.105 0.369 83.762 7.103 72.970 0.606 70.660 4.482 63.335 0.241

eduling problem.
rage.

ndard deviation.

Table 11
Comparative study of BBO with ABC of Kim et al. [8] for the job scheduling problems.

Pa Algorithms

ABC BBO

ABC best minb
Sc rd BBO best minb

Sc rd

P11 BABC, EBABC1, EBABC2 46.000 46.000 0.000 BBO2 46.000 46.250 0.354
P12 BABC, EBABC2 84.750 84.775 0.079 BBO2 84.750 85.033 0.158
P13 BABC 77.250 77.250 0.000 BBO2 77.250 77.400 0.156
P14 BABC, EBABC2 66.250 66.250 0.000 BBO2 66.250 66.383 0.105

P21 EBABC2 85.529 85.530 0.001 BBO1 85.536 85.551 0.014
P22 EBABC2 96.914 96.915 0.001 BBO1 96.919 96.947 0.023
P23 EBABC2 99.355 99.356 0.001 BBO1 99.360 99.372 0.013
P24 EBABC2 99.536 99.537 0.001 BBO1 99.545 99.562 0.018

P31 EBABC2 41.592 41.598 0.003 BBO1 41.668 41.770 0.097
P32 EBABC2 35.817 35.822 0.005 BBO1 35.867 35.908 0.040
P33 EBABC2 35.383 35.388 0.003 BBO1 35.424 35.485 0.047
P34 EBABC1 38.571 38.577 0.004 BBO1 38.632 38.711 0.048

P41 EBABC2 35.174 35.190 0.009 BBO1 35.292 35.459 0.145
P42 EBABC2 39.674 39.687 0.014 BBO1 39.879 40.020 0.107
P43 EBABC1 38.124 38.139 0.013 BBO1 38.287 38.486 0.164
P44 EBABC2 38.983 39.007 0.015 BBO2 39.393 39.493 0.065

P51 EBABC2 59.175 59.182 0.004 BBO1 59.269 59.330 0.084
P52 EBABC2 68.634 68.638 0.004 BBO1 68.727 68.782 0.039
P53 EBABC1 63.165 63.173 0.006 BBO1 63.233 63.351 0.139
P54 EBABC1 70.096 70.106 0.006 BBO1 70.245 70.322 0.074

P61 EBABC2 52.131 52.946 0.665 BBO2 50.942 51.230 0.287
P62 EBABC2 47.285 48.451 1.158 BBO2 46.395 46.595 0.135
P63 EBABC2 48.492 49.688 0.895 BBO2 47.621 47.973 0.267
P64 EBABC2 51.414 53.121 0.895 BBO2 50.522 50.822 0.369

P71 EBABC1 65.109 70.660 4.482 BBO2 63.114 63.335 0.241
P72 EBABC1 68.227 70.503 1.907 BBO2 63.149 63.357 0.164
P73 EBABC1 69.561 74.360 3.811 BBO2 65.315 65.682 0.282
P74 EBABC1 69.054 72.430 3.065 BBO2 64.199 64.619 0.229

a Scheduling problem.
b Minimum.
c Average.
d Standard deviation.

Table 12
Difference of BBO1 and BBO2 using Mann–Whitney test.

Pa Group Result

P11 BBO1, BBO2 Accept H0

P21 BBO1, BBO2 Accept H0

P31 BBO1, BBO2 Accept H0

P41 BBO1, BBO2 Accept H0

P51 BBO1, BBO2 Accept H0

P61 BBO1, BBO2 Accept H1, BBO1 > BBO2
P71 BBO1, BBO2 Accept H1, BBO1 > BBO2

a Scheduling problem.

Table 13
Performance difference of ABC, BBO using Mann–Whitney test.

Pa Group Result

P11 EBABC2, BBO2 Accept H1, EBABC2 < BBO2
P21 EBABC2, BBO1 Accept H1, EBABC2 < BBO1
P31 EBABC2, BBO1 Accept H1, EBABC2 < BBO1
P41 EBABC2, BBO1 Accept H1, EBABC2 < BBO1
P51 EBABC2, BBO1 Accept H1, EBABC2 < BBO1
P61 EBABC2, BBO2 Accept H1, EBABC2 > BBO2
P71 EBABC1, BBO2 Accept H1, EBABC1 > BBO2

a Scheduling problem.

278 S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Generation

D
iv

er
si

ty

BBO1
BBO2

Fig. 10. Comparison of the evolution of habitat diversity.

S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280 279

6. Conclusions

The biogeography-based optimization (BBO) is relatively new and has the advantage of adapting new good solutions. This
BBO adaptive process is compared to the genetic algorithm and other heuristic algorithms which are reproductive process.
The BBO1 is developed using standard BBO to find the optimal job schedule of cloud computing in this paper. We also
develop BBO2. The BBO2 produces the new habitats by applying the immigration and emigration for each non-elite habitat
from the several best habitats and updates the habitats if new generated habitat is better than old one. The simulation results
of BBO1 and BBO2 is compared for 4 different data sets for 7 different sizes. The BBO1 is slightly better than BBO2 for the
small and middle sizes of problems. But, the BBO2 is much better than BBO1 for the large sizes of problems. The performance
of BBO is much better than those of genetic algorithm, simulated annealing, and particle swarm optimization when the prob-
lems are large. ABC is slightly better than BBO in the middle sizes of problems. But, BBO is better than ABC in the large sizes
of problems.

Acknowledgments

The authors would like to thank Professor Ajith Abraham for his comments and discussions on the earlier versions
of this paper. This study is partly supported by Kangwon National University, the National Natural Science Foundation of
China (Grant Nos. 61173035, 61472058) and the Program for New Century Excellent Talents in University (Grant No.
NCET-11-0861).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/
j.amc.2014.09.008.

References

[1] Y. Wei, M. Blake, Service-oriented computing and cloud computing: challenges and opportunities, IEEE Internet Comput. 14 (6) (2010) 72–75.
[2] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid computing 360-degree compared, in: Proceedings of the 2008 Grid Computing Environments

Workshop, IEEE, 2008, pp. 1–10.
[3] B. Xu, C. Zhao, E. Hu, B. Hu, Job scheduling algorithm based on Berger model in cloud environment, Adv. Eng. Software 42 (7) (2011) 419–425.
[4] S. Ostermann, R. Prodan, T. Fahringer, Extending grids with cloud resource management for scientific computing, in: Proceedings of 10th IEEE/ACM

International Conference on Grid Computing, IEEE, 2009, pp. 42–49.
[5] L.F. Bittencourt, E.R. Madeira, N.L. Da Fonseca, Scheduling in hybrid clouds, IEEE Commun. Mag. 50 (9) (2012) 42–47.
[6] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman & Co., 1979.
[7] J. Wu, X. Xu, P. Zhang, C. Liu, A novel multi-agent reinforcement learning approach for job scheduling in grid computing, Future Gener. Comput. Syst. 27

(5) (2011) 430–439.
[8] S. Kim, J. Byeon, H. Liu, A. Abraham, S. Mcloone, Optimal job scheduling of grid computing using efficient binary artificial bee colony, Soft Comput. 17

(5) (2013) 867–882.
[9] M. Clerc, Particle Swarm Optimization, Wiley-ISTE, 2006.

[10] A. Yadav, K. Deep, Shrinking hypersphere based trajectory of particles in PSO, Appl. Math. Comput. 220 (2013) 246–267.
[11] H. Liu, A. Abraham, M. Clerc, Chaotic dynamic characteristics in swarm intelligence, Appl. Soft Comput. 7 (3) (2007) 1019–1026.
[12] S. Krause, R. James, J.J. Faria, G.D. Ruxton, J. Krause, Swarm intelligence in humans: diversity can trump ability, Animal Behaviour 81 (5) (2011) 941–

948.
[13] E. Cuevas, F. Sención-Echauri, D. Zaldivar, M. Pérez-Cisneros, Multi-circle detection on images using artificial bee colony (ABC) optimization, Soft

Comput. 16 (2) (2012) 1–16.

http://dx.doi.org/10.1016/j.amc.2014.09.008
http://dx.doi.org/10.1016/j.amc.2014.09.008
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0005
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0010
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0010
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0010
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0015
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0020
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0020
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0020
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0025
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0030
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0030
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0035
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0035
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0040
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0040
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0045
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0045
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0050
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0055
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0060
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0060
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0065
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0065

280 S.-S. Kim et al. / Applied Mathematics and Computation 247 (2014) 266–280
[14] H. Liu, A. Abraham, A. Hassanien, Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm, Future Gener. Comput.
Syst. 26 (8) (2010) 1336–1343.

[15] L. Babu, P.V. Krishna, Honey bee behavior inspired load balancing of tasks in cloud computing environments, Appl. Soft Comput. 13 (5) (2013) 2292–
2303.

[16] D. Simon, Biogeography-based optimization, IEEE Trans. Evol. Comput. 12 (6) (2008) 702–713.
[17] D. Simon, R. Rarick, M. Ergezer, D. Du, Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms, Inf. Sci. 181

(7) (2011) 1224–1248.
[18] P. Brucker, Scheduling Algorithms, Springer Verlag, 2007.
[19] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Springer Verlag, 2012.
[20] D.-M. Lei, Minimizing makespan for scheduling stochastic job shop with random breakdown, Appl. Math. Comput. 218 (24) (2012) 11851–11858.
[21] S. Song, K. Hwang, Y. Kwok, et al, Risk-resilient heuristics and genetic algorithms for security-assured grid job scheduling, IEEE Trans. Comput. 55 (6)

(2006) 703.
[22] A. Tchernykh, U. Schwiegelshohn, R. Yahyapour, N. Kuzjurin, On-line hierarchical job scheduling on grids with admissible allocation, J. Scheduling 13

(5) (2010) 545–552.
[23] S. Chung, F. Chan, H. Chan, A modified genetic algorithm approach for scheduling of perfect maintenance in distributed production scheduling, Eng.

Appl. Artif. Intell. 22 (7) (2009) 1005–1014.
[24] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by simulated annealing, Science 220 (4598) (1983) 671.
[25] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE Conference on Neural Networks, IEEE, 1995, pp. 1942–1948.
[26] D. Karaboga, An idea based on honey bee swarm for numerical optimization, Techn. Rep. TR06, Erciyes Univ. Press, Erciyes.
[27] E. Hou, N. Ansari, H. Ren, A genetic algorithm for multiprocessor scheduling, IEEE Trans. Parallel Distrib. Syst. 5 (2) (1994) 113–120.
[28] L. Wang, H.J. Siegel, V.P. Roychowdhury, A.A. Maciejewski, Task matching and scheduling in heterogeneous computing environments using a genetic-

algorithm-based approach, J. Parallel Distrib. Comput. 47 (1) (1997) 8–22.
[29] D. Simon, M. Ergezer, D. Du, Population distributions in biogeography-based optimization algorithms with elitism, Proceedings of IEEE International

Conference on Systems, Man and Cybernetics, IEEE, 2009.
[30] H. Ma, D. Simon, Blended biogeography-based optimization for constrained optimization, Eng. Appl. Artif. Intell. 24 (3) (2011) 517–525.
[31] P. Roy, S. Ghoshal, S. Thakur, Biogeography based optimization for multi-constraint optimal power flow with emission and non-smooth cost function,

Expert Syst. Appl. 37 (12) (2010) 8221–8228.
[32] L.M. Vaquero, L. Rodero-Merino, J. Caceres, M. Lindner, A break in the clouds: towards a cloud definition, ACM SIGCOMM Comput. Commun. Rev. 39 (1)

(2008) 50–55.
[33] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A. Warfield, Xen and the art of virtualization, ACM SIGOPS Operating

Syst. Rev. 37 (5) (2003) 164–177.
[34] H. Liu, A. Abraham, V. Snášel, S. McLoone, Swarm scheduling approaches for work-flow applications with security constraints in distributed data-

intensive computing environments, Inf. Sci. 192 (2012) 228–243.
[35] H. Mann, D. Whitney, On a test of whether one of two random variables is stochastically larger than the other, Ann. Math. Stat. 18 (1) (1947) 50–60.
[36] R. Lahoz-Beltra, C. Perales-Gravan, A survey of nonparametric tests for the statistical analysis of evolutionary computational experiments, Int. J. Inf.

Theor. Appl. 17 (1) (2010) 41–61.
[37] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary

and swarm intelligence algorithms, Swarm Evol. Comput. 1 (2011) 3–18.

http://refhub.elsevier.com/S0096-3003(14)01224-7/h0070
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0070
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0075
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0075
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0080
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0085
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0085
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0090
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0090
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0095
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0095
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0100
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0105
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0105
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0110
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0110
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0115
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0115
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0120
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0125
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0125
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0135
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0140
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0140
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0145
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0145
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0145
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0150
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0155
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0155
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0160
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0160
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0165
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0165
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0170
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0170
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0175
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0180
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0180
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0185
http://refhub.elsevier.com/S0096-3003(14)01224-7/h0185

	Biogeography-based optimization for optimal job scheduling in cloud computing
	1 Introduction
	2 Related work
	3 Problem definition
	4 Biogeography-based optimization
	4.1 Biogeography-based optimization
	4.2 Improved BBO for Job Scheduling in Cloud Computing

	5 Experiments and analysis
	5.1 Experimental settings
	5.2 Results and discussion

	6 Conclusions
	Acknowledgments
	Appendix A Supplementary data
	References

