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An Online Learning Approach to
Occlusion Boundary Detection

Natan Jacobson, Student Member, IEEE, Yoav Freund, and Truong Q. Nguyen, Fellow, IEEE

Abstract—We propose a novel online learning-based frame-
work for occlusion boundary detection in video sequences. This
approach does not require any prior training and instead “learns”
occlusion boundaries by updating a set of weights for the online
learning Hedge algorithm at each frame instance. Whereas pre-
vious training-based methods perform well only on data similar to
the trained examples, the proposed method is well suited for any
video sequence. We demonstrate the performance of the proposed
detector both for the CMU data set, which includes hand-labeled
occlusion boundaries, and for a novel video sequence. In addition
to occlusion boundary detection, the proposed algorithm is ca-
pable of classifying occlusion boundaries by angle and by whether
the occluding object is covering or uncovering the background.

Index Terms—Edge detection, motion estimation, occlusion
boundaries, occlusion boundary detection, online learning.

I. INTRODUCTION

D IGITAL VIDEO has become ubiquitous over the last
two decades. Demand is growing at an exceptional rate

for mobile video, high-quality digital television, and even 3-D
broadcast and movies. This demand has necessitated significant
research in the fields of compression, motion-compensated
interpolation, and disparity estimation. Fundamental to each
of these research topics is the concept of occlusion boundary
detection, where an occlusion is the region between two over-
lapping objects with disparate motion. Detecting these events
is crucial because many of the video processing assumptions
fail at occlusion boundaries. For example, the smoothness
constraint of disparity estimation does not hold true across an
occlusion boundary. However, if the occlusion boundary is
detected, then the smoothness term can be set to zero at these
locations.

Occlusions are omnipresent and are crucial for visual under-
standing in a 3-D world [1]. By strict definition, an occlusion
event occurs whenever one object is covered or uncovered by an-
other object that is spatially closer to the observer. The observer
may be a human, a still camera, or a video camera. For humans,
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Fig. 1. Occlusions evident in Tsukuba stereo image pair. The lampshade oc-
cludes pixels in the left view, which are visible in the right view. Occlusion
boundary in the selected window is highlighted in blue.

occlusion is crucial in order to infer the relative depth of objects
in the world. In fact, occlusion boundaries play a central role in
human stereopsis [2], which determines how the human visual
system perceives three dimensions from stereo vision.

The distinction between occlusion boundaries and appear-
ance edges is an important one. Here, an appearance edge refers
to the typical output of an edge detection algorithm (e.g., Canny
edge detector [3]) on luminance or color image data, whereas an
occlusion boundary is explicitly created by objects covering or
uncovering one another. An example of an occlusion boundary
from the Tsukuba stereo image pair is demonstrated in Fig. 1.
In this stereo pair, the lampshade in the foreground occludes the
bookcase in the background. Whereas occlusion boundaries typ-
ically occur at appearance edges, the detection of an appearance
edge is in no way sufficient to guarantee an occlusion boundary.
For example, the significant edge on the nose of the ceramic bust
in Fig. 1 is not an occlusion boundary; rather, it is due to the
lighting of the scene. Likewise, edges in the motion field may
be an indicator that an occlusion boundary is present; however,
no guarantee is made. It is, however, evident that valuable infor-
mation is provided by both the appearance cue and the motion
field. In this paper, both cues will be considered. To calculate the
motion cue, an off-the-shelf dense optical flow method is used
[4]. This motion information is combined with pixel-domain in-
formation in an online learning framework.

The online learning framework is based on the idea of a panel
of experts, where each expert is proficient at a distinct task. Each
time a decision needs to be made, each expert is polled, and a
loss is calculated based on how correct their prediction turned
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out to be. Over time, the best expert for each task will become
evident. In this paper, the task of each expert is to detect a certain
type of occlusion event, and the quality of each expert’s detec-
tion is measured using a loss function in the pixel domain (sim-
ilar to a standard distortion measure). At a specific location, an
occlusion boundary is detected based on the best prediction over
all experts. Contrary to all competing approaches, the proposed
method does not require any training; rather, the classification
of occlusion boundaries is based on the relative weighting of the
experts, which occurs online.

This paper is organized as follows: Previous methods for the
detection of occlusion boundaries are described in Section II.
The underlying concepts of online learning are presented in
Section III. Next, our algorithm is presented in Section IV along
with a description of the feature set and experts used. Finally, re-
sults are presented in Section V, and this paper is concluded in
Section VI.

II. PREVIOUS WORK

The presence of occlusions in the image and video processing
literature is astoundingly diverse. Research is conducted both to
determine occlusion boundaries explicitly and to use this infor-
mation implicitly in the pursuit of other results.

Implicit determination of occlusion boundaries has been cited
in applications of object tracking [5], segmentation [6]–[8], and
disparity estimation [9]–[11]. In all of these cases, occlusions
are implicitly handled due to the information they provide about
the scene. Two important concepts related to disparity estima-
tion and pertinent to these works are the uniqueness and or-
dering constraints [11]. The uniqueness constraint states that
features in the left and right images are in one-to-one correspon-
dence. This concept is naturally extended to monocular video
as objects generally do not appear or disappear during a single
frame period. The ordering constraint states that the ordering of
two objects in the left view is maintained in the right view. Be-
cause these concepts apply to objects in a stereo pair or video
sequence, they must also apply to interactions between objects.
For this reason, the two constraints must also apply for occlu-
sion detection.

A number of methods have been applied to the problem of ex-
plicitly determining occlusion boundaries. One early approach
determines occlusion boundaries for a set of known object types
on a small pixel grid [12]. This method showed promising per-
formance assuming no noise and a set of a priori known objects.
Later, occlusion detection was combined with motion estima-
tion to classify occluded areas based on a photometric mismatch
between frames [13]. The drawback of this method is that any er-
rors in the motion vector field (MVF) are likely to cause false de-
tection of occlusion boundaries. Around the turn of the 21st cen-
tury, learning-based research was conducted, which used two
separate models to describe scene motion, i.e., a two-param-
eter translational model for regular motion and a six-param-
eter generative model for occlusion boundaries [14]. A graph-
cuts approach has been also considered in which the uniqueness
constraint is utilized to guarantee proper occlusion handling
[15]. In a separate approach, occlusion events are determined

Fig. 2. Notation used for motion estimation. ����� �� represents the motion
field between frames � and � .

by the presence of T-junctions in a spatiotemporal volume cre-
ated from a video sequence [16]. Geometric approaches have
been also considered, analyzing the motion field alone to deter-
mine the presence of occlusions [17]. A more recent direction
makes use of local appearance cues as well as motion infor-
mation to detect occlusion boundaries [18], [19]. It is demon-
strated that the combination of cues performs better than any
cue independently used. In a separate project, researchers have
applied a probabilistic framework for considering occlusion in-
formation across multiple frames [20]. The drawback of these
learning-based methods is that, in order to obtain good detection
performance, significant training data must be available. Addi-
tionally, this training data must be very similar in content to the
test data in order for the trained features to contain sufficient
discriminating power.

Additional motivation for this paper was obtained from the
excellent “Particle Video” research paper [21]. In this work,
motion estimation is posed as a particle-tracking problem using
particle appearance and interparticle distortion. Here, a signif-
icant improvement is demonstrated over standard optical flow
methods.

III. ONLINE LEARNING

We pose occlusion boundary detection as a problem of predic-
tion over a video sequence. This formulation is well suited for
video as the correctness of each prediction at frame will be
revealed by subsequent frame . The proposed framework
is based on the Hedge online learning algorithm [22]. Rather
than requiring a training stage, as most conventional learning
algorithms do, the Hedge algorithm may be run against a video
sequence without seeing any previous input. The Hedge algo-
rithm is based on a panel of experts, where each expert is tuned
to perform a simple decision at each frame instance. Decisions
are made using the MVF and pixel-domain information. The
MVF is computed using an optical flow technique [4]. The flow
field between frames and will be denoted as ,
as shown in Fig. 2. The correctness of each decision is then
measured using a loss function. Experts are weighted based on
their loss functions such that good performance (low loss) is
rewarded with higher weighting. Finally, the Hedge algorithm
makes its prediction based on the weighting of all experts. The
flexibility of the algorithm allows us to choose the number of
experts and to determine how each expert makes its decision. In
this paper, the experts have been designed such that each one is
tuned to detect a specific type of occlusion boundary. As will
be presented, the loss function is measured using the sum of ab-
solute differences (SAD) between predicted image patches and
image patches in the current frame.
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TABLE I
VARIABLE LIST

A. Pixels and Particles

In this paper, we distinguish between pixels and particles to
be as explicit as possible. Whereas a pixel has the standard
meaning, we use the term particle to refer to a picture ele-
ment that will be tracked through the video sequence and will
maintain certain properties. In the first time step of the video
sequence, a large number of particles will be initialized such
that one particle exists for each pixel in the image, minus the
boundary. The online learning framework will then be applied
to each particle, which will be classified based on the predic-
tion and loss over the set of experts. Between time steps, each
particle will be propagated based on the calculated optical flow.
In this way, each particle maintains its history, and the classifi-
cation will gain confidence over time. Special care is taken to
ensure the particle tracking grid remains dense between time
steps, as is discussed in Section IV.

B. Notation

The following notation is used for all further discussion in-
volving Hedge and the proposed algorithm. Subscript will be
used to index the set of experts, whereas subscript is used to
index the set of particles. The time step is denoted by superscript
. For example, variable will refer to the weighting of ex-

pert at time-step for particle . A full listing of variables is
presented in Table I.

Further description and analysis of the experts is presented in
the following section. A complete description of the proposed
algorithm is then provided in Section IV.

C. Description of Experts

The goal of each expert is to detect a specific type of oc-
clusion boundary. In the online learning framework, this is ac-
complished by each expert predicting content in the subsequent
frame congruous with its specific occlusion boundary type. Pa-
rameters must be defined so that each occlusion boundary type
is explicitly stated. Once this is accomplished, the calculation
of loss can be defined, ultimately leading to the proposed algo-
rithm for occlusion boundary detection.

Fig. 3. Occlusion type parameter � for the angle of the occlusion boundary.
For each angle, the foreground object at the occlusion boundary can be either
covering or uncovering the background. Labels 0 and 1 are used to make explicit
the two sides of the occlusion boundary.

Fig. 4. Covering �� � �� and uncovering �� � �� occlusion boundaries for
frame � . Both boundaries are vertical �� � ���� with the tree in the fore-
ground. The expert for the covering occlusion boundary uses frame � as
reference with motion field ����	 ����, whereas the expert for the uncovering
case uses frame � with motion field ����	 � � ��.

Each expert is associated with two parameters that determine
its prediction. These parameters are the angle of the occlusion
boundary and whether the foreground object is covering or un-
covering the background. The first parameter is illustrated in
Fig. 3, where the angle of occlusion boundary is in set

. Note that additional angles may be
included if the user desires a larger set of experts. The next pa-
rameter distinguishes between a covering and an uncovering oc-
clusion event, as illustrated in Fig. 4. Parameter denotes
the foreground object covering the background, whereas
denotes the foreground object uncovering the background. To
make these concepts more concrete, a series of occlusion types
are defined, where each is fixed to a specific set of parameters.
Denote an occlusion type as , where parameters and

are as described here. For example, the two experts in Fig. 4
detect a vertical covering occlusion type and a
vertical uncovering occlusion type , respectively.
Patch labels 0 and 1 are included to explicitly distinguish be-
tween the two sides of the occlusion boundary.

It is clear from this formulation that the introduction of each
additional angle will create two unique occlusion types. An
analysis has been conducted, which demonstrates a decreasing
marginal benefit to performance as the set of angles is increased.
This is discussed further in Section V. For the time being, it
should be mentioned that for results presented in this paper,
the four occlusion boundary angles in Fig. 3 are considered.
Therefore, a total of eight occlusion types are included in the
framework, along with a default case that assumes no occlusion
event. Because each of these types is predicted by a unique
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Fig. 5. Example of instantaneous loss calculation for two experts. The tree is
moving to the left against a static background. On the left side of the figure,
occlusion type �������� �� is shown, and the instantaneous loss is computed
for patches on either side of the occlusion boundary. On the right side of the
figure, the null occlusion type is shown, and instantaneous loss is calculated for
a centered patch. For both occlusion types, instantaneous loss is calculated as
the SAD between patches in frame � and predicted patches in frames � . In
the case of the null occlusion type, prediction error occurs for the background,
indicating that this expert will have a larger instantaneous loss than the expert
on the left.

expert, the current formulation of the problem includes a total
of experts.

D. Instantaneous Loss Calculation

The instantaneous loss of each expert is measured using the
SAD error metric, as is demonstrated in Fig. 5. The SAD is
computed between predicted and revealed image patches either
adjacent to or centered on the particle. For all occlusion types
that predict an occlusion boundary, the patches are adjacent to
the boundary, with one patch on either side. For the null case that
predicts no occlusion boundary, the patch will be centered on the
particle. If, for example, the image patch is of size and the
expert is of type , then the centers of the two patches
will be located at , where
is the location of particle . Denote
and , and consider the motion vector
pair , to be the and components of the motion field
at and , to be the components at . Finally, it should
be mentioned that for an uncovering occlusion boundary event,
motion field will be used with predicted patches
in frame . However, for a covering occlusion type, motion
field will be used instead with frame . For the
null case, both motion fields will be used.

For occlusion type , the SAD for the two patches,
i.e., and , are calculated as

(1)

The total instantaneous loss for the expert is the sum of the
two patches, i.e., . Instantaneous loss for the other
experts is calculated likewise; however, the location and orien-
tation of the patches will depend on angle of the occlusion
boundary and user-defined parameter .

For the null expert, which predicts the lack of an occlusion
boundary, instantaneous loss is calculated for a patch centered
on the particle with reference frames and . Here, the
SAD for the two patches are calculated as

(2)

and . Parameter controls the sensitivity of
the detector to occlusion boundaries. We vary this parameter in
order to generate the precision–recall plots shown in Section V.
For the proposed work, we fix parameter for all ex-
periments. This selection was made to capture sufficient local
pixel-domain information without requiring a huge number of
pixel calculations for each expert, which would dramatically in-
crease the computational complexity.

IV. PROPOSED ALGORITHM

A flowchart in Fig. 6 depicts the three main portions of the
proposed algorithm. In the first portion, the particle tracking grid
is initialized (if it is the first time step), and optical flow fields
are computed. Next, the Hedge algorithm is used to compute the
probability distribution over the experts for each particle. In the
third portion, each particle is classified, and the particle tracking
grid is propagated.

In the first stage of the proposed algorithm, motion vector
information is obtained for the video sequence using an optical
flow technique [4]. As is standard in optical flow methods,
the brightness constancy and gradient constancy assumptions
are combined to obtain a motion field between two subse-
quent frames. A third term is included in [4], which enforces
spatiotemporal smoothness while preserving spatial disconti-
nuities. The resulting dense MVF is defined for
each pixel in the sequence.

The Hedge algorithm [22], which is presented in Algorithm
1, is responsible for detecting occlusion boundaries using a
set of experts, each of which is tuned to detect a separate
occlusion type. The input to the algorithm is the pixel-domain
information , , and MVFs . The output
is a probability distribution over the set of experts for each
particle. This results in a classification of each particle into an
occlusion type.
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Fig. 6. Flowchart for the proposed occlusion boundary detection algorithm.

Algorithm 1 Hedge

initialize expert weights to be uniform: ,

for do

for do

for do

expert makes prediction

instantaneous loss calculated:

if exponentially discounted loss then

total loss:

else

total loss:

end if

weights updated:

form prob. dist. over experts:

end for

end for

end for

The algorithm is initialized with a dense grid of particles in
the first frame of the video sequence. The particle grid is the
same resolution as the video sequence with a border of
pixels removed to avoid edge effects. Particles are indexed by

, where and and
are the width and height in pixels, respectively, for the video

sequence. Particle locations are stored in vector ,
where each row of , denoted by contains the and
coordinates of particle . A set of experts predicts
local patch information in or based on the occlusion
type. The instantaneous loss of each expert is calculated using

the SAD error metric. Next, cumulative loss is calculated using
an exponentially discounted loss function and stored in

. The exponentially discounted loss function is

(3)

where is the cumulative loss of expert at time-step for
particle . Each expert is reweighted at each time step based on
the cumulative loss and tunable learning rate , i.e.,

(4)

Weights are initialized to be uniform. That is,
, . The learning rate is set to , as pro-

posed in [22]. This learning rate is selected as it guarantees an
upper bound on the cumulative loss of the Hedge algorithm as

(5)

where is the total number of experts and is the number
of time steps. This means that Hedge will always achieve a cu-
mulative loss close to that of the best expert at time . Next,
the weights are normalized to produce a probability distribution
over the experts. Intuitively, this is a measure of how well each
expert is performing, i.e.,

(6)

At each time step and for each particle, the weights attributed
to the experts are compared. Classification is performed
based on the expert with the largest weighting at time-step .
The classification function is

(7)

Therefore, if expert is tuned to detect occlusion type
, then particle will be classified as a covering

occlusion boundary of angle if has the largest
value over the vector .
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Fig. 7. Contour completion at angle � � ��� using four neighbors and
threshold of 50%. Center pixel marked with red “X.”

A. Local Contour Completion

Subsequent to the Hedge update at each time step, a contour
completion stage is conducted. This is similar to the binary mor-
phological operation of dilation. We have determined that this
operation significantly improves detection performance while
adding little complexity. Performance improvement is observed
because the Hedge method may result in small gaps in the de-
tected occlusion boundary due to factors such as noisy pixel
data and a slow learning rate. For each particle that has regis-
tered an occlusion event, a short segment of potential particles
are aligned based on the classified occlusion type of the par-
ticle. An example is shown in Fig. 7 for an occlusion type of
angle . If more than half of these particles also observe
an occlusion event tuned to the same angle, then the entire line
segment is identically classified.

B. Particle Propagation

Between two adjacent time steps, the particles are propa-
gated via the MVF. If particle is located at position

in frame , then it will be propagated to

in (8)

where and are the components of the motion vector, located
in the MVF at position .

C. Particle Pruning and Reassignment

The number of particles is kept constant by merging parti-
cles that belong to the same pixel and introducing new particles
where appropriate. In addition, particles that are propagated to
within pixels of the image boundary will be pruned as
it is unnecessary to track particles that are exiting the frame. If
multiple particles are propagated to the same pixel, all but one
of them will be pruned, and the average of the cumulative losses
will be assigned to the remaining particle. After particle pruning
is complete, new particles will be assigned such that the particle
tracking grid remains dense. For time-step , the particle
tracking grid is examined to determine if there are any pixel lo-
cations such that no particle exists. If one is found, a new particle
is added to the tracking grid with uniform weights over the set
of experts, i.e., ,

V. SIMULATION RESULTS

The proposed occlusion boundary detection algorithm has
been tested against sequences obtained from the CMU Video
Data set for Occlusion/Object Boundary Detection [18]. This

data set is comprised of 30 short video sequences, each of which
contains labeled ground truth occlusion boundaries. In addition,
a synthetic sequence has been created, which is significantly dif-
ferent from the sequences available in the CMU data set. This
will test the robustness of learning-based methods for which
cross-validation is not possible. Additional results, including de-
tection results for full video sequences, are included on the au-
thor’s website.1

A. CMU Occlusion Data Set

Each sequence in the CMU data set consists of between 5
and 30 frames and includes hand-labeled ground truth occlu-
sion boundaries for the center frame. An objective comparison
is performed between each occlusion boundary detector and the
ground truth data from the data set using precision–recall. An
example of this is demonstrated in Fig. 8, where four frames
from the data set are shown along with the ground truth occlu-
sion boundaries and the result of the proposed online detection
algorithm. Precision and recall scores are calculated as follows:
Let denote the set of occlusion boundary pixels in the
ground truth data and denote the set of occlusion boundary
pixels detected by the proposed algorithm. Then, precision, re-
call, and F-score values are calculated as

(9)

where F-score can be equivalently calculated as the ratio be-
tween the common ground truth and detected occlusion bound-
aries and the mean between the two, that is,

In general, results are presented using this single metric. The
proposed algorithm is compared with four competing methods
from the occlusion literature. The first approach that we com-
pare with is based on the photometric difference between ad-
jacent frames [13] and is denoted as the photometric approach.
Here, the mismatch in intensity between two adjacent frames is
measured using the motion field. For two adjacent frames
and and the forward and backward motion fields

and , the motion-compensated
prediction errors are given by

(10)

The absolute value of these two errors are compared with
threshold to determine the presence of occlusion boundaries.
The precision–recall curve in Fig. 9 is produced by sweeping
the threshold in the range . In the second geometric
approach, uncovered regions are detected by locating areas in
the reference frame for which no motion candidates exist in the
current frame [17]. If we denote a sampling lattice in frame as

and we denote as the set of
spatial positions in achieved by motion compensating the

1http://videoprocessing.ucsd.edu/~NatanHaim
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Fig. 8. Comparison of the proposed algorithm with ground truth occlusion boundaries for four sequences of the CMU database. For each sequence, the frame is
shown in the top row, ground truth in the middle row, and the result of the proposed occlusion boundary detector in the bottom row. (Columns from left to right)
mugs2 �� � �������, rocking horse �� � 	��	���, couch corner �� � 	��
���, and zoe1 �� � 	������.

sampling lattice of , then an indicator function may be defined
as

otherwise
(11)

where and are in and radius is defined by the user
(in this paper, as in [17], ). Finally,
measures the density of projections. This value is thresholded
to generate the precision–recall curve. In order to detect cov-
ered regions, the reverse process is computed from .
The third approach considered is the training-based method of
[19] in which numerous appearance and motion features are
considered in the training of a binary occlusion boundary classi-
fier. Finally, the method of [20] is explored in which a discrim-
inative learning step is used to learn the relation between low-
level features and labeled occlusion boundaries for the CMU
data set.

Results for these methods as well as the proposed occlusion
boundary detector are displayed in Fig. 9. Note that the proposed
detector outperforms the other two nontraining-based methods
by roughly 20%. In fact, our performance approaches that of
[19], achieving within 5% of a method that was trained using
the CMU data set. The further work of [20] is able to increase
performance further but is not well suited to novel video se-
quences, as will be demonstrated in the next section. For the two
training-based methods, learning was performed using ground

Fig. 9. Comparison of occlusion boundary detection performance using pre-
cision–recall. Point of maximum F-score marked for each curve. Best perfor-
mance of each method. (Photometric)� � ����
�. (Geometric) � �
����
��. (Proposed) � � �
��	�. (Stein [19]) � � �������.
(Sargin et al. [20]) � � 	��	���.

truth on half of the CMU data set while testing on the other half.
This was repeated such that all sequences were tested.

B. Synthetic Sequence

To further assess the performance of the proposed method, we
have constructed a 60-frame synthetic sequence with a dominant
occlusion boundary. Textures for this sequence were obtained



JACOBSON et al.: ONLINE LEARNING APPROACH TO OCCLUSION BOUNDARY DETECTION 259

Fig. 10. Results for synthetic sequence: (a) frame 30; (b) ground truth; (c) geometric method [17]; (d) photometric method [13]; (e) trained SVM [20]; (f) proposed;
and (g) comparison of methods, i.e., � versus frame index.

from the publicly available Vision Texture homepage [23]. The
proposed method for occlusion boundary detection is compared
with the methods of [13], [17], and [20] in Fig. 10. Here, objec-
tive results are provided in Fig. 10(g) by computing the max-
imum F-score for each method at each frame of the sequence.
It is clear from this simulation that the best performance is ob-
tained by the proposed detector. It is also clear that while the
training-based method may perform well when cross-validation
is possible, it may not perform as well in general. In particular, a
large number of false positive occlusion boundaries are detected
due to edges in the texture maps.

Results for the two competing nontraining-based methods
are achieved using a threshold of for the photometric
method [13] and for the geometric method [17]. These
parameters were selected because they produced the maximum
F-score for each frame. We implemented the method of [20]
using a support vector classifier (LibSVM [24]), which is trained
on the CMU database. The feature set for training is identical to
that used in [20]. It is worth noting that the same optical flow
field is used for both the proposed method and the feature set
for the SVM classifier. In this way, it cannot be stated that one
method of computing optical flow is superior to another, thus
providing for an unfair comparison.

The SVM classifier is trained using the following procedure:
First, the optical flow field is computed between each adjacent
pair of frames using the method due to [4]. Denote the motion
field in the and directions as and , respectively. The
gradients of the optical flow field are then , , , and

. The feature set is comprised of the following five features:
1) magnitude of the optical flow gradient, i.e.,

(12)

2) motion estimation error, i.e.,

(13)

3) divergence of optical flow, i.e.,

(14)

4) minimum eigenvalue of the spatiotemporal structure tensor
[see (15)], i.e.,

(15)

where is computed using the following formula:
;

5) edge intensity map using the pB edge detector [25].
A grid search is performed on the training set in order to ob-

tain good training performance. Since the number of negative
example far exceeds the number of positive examples, a random
resampling procedure is employed for the negative examples to
produce the training set. Each feature is normalized to be in the
range [0, 1]. Training time is on the order of 2 h for all 30 se-
quences in the CMU data set using an Intel Core i7 965 pro-
cessor with 12 GB of random access memory.

C. Performance And Occlusion Types

As the runtime of our proposed algorithm is linear with
respect to the number of experts, it is important to determine
what effect the expert count has on performance. To test
this, the F-score of the chair sequence from the CMU data
set was examined with a variable size of the expert set. Re-
sults are displayed in Fig. 11. As is increased, additional
occlusion types are enabled in the order
for each angle . Angles are added in the following order:

. It is observed
that the marginal performance increase above is dimin-
ishing, thus, the selection of for all the experiments
conducted in the proposed work.

D. Occlusion Boundary Classification

In addition to occlusion boundary detection, the proposed al-
gorithm can provide classification results based on the occlusion
types specified. An example of this is demonstrated in Fig. 12
for the rocking horse sequence of the CMU data set. Further
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Fig. 11. Proposed algorithm performance as a function of expert set size for the
chair sequence. We have selected a set of � � � experts, as selecting further
occlusion types yields diminishing performance returns.

Fig. 12. Occlusion boundary classification into two classes. (Left) Uncovering.
(Right) Covering.

classification can be performed based on the angle of the occlu-
sion type, if desired. This technique is well suited for any appli-
cation that will treat covering and uncovering occlusion types
separately.

VI. CONCLUSION

In this paper, an efficient online learning approach to occlu-
sion boundary detection has been presented. This method boasts
a runtime linear with respect to the number of tracked parti-
cles and number of experts. In addition, the proposed algorithm
does not require training, making it much simpler to use than
competing methods and much more suitable for novel video se-
quences when training data is unavailable. Despite the lack of
training, the algorithm has demonstrated excellent performance
both on the CMU occlusion data set and on a synthetic video
sequence. We outperform previous approaches that do not re-
quire a training stage while approaching the performance of a
fully trained classifier. The efficiency of the proposed algorithm
makes it well suited as an off-the-shelf implementation, which
can be used on its own, or as a preprocessing step for other video
processing tasks such as disparity estimation, motion vector re-
finement, and frame rate up-conversion.

Future work for this research may include an improved
algorithm that detects object scale in addition to occlusion
boundaries. In addition, NormalHedge [26] may be used to

remove learning rate parameter and to allow a larger set of
experts.
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