J. Parallel Distrib. Comput. 74 (2014) 2266-2285

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

A survey of support for structured communication in concurrency

control models

CrossMark

Alexandre Skyrme *, Noemi Rodriguez, Roberto lerusalimschy
Informatics Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rua Marqués de Sdo Vicente, 225 - RDC, CEP 22.451-900,

Rio de Janeiro, RJ, Brazil

HIGHLIGHTS

We survey communication among execution flows in concurrency control models.

We evaluate each model’s support for structured communication.

The ease of reasoning about communication among execution flows is often neglected.

o
o
e Most models do not guarantee that the communication among execution flows occurs only in syntactically restricted code regions.
L]
L]

Structured communication could reduce the complexity of concurrent programming.

ARTICLE INFO ABSTRACT

Article history:

Received 9 July 2012

Received in revised form

19 September 2013

Accepted 18 November 2013
Available online 6 December 2013

Keywords:
Concurrency
Communication
Survey

Model

The two standard models used for communication in concurrent programs, shared memory and message
passing, have been the focus of much debate for a long time. Still, we believe the main issue at stake should
not be the choice between these models, but rather how to ensure that communication is structured,
i.e., it occurs only in syntactically restricted code regions. In this survey, we explore concurrency control
models and evaluate how their characteristics contribute positively or negatively to the support for
structured communication. We focus the evaluation on three properties: reasonability, which is the main
property we are interested in and determines how easily programmers can reason about a concurrent
program’s execution; performance, which determines whether there are any distinct features which can
prevent or facilitate efficient implementations; and composability, which determines whether a model
offers constructs that can be used as building blocks for coarser-grained, or higher-level, concurrency
abstractions.

Structured

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In concurrent programs, communication among execution
flows can be carried out according to two standard communication
models: shared memory and message passing [5]. Both models
are commonly employed as building blocks for the implemen-
tation of concurrent programming languages and libraries. Nei-
ther of them is explicitly associated with a programming model,
but shared memory is commonly used with multithreading pro-
gramming, while message passing is often used with event-based
(or event-driven) programming. Despite much discussion compar-
ing these models [86,87,97,113,116,125], no consensus has been
reached about which of them is the best. Generally, shared mem-
ory is regarded as having better performance [97], but also as be-
ing more complex and error prone [87,97,113,125], while message

* Corresponding author.
E-mail address: askyrme@inf.puc-rio.br (A. Skyrme).

0743-7315/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jpdc.2013.11.005

passing is regarded as being less error prone [97] and easier to de-
bug [53], but also as having lower performance and less flexibility
[116,125].

In all the controversy surrounding shared memory and mes-
sage passing, an issue that is often neglected is that of how to
ensure that communication does not produce unpredictable re-
sults. The interactions among execution flows should be local-
ized and explicit in the code, making it easier for programmers
to reason about a program’s execution. Specifically, concurrency
models should guarantee that the communication among execu-
tion flows occurs only in syntactically restricted code regions. We
will say that models that satisfy this requirement provide struc-
tured communication. Other intuitive requirements are that con-
currency control models should be amenable to implementations
with adequate performance and to composition, that is, it should
be possible to build coarser-grained protected interactions from
finer-grained ones. We believe this change of focus, from select-
ing a communication model to ensuring structured communication, is
a necessary step to reduce the complexity of concurrent program-
ming, a problem recurrently cited in the literature [87,97,113,125].

http://dx.doi.org/10.1016/j.jpdc.2013.11.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2013.11.005&domain=pdf
mailto:askyrme@inf.puc-rio.br
http://dx.doi.org/10.1016/j.jpdc.2013.11.005

A. Skyrme et al. / J. Parallel Distrib. Comput. 74 (2014) 2266-2285 2267

As a first step in achieving a better understanding of this con-
cept, we devoted ourselves to studying concurrency models to an-
alyze how their characteristics contributed positively or negatively
to the support for structured communication. A concurrency con-
trol model defines how multiple execution flows can interact. In
the selection of the models we analyzed, we tried to pick repre-
sentatives from different approaches, focusing on models that have
been used in practice and that have been used in more than one
system or language.

In this paper, we report the results of this investigation. For each
model, we analyze what communication constructs or patterns are
available and whether any constraints are enforced regarding their
employment. Instead of strictly analyzing and comparing shared
memory and message passing, we look for concurrency control
models that build on these communication models, or disregard
them, to provide higher-level communication abstractions. We
evaluate each model according to three properties: reasonability,
performance and composability.

The main property we are interested in evaluating in each
surveyed model is reasonability. This property determines how
easy it is for programmers to reason about the execution of a
concurrent program. It considers whether a model can prevent
unpredictable results (such as out-of-thin-air values), as well as
whether it can keep non-determinism localized and explicit,
i.e., whether it allows programmers to clearly identify, within the
source code, what calls or operations can lead to non-deterministic
results. When evaluating this property, we are mostly concerned
with the ability to avoid race conditions, as we believe this is the
issue that most complicates reasoning and leads to unpredictable
results. We are also concerned with deadlocks, although to a lesser
extent. In most models with blocking operations, deadlocks are
possible. However, explicit localization of interactions between
concurrent threads of execution also facilitates reasoning about
deadlocks, and will thus help avoiding them.

We also evaluate two additional properties in each surveyed
model: performance and composability. The discussion about per-
formance evaluates whether a model has any distinct features
which can by themselves prevent or facilitate efficient implemen-
tations. We do not include any performance measures, as it would
not make sense to compare mechanisms that have been imple-
mented in different languages and contexts. Composability refers to
the ease with which coarser-grained, or higher-level, concurrency
abstractions can be built from finer-grained, lower-level ones.

Both message passing and shared memory can be used as
implementation techniques and/or as communication models.
Just as it is possible to offer a shared-memory abstraction in a
distributed environment which relies on an underlying message-
passing scheme for communication, it is also possible to offer a
message-passing abstraction implemented with shared-memory
synchronization primitives in a multiprocessed environment. Our
concern is with the model that is offered to the programmer and
with the guarantees that it will give him. We only delve into
implementation details when discussing the impact of a given
feature on performance.

The focus of this survey is on local concurrency, that is, the
concurrency among execution flows running on the same machine.
We avoid distributed environments as we understand they limit
the underlying implementation and involve many other factors
which are outside the scope of the survey. This scope restriction
does not prevent us from considering concurrency models which
can also be used in distributed environments.

The remainder of this survey is organized as follows. In Section 2
we present an overview of the two conventional communication
models used in concurrent programming, namely shared memory
and message passing. In Section 3, we explain our evaluation
criteria, analyze concurrency control models and evaluate their

support for structured communication among multiple execution
flows accordingly. In Section 4, we present an overall discussion
of the surveyed models. Finally, in Section 5 we present some
concluding remarks.

2. Conventional communication models

The two standard models used to allow for communication
among multiple execution flows are shared memory and message
passing. We choose to evade the controversy surrounding which
model is better. Instead, we show in this section that both shared
memory and message passing have specific issues regarding the
complexity and performance. Besides, there is a duality between
the two communication models: it is possible to offer a shared
memory abstraction to programmers implemented with message
passing, likewise it is possible to offer a message passing abstrac-
tion implemented with shared memory.

2.1. Shared memory

Shared memory communication typically refers to a setting in
which preemptive threads can read or write data in a global shared
space. Since there is no way for the processor to automatically
identify correct and incorrect access sequences, it is up to the
programmer to properly use available synchronization primitives
to ensure correctness. Mutexes and semaphores [39] are the most
widely used primitives.

We can summarize the criticism that has been leveled at shared
memory [6,21,88,97,111] in the following points:

1. when shared memory is used with preemptive multithreading,
it is difficult to determine whether an arbitrary operation
accesses a shared variable and can lead to race conditions;
this prevents programmers from confidently reasoning about a
program'’s execution. Also, the possible data races encountered
by programmers are in themselves hard to understand;

2. the synchronization primitives that must be used by program-
mers to provide mutual exclusion are complex and error-prone,
thus increasing the potential for incorrect or incautious use,
which can lead to race conditions or deadlocks. It is difficult
for the programmer to pinpoint the proper placement of these
primitives;

3. ensuring correctness while exploiting concurrency presents a
dilemma to programmers. As more concurrency opportunities
are explored in a program, potentially more synchronization
primitives and shared variables are used and therefore reason-
ing about the program’s execution and ensuring its correctness
become more complex.

Non-blocking synchronization, which was first proposed by
Herlihy [72] partly relieves the dilemma between ensuring cor-
rectness and exploiting concurrency opportunities. Non-blocking
synchronization aims to ensure that no execution flow will have
to wait indefinitely to access a shared resource and, for all practi-
cal purposes, to allow safe access to shared data without the use
of synchronization primitives. Non-blocking operations are usu-
ally implemented by means of atomic read-write-modify prim-
itives supported by hardware, such as the compare-and-swap
(CAS) instruction, and are commonly classified as wait-free, lock-
free and obstruction-free [73]. A wait-free operation guarantees
that all execution flows calling it will eventually succeed, bound-
ing the number of steps needed to complete its execution. A
lock-free operation guarantees that at least one execution flow
calling it will eventually succeed, and thus concerns overall
progress as opposed to individual execution flow progress. An
obstruction-free operation also guarantees that at least one exe-
cution flow calling it will eventually succeed, but as long as there

2268 A. Skyrme et al. /J. Parallel Distrib. Comput. 74 (2014) 2266-2285

are no conflicting execution flows running at the same time. Both
Java, in its java.util.concurrent package, and the .NET framework,
in its System. Threading namespace, support non-blocking opera-
tions and data structures.

Despite relieving some of the drawbacks of shared memory
by removing the use of locks, non-blocking synchronization
also introduces its own subtleties. Many commonly used data
structures still lack a non-blocking implementation and each new
non-blocking data structure requires a new implementation which
is typically so complex that results in a published article [112].
Besides, writing correct non-blocking code that performs well
can be a difficult task, even for experts. One particular concern
with non-blocking synchronization is memory management, as
discussed by Herlihy et al. [74,73] and Michael [94].

2.2. Message passing

Message passing can refer either to an architecture model for
parallel computers or to a communication model [125] — in this
survey we are interested in the latter. When a message-passing
communication model is used, multiple execution flows, processed
independently, can communicate with each other by sending and
receiving messages. A number of communication abstractions and
programming models have been built based on message passing.
Among the most well-known of them are Remote Procedure Calls
(RPC) [14], Publish/Subscribe [13] and the Actor Model [2].

Message addressing usually relies either on unique execution
flow (or thread or process) identification or on decoupled com-
munication channels (or mailboxes). The two main operations
associated with message passing are send and receive, which nor-
mally operate as one-to-one operations, although it is also possible
to have collective operations [51], that is, operations that simulta-
neously send to or receive from multiple execution flows.

Send and receive operations can be either synchronous or
asynchronous. A synchronous send returns only after the message
has been received by the target execution flow, i.e., it waits
until the message has been received, while an asynchronous send
returns immediately. Analogously, a synchronous receive returns
only after a message has been received, while an asynchronous
receive returns immediately (perhaps after checking a channel or
polling a mailbox for stored messages). This suggests that message
passing requires some degree of coordination among execution
flows, as communication can only happen if at least one execution
flow is willing to send data and another execution flow is willing to
receive it. The degree of coordination required is dependent on the
chosen message-passing model, or more specifically, on its degree
of coupling.

The coupling of message-passing models can be evaluated
according to two dimensions: space and time. The space dimension
determines how much information about the “location” of a
receiver is needed to send a message. A more space-coupled model,
for instance, would use point-to-point messages and an addressing
scheme based on unique execution flow identifiers, all belonging
to a single global namespace. A more space-decoupled model, on
the other hand, would use broadcast messages or a blackboard
communication paradigm, where senders do not interact directly
with receivers. The time dimension determines the degree of
synchronization required to send a message. A more time-coupled
model, for instance, would require both sender and receiver(s) to
exist at the same time to communicate. A more time-decoupled
model, on the other hand, would use persistent channels or
mailboxes to store messages, allowing execution flows to receive
messages asynchronously. The degree of coupling determines the
needs for coordination and, consequently, the extent of fault
tolerance and of delays caused by waiting for other execution
flows.

A commonly used standard to implement message passing is
the Message Passing Interface (MPI) [93]. MPI includes a number
of variations of the send and receive operations (such as block-
ing, non-blocking, buffered, synchronous, standard and ready). At
first glance it might seem as if some of these variations do not
fit the synchronous and asynchronous definitions we presented.
However, in this survey we consider communication to be asyn-
chronous whenever a sender has no guarantee that sent mes-
sages were delivered to a receiver after the send operation returns.
Therefore, according to the definitions we presented, synchronous
communication in MPI only happens when both send and receive
operations are blocking and use the synchronous mode, i.e., when
both MPI_Ssend and MPI_Recv functions are used. Non-blocking
operations and operations that work in standard or buffered modes
are considered asynchronous by the definitions we presented,
since the send call may return before the target execution flow
has received the message. Non-blocking operations in MPI require
careful buffer management, as we discuss in Section 2.3.

An example of a programming model relying on message
passing is event-based programming. In a typical event-based
programming, execution flows register their interest in certain
events and are notified when these events occur, usually by the
invocation of event handlers. Event notification, or the execution
of event handlers, can be understood as an asynchronous receive
operation; the receiver does not make an explicit receive call,
but rather registers its interest in an event and a corresponding
handler. An event dispatcher places the received events in an event
queue and sequentially invokes the registered handlers for the
queued events.

Message passing has at least two prominent advantages: it can
easily be used as an abstraction for both local and distributed com-
munication and, as long as explicit operations are used, it makes
communication among execution flows explicit in the code. The
latter makes reasoning about a program’s execution easier, as the
points in code where non-deterministic behavior can occur are
clear. Despite its advantages, message passing also has its draw-
backs. Message passing involves copying data between different
address spaces, leading to large overheads as the transmitted data
grow in size. The semantics of message transmission, which is re-
lated to this impact on performance, are often unclear. For instance,
how are complex objects or data structures transmitted? Event-
based programming has also been criticized for demanding an
inversion of control [59]: a program’s execution flow is not deter-
mined by a sequence of operation calls, but rather by the occur-
rence of events, which are dispatched to the appropriate event
handlers. This implies flow and logic fragmentation among event
handlers and thus throughout a program. A possible solution to this
problem is the use of coroutines [37].

2.3. Hybrid implementations

Some programming languages offer a hybrid model, where both
message passing and shared memory are supported. Examples
of such languages include Scala [96] and the D programming
language [3]. Scala supports the Actor Model to allow for
communication among execution flows. It is implemented on the
Java VM and allows for interoperability with the Java programming
language. Therefore, Scala also supports Java’s standard shared
memory concurrency facilities. The D programming language
approach is to use isolated threads that communicate via message
passing. It also supports shared memory and mutual exclusion.
However, by default, only immutable data can be shared among
threads; sharing mutable data requires the use of type modifier
which restricts how data is accessed — we discuss immutability
in Section 3.4.

A. Skyrme et al. / J. Parallel Distrib. Comput. 74 (2014) 2266-2285 2269

In addition, sometimes despite relying on a single communica-
tion model programmers still have to be wary of implementation
subtleties to avoid a false sense of security. The MPI standard, for
instance, includes non-blocking operations (such as MPI_Ibsend,
MPI_Irsend,MPI_Issend, MPI_Isend and MPI_Irecv). Non-
blocking operations allocate a communication request object and
return a handle that can be used to query the status of the com-
munication or wait until it is finished. When a non-blocking call
returns, the program may start to copy data out of a send buffer
or write data into a receive buffer, even if the communication has
not finished. Hence, in multithreaded implementations of MPI data
races could occur when non-blocking operations are used and, ac-
cording to the MPI standard, it is up to the programmer to ensure
that buffers are not modified until communication finishes.

3. Concurrency control models

Over the last four decades, many concurrency control mecha-
nisms have been proposed and built into programming languages
[5,25]. These mechanisms include busy waiting, semaphores [39],
conditional critical regions [60,61,77], monitors [62,63], guards
[40] and path expressions [29], among others. However, many of
them are either not concerned with enforcing the characteristics in
which we are interested or are connected to specific niches in pro-
gramming languages. In this section, we explore four models that
have been widely discussed and implemented and that present fea-
tures that are important for structured communication: monitors,
transactional memory, tuple spaces, and data immutability. We
believe these models are representative of different approaches
to concurrency. Monitors were the first structured-programming
concurrency construct to be widely discussed, and retain practi-
cal importance today. They impose a static view of the chunks
of code in which accesses to shared memory can occur. Transac-
tional memory extends to memory accesses the atomic properties
of database transactions and reflects a more flexible approach to
guaranteeing mutual exclusion, in which arbitrary chunks of code
may be protected by enclosing constructs. Tuple spaces can be
regarded either as global shared memory spaces or as sets of
communication channels, and were important in emphasizing the
separation between computation and coordination. Finally, im-
mutability is in a slightly different category, as by itself it is not
a concurrency control mechanism, but analyzing immutability is
an important step in understanding how type systems can be used
to guarantee protection from unwanted interference.

In the following subsections we present, for each of the
surveyed models, an overview of the model, remarks about its
practical use, a brief discussion about limitations, an evaluation
of structured communication support (based on the reasonability,
performance and composability properties), as well as a summary
of this evaluation. Evaluations are based on the literature review
as well as on our own experience with each of the surveyed
models. When summarizing the evaluation of each model we use
the following criteria:

Reasonability : when a model prevents unpredictable behaviors
throughout a program'’s execution, we rate its reasonabil-
ity as predictable. When a model prevents unpredictable
behaviors in finer-grained constructs (or code blocks)
but cannot prevent unpredictable behaviors in coarser-
grained constructs (or code blocks) we rate its reason-
ability as fine-grained predictable. Finally, when a model
cannot prevent unpredictable behaviors even in finer-
grained constructs (or code blocks), we rate its reason-
ability as unpredictable;

Performance : when a model can be implemented to allow the
performance of all communication to be comparable to
the communication among execution flows within a sin-
gle process (a best-case scenario), we rate its perfor-
mance as optimizable. When a model can be implemented
to allow the performance of some, but not all, commu-
nication to be comparable to the communication among
execution flows within a single process, or when it has
distinct features which can reduce the performance of its
implementations, we rate its performance as restrained;

Composability : when a model is explicitly concerned with
allowing its concurrency abstractions to be used to build
coarser-grained, or higher-level abstractions we rate
its composability as modeled. When a model does not
have such an explicit concern but has implementations
specifically designed to allow for the composition of its
abstractions, we rate its composability as implemented.
Finally, when a model is not explicitly concerned with
composability and has no implementations specifically
designed to support it, we rate its composability as ad hoc.

3.1. Monitors

Monitors [62,63] were perhaps one of the earliest attempts to
guarantee controlled access to data shared among execution flows.
A monitor, as defined by Brinch Hansen [64], is a combination of
shared variables and procedures which provide the only means
for accessing these variables. Monitor procedures are executed
one at a time, i.e., with mutual exclusion, and may delay calling
execution flows waiting for an arbitrary condition. A common use
for a monitor’s shared variables is to represent shared hardware or
software resources, such as disk drives or files. A general monitor
diagram is presented in Fig. 1.

The original monitor concept by Brinch Hansen was further
developed by Hoare [78], who explicitly stated that procedures
within a monitor should not access any variables external to the
monitor and, in an analogous manner, a monitor’s variables should
not be accessible from outside the monitor. This ensures that
monitors’ procedures are the only way to access shared variables.
It is an essential condition to avoid time-dependent errors, since
it allows them to be detected during program compilation, a
requirement stated both by Hoare and Brinch Hansen.

A clear analogy can be made between monitors and Remote
Procedure Calls (RPC) [4]. Calling a monitor procedure is similar to
making a call to aremote procedure; in both cases there is an entity
(a monitor or a central server) which is responsible for keeping
local state, as well as centralizing and orderly fulfilling requests
that involve access to shared data or resources. This evidences
that monitors could be implemented both with shared memory, as
usually implied, and with message passing, analogously to Remote
Procedure Calls. Furthermore, it shows that the choice between the
shared memory and message passing communication models can
be just an implementation matter.

3.1.1. In practice

The first programming language to implement monitors was
Concurrent Pascal [65], an extension of the sequential program-
ming language Pascal intended to support concurrency. Concur-
rent Pascal implements explicit access rights, which are lists, that
can be checked at compile time, of shared resources that a mon-
itor can operate on. The ability to check access rights at compile
time allows the compiler to make sure that all shared data access is
protected by monitors and that monitor procedures are executed
in mutual exclusion, as well as to examine the graph of monitor
calls to detect possible deadlocks due to cyclic calls, thus avoiding

2270

A. Skyrme et al. /J. Parallel Distrib. Comput. 74 (2014) 2266-2285

Monitor

Ws W, W; W, W,

Initialization

Shared data

Ds

R

P4

D1

D,

R1

P2

Pn = monitor procedures
Cy = monitor conditions

W\, = execution flows waiting to call a procedure
Rw = execution flows running a procedure
Dy, = execution flows delayed on a condition

Fig. 1. A general monitor diagram.

time-dependent errors. Here, once again, we observe a clear con-
cern with enforcing a well defined pattern for concurrency, as the
compiler is used to ensure shared data can only be accessed with
monitors’ procedures.

An example, proposed by Brinch Hansen [64], of a monitor
implemented in Concurrent Pascal and is presented in Fig. 2. The
linebuffer type represents a bounded buffer that can hold a
single line, stored in the contents variable. It uses a boolean
variable (full)to indicate whether the buffer is full and two queue
variables (sender and receiver) to hold delayed execution
flows. The monitor includes two procedures: receive, which
retrieves the contents of the buffer, and send, which stores a
text line in the buffer. If send is called and the buffer is full, the
execution flow calling it is delayed on the sender queue until
another execution flow calls receive and performs a continue
operation on the sender queue. Analogously, if receive is called
and the buffer is empty, the calling execution flow is delayed on
the receiver queue.

Concurrent Pascal enforces that the only means to access a
monitor’s shared variables is to use monitor procedures. Therefore,
programmers cannot access the contents variable directly when
using the linebuffer type; they must use the receive and
send procedures to do so.

Apart from Concurrent Pascal, many modern programming lan-
guages support, or claim to support, monitors or synchronization
features that are based on monitors. Examples of such program-
ming languages include, but are not limited to: .NET-supported
programming languages such as C#, C++ and Visual Basic (Monitor
Class), Python (threading.Condition objects), Ruby (Monitor Class)
and Java (synchronized methods, wait and notify methods in the
Object class).

An example of a bounded buffer class implemented with
Java monitors is presented in Fig. 3. Similar to the example in

Concurrent Pascal (see Fig. 2), the buffer can hold a single string
(message) and has a condition (full) to indicate whether it is
full. It also includes two methods, take and put, equivalent to the
receive and send procedures in the Concurrent Pascal example.
Analogously, if put is called on a full buffer or take is called on
an empty buffer, the calling execution flow is delayed. The wait
and notifyAll methods, used to delay an execution flow and to
resume delayed execution flows, are included in the public Object
class, which is the root of the class hierarchy; as a result, all objects
implement these methods.

The main difference between the Java and the Concurrent Pascal
examples is that in Java there is no enforcement that shared vari-
ables can only be accessed with monitor procedures. Consequently,
in Java, a programmer can directly access the message variable
without using the take or put methods. The use of access level
modifiers, such as private, can inhibit such accesses. Still, this
is a fundamentally different approach from Concurrent Pascal, as
it relies on programmers discipline, and not on the programming
language itself, to ensure correctness. Clearly, Java monitors do not
comply with the original monitor concept [66].

Therefore, despite the apparent wide support for monitors in
modern programming languages, a closer inspection reveals that
implementations are not faithful to the original monitor concept.
Most do not enforce that shared data is accessed only inside a
monitor. This leaves the burden of controlling shared data access
to programmers and defeats detection, in compile time, of possible
race conditions.

The basis for monitor implementations, and in particular to the
monitor implementation in Concurrent Pascal, was presented by
Brinch Hansen [61]: he proposed using a combination of queue
variables and critical regions to control access to shared data. In
his proposal, execution flows that need to enter a critical region

© 0w N 3 U s W N =

R S T ~ T T e
S © ®» N v oA W N = O

© 00 N O U s W N =

I R N R T~ e e e
N OH O © g9 O oA W oN = O

23
24
25
26
27
28
29
30

A. Skyrme et al. / J. Parallel Distrib. Comput. 74 (2014) 2266-2285

type linebuffer =

monitor

var contents: line; full: Boolean;
sender, receiver: queue;

procedure entry receive(var text: line);

begin
if not full then delay(receiver);
text := contents; full := false;
continue (sender)

end;

procedure entry send(text: line);

begin
if full then delay(sender);
contents := text; full := true;
continue(receiver)

end;

begin full := false end

Fig. 2. Abounded (single line) buffer implemented with a monitor in Concurrent Pascal.

public class BoundedBuffer {

String message;
boolean full = false;

public synchronized String take() {

while (!full) A

try {

wait () ;

} catch (InterruptedException e) {}
}
full = false;
notifyAll();
return message;

}

public synchronized void put(String message) {
while (full) {
try {
wait () ;
}
catch (InterruptedException e) {
...
}
}
full = true;
this.message = message;
notifyAll();

Fig. 3. A bounded buffer implemented with Java monitors.

2271

2272 A. Skyrme et al. /J. Parallel Distrib. Comput. 74 (2014) 2266-2285

are placed in a main queue which is associated with a queue
variable. When an execution flow enters the critical region, it may
check whether the queue variable satisfies a certain condition;
if the condition is satisfied, it proceeds to executing its critical
region, otherwise it is placed in a scheduling queue, called an event
queue. After an execution flow completes executing the critical
region, all other execution flows are moved (one at a time) to the
main queue to be resumed, since the condition they are waiting
for might now be satisfied. Despite enforcing mutual exclusion,
this means execution flows could be transferred many times,
unnecessarily, between the event queue and the main queue. The
two basic operations on queue variables are delay, to defer an
execution flow until a certain condition is satisfied, and continue,
to indicate a certain condition is satisfied and resume an execution
flow.

A variation of Brinch Hansen’s proposal, presented by Hoare
[78], proposes using condition variables, a variation of queues.
Condition variables, like queues, represent different reasons why
an execution flow might be delayed when trying to enter a critical
region, i.e., when trying to call a monitor procedure. Each condition
variable is associated with two operations: wait, the equivalent
to delay, and signal, the equivalent to continue. A delayed
execution flow waiting for a condition to be true does not occupy
a monitor. So, unlike a busy wait, an execution flow can call a
monitor procedure even if another execution flow is delayed on a
condition that belongs to that monitor. This allows execution flows
to eventually be able to satisfy the condition and send a signal that
allows a delayed execution flow to resume.

Hoare also proposed a stricter resumption policy to delayed
execution flows. He defined that once a signal operation was
executed, it should be immediately followed by the resumption
of a delayed execution flow, a restriction which is not present in
Brinch Hansen'’s original proposal. Moreover, he defined that the
execution flow that had been waiting the longest for a condition
variable should be resumed first [67]. This policy contributes to
ensure delayed execution flows will be granted access to a monitor,
since it prevents non-delayed execution flows from using the
monitor right after a signal and right before a delayed execution
flow has resumed.

The strategy of giving immediate monitor access to a signaled
execution flow and enqueuing the signaler execution flow, as
proposed by Hoare, constitutes the signaling discipline called
Signal and Wait (SW); monitors that employ this strategy are
often referred to as Hoare-style monitors. There are, however,
other signaling disciplines [79]. In Signal and Urgent Wait (SU), a
slight variation of the previous discipline, signalers are assumed
to have a higher priority to access monitors and are placed at an
urgent queue which is checked before new execution flows are
allowed to use a monitor. In Signal and Return (SR), signalers must
immediately return after signaling, since often this will be the last
operation before a procedure returns and so it would make no
sense to queue execution flows which have nothing else to do
other than return; monitors that employ this strategy, and thus
signal as the last operation before exiting, are often referred to as
Brinch-Hansen-style monitors. Finally, in Signal and Continue (SC),
the signaler is allowed to continue its execution and the signal
serves just as areminder (sometimes called a hint or a notification)
that a queued execution flow should be resumed once the current
procedure waits or returns; monitors that employ this strategy
are often referred to as Mesa-style monitors. The SC strategy is
used both in the POSIX threads library (pthreads) and in the Java
programming language.

An alternative to explicit condition queues (such as SW, SU, SR
and SC) is implicit signaling [26], sometimes also called Automatic
Signaling (AS). With explicit condition queues, while one or more
execution flows wait (blocked) for a condition variable, another

(active) execution flow eventually detects the condition variable
is satisfied and signals awaiting execution flows. With implicit
signaling, on the other hand, logical predicates are used instead
of condition variables to eliminate the need for explicit signal
operations. If the predicate is false, then the execution flow is
blocked; otherwise, if the predicate is true, a waiting execution
flow is implicitly resumed. Implicit signaling was first proposed by
Kessels [84] and is thoroughly explored by Buhr and Harji [27].

3.1.2. Discussion

The main criticisms to monitors are the complexities associ-
ated with nested monitor calls and with execution flow schedul-
ing. Nested monitor calls are considered a feature [68] in the
original monitor implementation. If an execution flow is delayed
in a nested monitor call, it releases access only to the most recently
called monitor. Nevertheless, this behavior can cause deadlocks or
performance degradation [90], a matter which is further discussed
elsewhere [58,83,122,85]. Essentially, four strategies are proposed,
none of which is unanimous: releasing access only to the most re-
cently called monitor, releasing access to all monitors called so far,
releasing access to a monitor whenever it calls another monitor,
and forbidding nested monitor calls. Brinch Hansen argues that he
used nested monitor calls without problems and that the potential
problems lack experimental evidence. The perception that nested
monitor calls are not a problem is also supported by Parnas [98].

The complexity of execution flow scheduling comes down to
the choice among signaling discipline when implementing mon-
itors. Although signaling disciplines can appear equally compli-
cated and their differences in practice might appear subtle [64],
the main dilemma lies in choosing whether to use implicit signal-
ing. Explicit signaling strategies (SW, SU, SR and SC) can be easier to
implement with good performance, as a single execution flow can
be signaled and resumed, but are more difficult to use and require
some reasoning by programmers; the latter, on the other hand, is
simpler to use but can be harder to implement with good perfor-
mance, as in a worst case scenario all blocked execution flows will
need to have their predicates reevaluated to determine whether
they should be resumed. Moreover, a program that performs well
with a signaling discipline might not do so if another discipline is
used, i.e., different signaling disciplines can be more or less suitable
for different programs.

Also, as we mentioned earlier in this section, many so-called
monitor implementations, like Java monitors, do not enforce
that shared data access can only be performed by monitors.
The existence of unsynchronized access to shared data makes
programs vulnerable to race conditions and makes reasoning about
programs’ execution more difficult.

An approach to adapt Java monitors to enforce structured access
to shared data, presented by Bacon et al. [10], describes Guava,
a modified version of the Java programming language. Guava
does not allow unsynchronized shared data access and mandates
that classes whose instances can be shared must be explicitly
distinguished from classes that cannot be shared. Classes in
Guava must fall under three different categories: monitors, whose
instances can be accessed concurrently and whose methods are
always synchronized; objects, whose instances cannot be accessed
concurrently, although they can be freely referenced within the
same thread; and values, that unlike standard Java include user-
defined classes as well as primitive types. Values cannot be
referenced and thus cannot be shared. Furthermore, Guava uses
program annotations to allow for static checking of concurrent
programs; single threaded programs do not require annotations
and may be implemented by using just objects and values.

A. Skyrme et al. / J. Parallel Distrib. Comput. 74 (2014) 2266-2285 2273

Table 1
Summary of structured communication support in monitors.

Monitors

Reasonability

Predictable, as long as shared data can only be accessed by using monitor procedures and it is not possible to use references to

directly access shared variables. Signaling disciplines and nested monitor calls can make reasoning more complex.

Performance Restrained, considering the need to execute entry and exit protocols in monitors. Different signaling strategies might influence
performance. Implementing implicit signaling with good performance, in particular, can be difficult.
Composability Ad hoc, since nested monitor calls are not explicitly considered in the model and, to our knowledge, there is no reference

implementation that uses nested calls. Moreover, nested monitor calls can lead to deadlocks and reasoning about nested calls can

be complex.

3.1.3. Structured communication support

Overall, monitors represent a proposal which is aligned with
our concern in ensuring structured communication since it
considers the enforcement of a well defined pattern for execution
flows to communicate by means of shared data access. They are
well suited for mutual exclusion, and seem specially useful for
lower level synchronization needs, such as to control access to
hardware resources.

Unfortunately, apart from Concurrent Pascal, other implemen-
tations ignored the fundamental aspects which could ensure struc-
tured access and thus deprived programmers from the main
benefit of monitors. A possible explanation for the lack of proper
implementations and more widespread employment of monitors
lies in the difficulty to offer guarantees such as those offered by
Concurrent Pascal in programming languages that were designed
to allow references. When programming in a language with refer-
ential semantics, it is up to programmers to ensure that a shared
variable is not directly accessed by its reference instead of by us-
ing the proper monitor methods, as we showed with the exam-
ple of the bounded buffer implemented with Java monitors. The
difference is that while Concurrent Pascal was designed to sup-
port the development of concurrent programs and the enforce-
ment of monitors to access to shared variables, languages like Java
were designed to be more multi-purpose and were not concerned
with enforcing concurrency patterns for shared data access. Simply
adding monitor support to a programming language with referen-
tial semantics is not enough to ensure structured access to shared
variables.

Reasonability

Monitors, as formulated by Brinch Hansen and Hoare and
implemented in Concurrent Pascal, allow programmers to reason
about a program’s execution with certainty, as access to shared
data can only be performed by procedures within monitors. While
signaling disciplines and nested calls can add some complexity
to reasoning, monitors and monitor procedure calls are explicit
in source code and guarantee mutual exclusion. Monitors do
not prevent deadlocks, as they are blocking and allow nested
calls. Later monitor implementations failed to comply with the
fundamental concept of allowing shared data to be accessed only
from within monitors; this, in effect, voids the benefits of monitors,
as it means shared data can be accessed both from within and from
outside monitors, thus allowing race conditions and preventing
programmers from reasoning about a program'’s execution without
worrying about arbitrary operations accessing shared variables.

Performance

To access shared data with monitors, programmers must call
a monitor’s procedure, which in turn entails the execution of an
entry protocol to the monitor before the procedure’s body can
be executed, then the execution of the procedure’s body and, fi-
nally, the execution of an exit protocol. This can create a perfor-
mance overhead, particularly as monitors rely on mechanisms like
semaphores or condition variables to implement their entry and

exit protocols. Additionally, choosing whether to use implicit sig-
naling presents a dilemma between performance and usability. Im-
plicit signaling is simpler to use, but it is harder to implement with
good performance, since when a monitor is signaled it might have
to reevaluate the predicates of all waiting execution flows before
determining which, if any, of them should be resumed. Other (ex-
plicit) signaling disciplines, on the other hand, can be more com-
plex to use and reason about, but can be easier to implement with
good performance, since when a monitor is signaled it can resume
a specific execution flow without having to reevaluate predicates
of waiting execution flows.

Composability

Using monitors as a building block to compose more coarse-
grained concurrency control is possible, but it makes reasoning
about a program’s execution more difficult. When reasoning about
a program with nested monitor calls, a programmer must consider
the strategy used to retain and release exclusion on monitors; a
programmer must also consider the order in which nested calls
are made, since deadlocks will happen if calls in the same order
are required to hold and to release exclusion on a monitor. Other
practical aspects of composing monitors are unclear, since the
literature is surprisingly lacking regarding this matter.

3.1.4. Summary
A summary of structured communication support in monitors
is presented in Table 1.

3.2. Transactional memory

The concept of transaction [52] has been widely explored, spe-
cially regarding concurrency and database management systems.
A transaction is a sequence of operations that executes in an all-
or-nothing fashion: it can either succeed, if all its operations suc-
ceed, or fail, if one of its operations fails. The partial effects caused
by a transaction while it is executing are not visible outside the
transaction, i.e., a transaction executes in isolation. When a trans-
action succeeds, we usually say it committed, since any changes it
made become visible outside the transaction. When a transaction
fails, we usually say it rolled back, since any partial changes it made
while executing, although not visible outside the transaction, are
discarded.

The idea of using transactions as means to control in-memory
concurrency was first suggested by Herlihy and Moss [76]. They
describe transactional memory as a multiprocessor architecture
with a lock-free implementation of transactions, which are defined
as finite sequences of machine instructions that satisfy properties
equivalent to isolation.

Conceptually, a transaction comprises a sequence of tentative
memory operations executed by a single execution flow; any
changes carried out by the memory operations are only effective,
and thus visible to other execution flows, if the transaction
commits, and are otherwise discarded. Transactions can only
commit if there are no read/write conflicts. A read/write conflict

2274 A. Skyrme et al. /J. Parallel Distrib. Comput. 74 (2014) 2266-2285

Transaction

State Transitions
(read/write operations)

B,

Intermediate States

Consistent
Initial State

AN

Rollback
(conflict)

Consistent
Final State

Fig. 4. A conceptual transaction diagram.

happens when two transactions are executing at the same time and
one of them writes to a memory location which is read by the other
one. When a conflict occurs, all transactions involved in the conflict
are aborted. Other than committing, the original transactional
memory proposal allows a transaction to abort, which discards all
changes carried out, and to test (validate) its status in order to
determine whether it has aborted. Transactions, for that matter,
are supposed to be short lived and to operate on small data
sets, as long-lasting transactions or transactions operating on
large data sets could increase the likelihood of abortions due to
conflicts. A transaction should not include operations that can
cause irreversible effects (such as I/O operations) since it may need
to be aborted and have its partial effects discarded. A conceptual
transaction diagram is shown in Fig. 4.

The semantics of transactional memory are often compared to
that of a single global lock, as transactions in a program could be
understood as critical regions protected by the same lock which
ensures atomic execution. This analogy, sometimes referred to as
single global lock atomicity, is praised for its simplicity and for its se-
mantic similarity to locks [70], with which most programmers are
already familiar with. Using single global lock semantics for trans-
actions has the added benefit of allowing coarse-grained atomic
execution to be provided while hiding transactions’ specifics (such
as explicit rollback primitives, for instance) [19]. This highlights
the fact that transactional memory can be both perceived as a pro-
gramming model and as an implementation technique to provide
mutual exclusion [19,69].

An important aspect of transactional memory semantics lies
in isolation. It is clear that isolation is ensured among transac-
tional code, but the interaction between transactional and non-
transactional codes is not so obvious. Two models are used to
define how transactional and non-transactional codes interact:
weak atomicity and strong atomicity. With strong atomicity, trans-
actional and non-transactional codes execute isolated, i.e., each op-
eration in non-transactional code behaves as a single instruction
transaction. With weak atomicity, only transactional code executes
isolated, i.e., non-transactional code may read values derived from
incomplete transactions or may write values while a transaction is
executing. The same program can behave differently depending on

the chosen semantics; a program which runs fine with weak atom-
icity might deadlock with strong atomicity [91].

The transactional memory model does not explicitly determine
that transactions should be enforced as the only means to access
shared data. Hence, programmers could disregard transactions and
access shared data directly, outside transactions. This, however, is
done at programmers’ own risk and could lead to race conditions
that could cause programs to exhibit unexpected behaviors and
produce incorrect results. The lack of enforcement is the most
prominent disadvantage regarding reasoning about transactional
memory, as well as to its potential to promote structured shared
data access.

Fig. 5 presents a simple example, based on the code provided
with the TinySTM software transactional memory implementa-
tion, to illustrate the use of transactions. The example is imple-
mented in C and uses the transactional memory support provided
with the latest stable version of the GNU C Compiler Collection
(GCC). It shows a function (add) that uses a transaction state-
ment (defined by the __transaction_atomic keyword) to add
a node to an integer linked list structure. Neither the list structure
nor any variables that instantiate it need to include type modifiers
due to the fact that they are used in transactions. The function to
create a new node (new_node), however, must be prefixed with
the transaction_safe keyword, to allow it to be called from
within an atomic transaction.

3.2.1. In practice

As opposed to conventional concurrency control models that
work by avoiding potential conflicts, transactional memory im-
plementations can employ different strategies, depending on
design choices [70], to deal with the concurrent data access.
Pessimistic concurrency control assumes conflicts will likely oc-
cur; thus, before a transaction starts, it must claim the ownership
of all data it will access throughout its execution in order to se-
cure exclusive access to it and prevent conflicts from happening.
It works similarly to locking mechanisms, except that the neces-
sary steps to secure exclusive access to data are transparent to
the programmer and thus less error-prone. Optimistic concurrency
control assumes conflicts will likely not occur; thus, a transaction

A. Skyrme et al. / J. Parallel Distrib. Comput. 74 (2014) 2266-2285 2275

1 |int add(int value)

2 | {

3 int result;

4 node_t *prev, *next;

5

6 __transaction_atomic {

7 prev = set->head;

8 next = prev->next;

9 while (next->val < val) {

10 prev = next;

11 next = prev->next;

12 }

13 result = (next->val != val);

14 if (result) {

15 prev->next = new_node(val, next);
16 }

17 }

18 return result;

19 |}

20

21 | static __attribute__((transaction_safe))
22 |node_t *new_node(val_t val, node_t *next)
23 | {

24 (...)

25 | }

Fig. 5. Animplementation of a function to add a node to a linked list structure.

can start executing immediately, but will only be able to commit if
there are no conflicts during its execution. While locking restricts
concurrent access to shared data to avoid inconsistencies, trans-
actional memory with optimistic concurrency control allows
concurrent access to shared data and deals with potential inconsis-
tencies as they become imminent. Both concurrency control strate-
gies require careful implementation though; pessimistic control
must prevent deadlocks when transactions are securing exclusive
access to data and optimistic control must prevent livelocks when
conflicting transactions continuously cause each other to abort.
Transactional memory can be implemented either in hardware
or in software. Hardware Transactional Memory (HTM) uses special
hardware instructions to access memory and to manipulate a
transaction’s state, like the ones proposed by Herlihy and Moss,
and cache-coherent protocols. However, such hardware support is
not widely available, as popular processors still do not include it
[24,105], leading to low portability [103] (i.e., dependence on
platform specific extensions). Hardware implementations rely on
adaptive backoff in order to decrease abort rates and promote
forward progress, which can also be considered a drawback.
Additionally, as pointed out by Lev and Maessen [89], depending
on hardware can also impose size limitations on transactions.
Software Transactional Memory (STM) [110] uses software
instructions to support static transactions, which are transactions
that access a pre-defined set of memory locations. Because
transactions must monitor read and write operations on shared
data in order to avoid inconsistencies, a software implementation
must incur a large overhead for each load or store instruction,
often resulting in poor performance [32,107].! Also, transaction

1 Dragojevi¢ and others [41] believe it is incorrect to compare software and
hardware implementations of transactional memory, and that the correct question
is whether software transactional memory outperforms sequential code.

conflicts incorrectly detected due to the coarse granularity of
conflict detection mechanisms, or simply false conflicts, can result
in transaction aborts and thus degrade performance [124]. Other
limitations introduced by some software transactional memory
implementations include the enforcement that once a memory
location is accessed transactionally, it must continue to be accessed
in that way, as well as the requirement that the reclamation of
memory locations accessed transactionally is handled differently
from other memory locations.

Although software implementations cannot match the per-
formance of hardware-based implementations, they offer better
portability (i.e., less dependence on specific platform extensions).
In fact, a software transactional memory can be considered sim-
ply a shared object that supports multiple changes by means
of transactions. Many other software implementations exist, like
the one proposed by Herlihy et al. [75]. In contrast with the
earlier hardware-based implementation proposal, this software-
based implementation is obstruction-free instead of lock-free and
is able to overcome size limitations. In fact, it is the first Dy-
namic Software Transactional Memory (DSTM) proposal, as it allows
transactions and transactional objects to be created dynamically;
transactions can also determine which objects to access based on
values observed in the same transaction. Block-freedom was a key
design choice for DSTM, specially regarding how it reportedly sim-
plified the implementation when compared to lock-freedom. How-
ever, there are also claims that block-freedom is not an impor-
tant property and, moreover, that it reduces transactional memory
performance [42] when a comparative performance evaluation is
carried out with a non-obstruction-free implementation of STM.
Empirical findings reported by Dice and Shavit [38] also suggest
that lock-based implementations of transactional memory have
better performance than non-blocking implementations. Since it
does not require hardware support, STM has greater present ap-
plicability, as evidenced by the experimental support included in

2276 A. Skyrme et al. /J. Parallel Distrib. Comput. 74 (2014) 2266-2285

the GNU C Compiler Collection (GCC) and in an Intel C++ STM
Compiler.

Apart from transactional memory implementations strictly in
hardware or strictly in software, there are also hybrid implemen-
tations. Virtual Transactional Memory (VTM) [104] proposes a com-
bined hardware and software architecture which seeks to improve
hardware transactional memory by providing an abstraction layer
that hides hardware specifics from the programmer, similar to the
virtual memory with regard to physical memory, without incurring
in a significant performance impact. Hybrid Transactional Memory
(HyTM) [36,115] combines hardware and software architectures.
HyTM improves portability by trying to exploit hardware transac-
tional memory, if it is available, and falling back to software trans-
actional memory otherwise.

3.2.2. Discussion

The main issue with transactional memory is the lack of
enforcement to ensure that shared data can only be accessed from
within transactions. This issue affects both hardware and software
implementations, as in both of them it is up to programmers to use
transactions to access shared data. Reasoning about transactional
memory could be simplified by enforcing that all shared data
access is carried out from within transactions, i.e., by disallowing
non-transactional code to access shared data. One way to do this
would be to use a type system which enforces that shared variables
can only be used inside transactions, such as in the Haskell
programming language [81]. However, we are unsure about
the feasibility of implementing such an approach in imperative
programming languages. This enforcement would contribute to
ensure communication is carried out in a structured way, as
it would take away from programmers the flexibility, which
we consider harmful, to choose between transactional and non-
transactional accesses to shared data.

Nesting transactions, like nesting monitors, requires caution.
Nested transactions may seem appealing, for instance, to allow
for partial commits or aborts within large transactions. However,
implementing nesting can be complex and follow different nesting
models [95]. For instance, when a child transaction aborts, does the
parent transaction aborts as well or is it just notified so it can take
some action? And can a child transaction conflict with a parent
transaction? Another issue with nesting is that the sequential
composition of transactions can lead to livelocks [91].

Harris et al. [71] have proposed two operators to compose
transactions in Haskell: retry and orElse. The retry operator
aborts the transaction and restarts it when at least one of the
variables that were read by the aborted transaction is updated by
another transaction. It can be called from within a transaction to
indicate a condition which prevents the transaction from running
to completion. A programmer might call the retry operator,
for instance, from a transaction that removes an item from a
buffer in case the buffer is empty. Although similar to implicit
signaling in monitors, the retry operator does not specify either
the transactions it coordinates with or the shared variables which
are read or updated. The orElse operator can be used to compose
transactions as alternatives. It can be called between two inner
transactions within an outer transaction; if the first transaction
commits, then the second transaction is not executed, otherwise, if
the first transaction executes a retry, then the second transaction is
executed. If the second transaction executes a retry, then the whole
orElse statement executes a retry.

The performance of transactional memory, and specially of soft-
ware implementations is also an open issue. One of the few works
that report practical experience with transactional memory ap-
plied to real-world applications is that of Gajinov and others [47].
It reports an experiment to rewrite Quake, a complex multiplayer

game, as a parallel application using software transactional mem-
ory for concurrency control. This empirical experience showed that
indeed there were significant performance overheads when using
STM and taking a coarse-grained parallelization approach. The per-
formance overhead was mostly due to the high transaction abort
rate. It also concluded that shared data accessed by transactions in
some cases grew to sizes that could restrict or prevent hardware
transactional memory from being used.

3.2.3. Structured communication support

Transactional memory does not qualify as structured commu-
nication because it does not enforce that programmers use trans-
actions to access shared data. This lack of enforcement compels
programmers to reason about the interaction between transac-
tional and non-transactional codes.

Reasonability

Transactional memory supports two atomicity models: weak
atomicity and strong atomicity. With weak atomicity, transactional
and non-transactional codes might interact in unintended ways,
thus allowing data races and complicating reasoning, as arbitrary
operations could access shared data. With strong atomicity, trans-
actional and non-transactional codes execute atomically and thus
there are no data races. Since there is no enforcement to use trans-
actions, arbitrary operations can access shared variables and thus
reasoning about a program’s execution is complex. Even when
strong semantics are used, some implementations require pro-
grammers to declare which functions are safe to be called from
within transactions, thus correctness still depends on program-
mers’ discipline and not on language enforced mechanisms.

Performance

Transactional memory can be implemented either in the hard-
ware or in the software. Hardware implementations offer supe-
rior performance at the cost of limited portability (i.e., higher
dependence on platform specific extensions), since widespread
hardware support for transactional memory is still sparse. Soft-
ware implementations, on the other hand, exhibit performance
bottlenecks but offer better portability. Besides, performance tun-
ing with transactional memory involves many subtleties such as
transaction duration, data set sizes, concurrency control strategy
(optimistic or pessimistic) and conflict resolution.

Composability

Implementing nested transactions is not trivial, as different ap-
proaches can be taken regarding how parent and child transactions
interact. However, unlike monitors, transactions do not need to
specify the shared resources that they must access or synchronize
with, as synchronization is implicit; this simplifies composability.
Functions like retry and orElse, can improve composability, as they
allow for transactions to be composed as sequences or alternatives.

3.2.4. Summary
A summary of structured communication support in transac-
tional memory is presented in Table 2.

3.3. Tuple spaces

The tuple space concept was first proposed by Gelernter and
Carriero in the context of the Linda framework [30,48]. A tuple
space is a shared associative memory which can be used by
multiple execution flows to communicate. As the name suggests,
a tuple space comprises tuples — sequences of values, possibly of
different types - that can be accessed concurrently. Tuples have no
addresses or unique identifiers, and are retrieved through pattern

A. Skyrme et al. / J. Parallel Distrib. Comput. 74 (2014) 2266-2285 2277

Table 2
Summary of structured communication support in transactional memory.

Transactional memory

Reasonability

Unpredictable, since there is no enforcement that shared data can only be accessed from within transactions.

Performance
software implementations.

Restrained, considering there is hardware support, but it is not widespread yet, and there is no consensus about the performance of

Composability

Implemented, as implementing nested transactions is not trivial, yet composing operators have already been implemented in

Haskell and transactions need not specify the shared resources they depend on.

Tuple Space

Execution flows
withdrawing tuples

<?c, 0, 0>

<"foo”, ?i>

Execution flows
inserting tuples

"ou

<f,0,0>

<"huey”, “dewey”, “louie”>

<3133> e

<"bar”, 33>
Execution flows delayed while
trying to withdraw tuples

. <1,1,3,4>

<€ —/— - <V, A, 2= — — £

Fig. 6. A conceptual tuple space diagram.

matching on values or value types. Execution flows communicate
with each other by atomically inserting and retrieving tuples in a
tuple space. The tuple space communication model is both space
decoupled and time decoupled Although commonly associated with
distributed environments [11], conceptually there is no restriction
that prevents tuple spaces from being used locally on a single
machine (as implemented, for instance, in Lualanes [82]). A
conceptual diagram of a tuple space is shown in Fig. 6.

Because the literature on tuple spaces in general relates to com-
munication among different operating system processes, it is not
explicit about enforcing that access to shared data should be only
through the tuple space. However, this is implicit in Carriero and
Gelernter’s discussion of coordination languages [49], which uses
the Linda framework to emphasize the importance of explicitly
separating computation from coordination. While the computa-
tion model - programmed in C or FORTRAN - is concerned with
the activities each execution flow performs individually, the coor-
dination model - programmed in Linda - is concerned with how
execution flows are created and how they interact with each other.
This promotes a clear distinction, in source code, of points where
non-deterministic behaviors can occur, namely where interactions
with tuple spaces happen, and directly relates to our concept of
structured communication.

3.3.1. In practice

Tuple spaces represent a simple, yet flexible, communication
model. They have been implemented in different programming
languages, but the reference implementation is a commercial
distribution [109] of the Linda programming language (TCP Linda).
Although TCP Linda is supposedly used by a number of different
applications in the industry, we were unable to find evidences in
the literature to support that claim other than the case studies
presented at its site [114]. Implementing tuple spaces holds a

number of challenges, specially in terms of performance, as we will
show in this section.

Linda provides a few basic operations that can be used to
interact with a tuple space: out, in, read (sometimes referred to as
rd), and eval. The out operation inserts a tuple into the tuple space
and returns immediately. The in operation, conversely, withdraws
atuple from the tuple space based on pattern matching; if no match
is found, it suspends execution until one becomes available, and if
multiple matches are found, one is chosen at random. The read
operation works in a similar fashion to the in operation, except
that instead of withdrawing the matching tuple from the tuple
space, it just copies its values. The eval operation triggers the
execution of a new process. Both inserting and withdrawing tuples
from the tuple space (out and in) are atomic operations; the order
in which concurrent operations are actually executed, however, is
not deterministic. Also, when more than one match is found for an
in or read operation, any of the matching tuples can be returned.
There are no operations to change a tuple’s values in-place: in order
to change values in a tuple it is necessary to first remove the tuple
(in) and then insert a new tuple (out) with the updated values.

An example of an unbounded FIFO buffer implemented with
a Linda-inspired syntax is presented in Fig. 7. The buffer is built
using two tuple structures. The first structure includes a string
label and an integer index; it is used to mark the buffer’s head
and the buffer’s tail, both initially set to 0. The second structure
includes a string label, an integer index and an integer value. The
put and get functions are implemented entirely with the in and
out operations.

Tuples are well-suited as a building block to implement
other communication and synchronization abstractions. Lower-
level abstractions can be directly mapped to Linda. The out and
in operations, for instance, can be used to implement message
passing, as they can clearly be mapped to the traditional send

2278 A. Skyrme et al. /J. Parallel Distrib. Comput. 74 (2014) 2266-2285

init () {

-

2 out ("head", 0)

3 out ("tail", 0)

4|7

5

6 |put(value) A{

7 in("tail", ?index)

8 out("tail", index+1)

9 out ("node", index, value)
10 |}

11

12 |take () {

13 in("head", ?7index)

14 out ("head", index+1)

15 in("node", index, 7value)

}

=
=]

Fig. 7. An unbounded buffer implemented with a Linda-inspired syntax.

and receive operations. A tuple with a single element, on the
other hand, can be used as a binary semaphore, where the out
operation would work as the V (signal) operation and the in
operation would work as the P (wait) operation. Building higher-
level communication or synchronization abstractions with tuples,
however, requires some implementation effort, as they only offer
lower-level operations.

Linda’s concepts and operations were implemented for many
different programming languages. Besides the original extensions
to C and Fortran [109], tuple spaces have been implemented for
languages such as Python [123], Ruby [106] and Java [46,92]. Of
particular interest is the eLinda [117] implementation in Java.
eLinda includes some extensions to Linda, like a Programmable
Matching Engine (PME) which improves the tuple matching
functionality. The PME allows a program to retrieve a tuple based
on criteria applied to some field or to summarize information on
a subset of tuples. It allows a program, for example, to retrieve a
tuple where some field has the lowest value or to calculate the
number of fields of a certain type in a subset of tuples. This can
improve the performance on operations which would normally
require previous access to a subset of tuples before computing a
result. A survey of Linda implementations in Java together with a
comparison with eLinda and some performance benchmarks are
presented by Wells et al. [120,118,121].

Linda also inspired the Concurrent Collections (CnC) model [28],
which uses a coordination language to add parallelism to a host
programming language. CnC uses a tuple space to allow the
communication and creation of execution flows. Tuples in CnC are
composed of values and tags, which are separate entities, unlike
Linda, where tags can be expressed only by the use of wildcards to
select tuples. Also, CnC does not allow values that are on the tuple
space to be overwritten, i.e., in CnC once a value is placed in the
tuple space, it becomes immutable (see Section 3.4). Finally, the
standard operation to read tuples in CnC does not remove them
from the tuple space.

An early paper about developing applications with Linda is pre-
sented by Linda’s authors [31]; it includes three experiments in
writing parallel code in Linda. A later and more elaborate report
describes a number of (mostly scientific) applications where Linda
was used, and presents execution benchmarks, mostly against sim-
ilar message passing applications running in distributed environ-
ments [15]. As mentioned earlier, significant emphasis is placed
on using Linda in distributed environments, which explains why
comparisons with message passing are recurring. Linda, however,

can be considered more expressive than pure message passing, as
it is trivial to emulate message passing point-to-point style com-
munication in Linda, but it is complex to emulate Linda’s behavior
by using pure message passing primitives; besides, as with other
models, tuple spaces can also be implemented with shared mem-
ory. This flexibility evidences the benefits of using higher-level ab-
stractions which focus on structured communication instead of
specific communication models. Other, more recent, examples of
applications which use Linda concepts include the LIME (Linda
in a Mobile Environment) middleware [101] and its extensions,
TinyLIME [35] and TeenyLIME [34], which allow for the develop-
ment of mobile and sensing applications in wireless and wireless
sensor networks using distributed shared tuples as means to sup-
port communication among mobile hosts.

3.3.2. Discussion

The performance of Linda programs relies heavily on com-
piler optimization [125], which in turn is very dependent on tu-
ple space usage patterns; depending on how tuples are composed
and accessed throughout a program, the Linda compiler might di-
vide a tuple space in multiple subsets to improve the indexing
performance or even choose different underlying implementation
mechanisms. This, in turn, makes it difficult to predict the perfor-
mance of Linda programs and thus makes Linda unsuitable for sys-
tems with strict performance requirements, such as real-time and
embedded systems. Associative value matching adds complexity
and has little apparent value, since the tuple structure and nam-
ing schemes must be previously known to allow communication
among execution flows with disjoint name sets. Some Linda im-
plementations require that a tuple’s first value is a constant string.
This requirement can simplify tuple indexing, as the ability to per-
form pattern matching on an arbitrary tuple value could impose
performance and scalability implementation issues.

Linda semantics have also received their share of criticisms.
Perhaps the most common of these is the fact that retrievals must
be based on exact matches [119], disallowing searches based on
ranges or other, more flexible, conditions. This highlights the fact
that Linda only offers lower-level operations for communication
and synchronization. Therefore, although Linda is well-suited
as a building block for communication and synchronization
abstractions, developing higher-level abstractions requires an
implementation effort and reasoning about how to collectively
coordinate operations with tuples.

A. Skyrme et al. / J. Parallel Distrib. Comput. 74 (2014) 2266-2285 2279

Table 3
Summary of structured communication support in tuple spaces.

Tuple spaces

Reasonability

Fine-grained predictable, as single operations in tuple spaces have predictable behaviors but collective operations may lead to

unpredictable results, such as coarse-grained deadlocks.

Performance

Optimizable, as tuple indexing can be optimized when statically typed, compiled programming languages are used.

Composability

Ad hoc, since typical operations on tuple spaces are on individual tuples and composing them requires additional constructs to

ensure atomicity. There are no explicit model concerns with composability, nor reference implementations.

Another frequent concern is the lack of support for bulk
operations, which may impact the performance if the programmer
must resort to a large number of individual atomic operations.
Finally, the fact that there is no implicit order among tuples
matching a given pattern can be an extra source of complexity and
requires the programmer to explicitly use sequencing mechanisms
if they are necessary.

3.3.3. Structured communication support

We believe the Linda framework has brought important re-
search contributions, in particular regarding the coordination lan-
guage concept. Its communication scheme based on tuple spaces
continues to draw interest in the present, as evidenced by the many
Linda implementations for different programming languages and
citations in research papers. However, despite Linda’s apparent
popularity, its reference implementation is only available commer-
cially and lacks evidences in the literature of its use in real-world
applications; thus, the tuple space concept seems to be more sig-
nificant in theory than in practice.

Reasonability

The tuple space concept is simple to understand. Reasoning
about a program in Linda, for instance, is easy: the communication
operations are clearly defined and a programmer can determine
code segments where there is interaction with a tuple space.
Because all operations on a tuple space are automatically
serialized, fine-grained race conditions are eliminated. Operations
in tuple spaces are very similar to simple message passing. Still, in
message passing there is a clear distinction between messages and
their contents, i.e., the structure of the data being communicated.
With tuples this distinction is blurred, as the structure of the
data being communicated is defined by the tuple itself, which
also represents a message. Hence, the intuitive use of message
passing can be easier to reason about than the intuitive use of
tuple spaces. Moreover, since tuple spaces only provide lower-level
operations, they impose a greater risk of coarse-grained deadlocks
in programs.

Performance

Tuple spaces’ performance relies heavily on how tuples are
inserted, removed and read, i.e., it relies on how tuples are struc-
tured and on how they are indexed throughout a program. Imple-
menting tuple spaces with statically typed, compiled programming
languages, allows for performance optimizations by the compiler,
since it can analyze tuple access patterns. Implementing features
such as allowing a tuple to be indexed by any of its values (instead
of having a pre-determined index value), for instance, only seems
reasonable, in terms of performance, when using such program-
ming languages. Thus, the tuple space performance is good as long
as implementations allow for compiler optimizations.

Composability

Typical operations on tuple spaces target only individual tuples.
Thus, atomicity can only be ensured for single operations on single
tuples. Composing higher-level operations, like an operation which
requires access to multiple tuples, demands that programmers
create constructs to ensure atomicity for the whole operation.

3.3.4. Summary
A summary of structured communication support in tuple
spaces is presented in Table 3.

3.4. Data immutability

Type systems [45,102] allow programming languages, by means
of type checking, to automatically detect certain program misbe-
haviors and ensure some invariants are maintained throughout a
program’s execution. Moreover, type qualifiers can be used to in-
crease the expressiveness of types in standard type systems and,
thus, to allow additional invariants to be specified and checked.

Although type systems are not concurrency control models,
they can be useful to support structured communication, in
particular when used to provide data immutability and to ensure
only immutable data can be used for communication among
execution flows. Immutability is also not, per se, a concurrency
control model; however, it is a proven building for communication
among execution flows and hence we choose to include it in this
survey.

Several authors discuss the benefits of immutability [16,44,
50], some of which are directly related to concurrency. Immutable
objects are inherently simpler than mutable objects. They are
a suitable choice for elements in sets and keys in associative
arrays, as well as for building blocks for other objects. Since an
immutable object cannot be altered, it essentially admits only
a single state. Thus, it is easier to ensure object consistency
throughout a program’s execution, as long as class invariants are
upheld by constructors. Regarding concurrency, it is safe to share
or cache references to immutable objects, so it is not necessary
to implement cloning methods or constructors; likewise, it is not
necessary to make defensive copies of immutable objects.

Immutability makes the choice between passing an object by
value or by reference come down to an implementation matter.
It allows message passing semantics to be implemented without
copying data [80], i.e., it allows references to immutable data be
passed as if they were copies of the same data. This reinforces
the idea that the main issue at stake is not choosing between
shared memory or message passing, but rather ensuring that the
communication is performed in a structured fashion.

3.4.1. In practice

Plenty of programming languages support constants, or iden-
tifiers which are associated to values that are not meant to be
changed during a program’s execution. It is important to distin-
guish constants from immutability: while constants are associated
with single values that cannot be changed, immutability is associ-
ated with data structures or objects that, as a whole, including all
contained values, cannot be changed. Therefore, constants are es-
sential building blocks to implement immutable objects and data
structures.

Constants can be both static, like hard-coded literals, or dy-
namic [108], like run-time constants whose values cannot be de-
fined at compile time. Purely functional programming languages,
like Haskell, operate only with constants. Imperative languages,

2280 A. Skyrme et al. /J. Parallel Distrib. Comput. 74 (2014) 2266-2285

like C, C++ and Java, on the other hand, usually include type qual-
ifiers which can be used to denote constants. In C and C++ the
keyword const is used; it can be applied to variables’ values and
references, to prevent them from being altered, as well as to meth-
ods, in order to indicate they do not change an object’s data mem-
bers. In Java, the keyword final is used; it can be applied to
variables, to allow only for a single (value) initialization. The proper
usage of constant type qualifiers to allow the compiler to check that
constants are not modified throughout a program is called, in C and
C++ parlance, const-correctness.

The Java programming language, in particular, has been widely
used as a testbed for immutability research. However, Java's
referential semantics and the arbitrary combination of mutable
and immutable types make it a complex testbed. Defining and
enforcing the semantics of immutability in an object-oriented
language like Java might appear simple at first, but it is not.
Some evidence of the complexities associated with immutability
can be found in the Java Specification Request 133 (JSR-133),
which defines the Java memory model. It specifically addresses, for
instance, initialization safety, a property which ensures that as long
as an object does not leak references during its construction, all
execution flows that access that object will see the values of its
final fields as set by the constructor, without the need for explicit
synchronization. Also, although not specific to the language, since
Java uses referential semantics to access objects, it is difficult
to ensure that objects inside an immutable object (sub-objects)
cannot be directly accessed by using their references.

Haack et al. [55-57] explore immutability in Java by proposing
two notions of immutability: observational, if two instances of the
same object cannot be told apart, at different points in time, by
an external observer, and state-based, if an object’s state does not
change after initialization. They also present an extension to the
core Java language which includes an immutable attribute, that can
be used with classes which can only be instanced by immutable
objects, and attributes to constrain objects and methods that
immutable objects depend on. They also built up this extension
to create a pluggable type system which can be used to statically
check object immutability in Java-like languages.

Another indication that the semantics of immutability are not
trivial is presented by Pechtchanski and Sarkar [99]. They argue
that type modifiers such as final are not enough to express some
immutability properties and are limited in scope. For instance, the
lifetime (or duration) of the immutability cannot be changed for
a final variable: it always begins after the constructor finished
executing and only ends when a program finishes executing. Also,
the final modifier only applies to the declared variable, not to
any objects that may be referenced by the variable. Hence, they
propose a framework, implemented by means of annotations, to
define immutability with improved expressiveness and evaluate
how it can be used for code optimization. Annotations are also used
in other work to explore immutability: Boyland and others [23],
for instance, observe that frequently annotations used to define
and protect immutable references are defined individually and
formalized independently, resulting in arbitrary semantics and an
abundance of names with subtle significance differences. Their
paper also summarizes some of the more popular annotations used
to protect references and describes a system designed to control
reference sharing which can model the annotations.

Zibin et al. [126] propose using Java generics and annotations
to define and enforce both reference and object immutability.
This proposal is partly inspired by Javari [12], a Java extension
which includes a type system to express and enforce immutability,
and presents Immutability Generic Java, an extension to the Java
language and its type system. Neither of the aforementioned
work focuses on concurrency and both lack the means to ensure

shared data remains consistent, for instance by restricting that only
immutable data can be shared.

An example regarding immutability in Java is presented by
Boyapati et al. [22]. It proposes a type system to prevent data races
and deadlocks in Java and uses ownership types [33] to associate
objects with protection mechanisms. Each protection mechanism
is defined as part of a variable’s type and may refer to the lock
that is used to protect access to the object pointed by the variable
or indicate that the object may be freely accessed by multiple
execution flows. The latter case implies the object is immutable,
or it is only accessible by a single execution flow, or the variable
holds a unique pointer to the object. Although rather focused on
the ordered use of locks, this work is pertinent to our survey as
it uses immutability as part of its protection mechanisms and it
enforces that objects are associated with a protection mechanism,
thus promoting communication in a structured fashion.

Immutable values are natural in functional environments. The
Erlang programming language [7] is a good example of the use
of immutability in concurrent programming. Erlang has built-
in support for concurrency, distribution and fault-tolerance, and
is used primarily for soft real-time systems, notoriously for
controlling large telecommunication systems from Ericsson [8,9].
Because it follows a functional paradigm, Erlang only supports
single assignment variables, which in effect result in immutable
objects. It also supports and stimulates massive concurrency
by means of multiple lightweight processes that communicate
through message passing. Even when executing on a local (non-
distributed) environment, all data in messages exchanged among
Erlang processes is copied [43]; however, this is transparent to the
programmer, and another implementation could be chosen with
no impact on the communication semantics [80].

Concurrent Haskell [100] also explores the combination of
immutability and concurrency. Concurrent Haskell is an extension
to the Haskell programming language. It provides primitive
types and operations that allow concurrent execution flows to
be created, synchronized and to communicate. Since data is
immutable by default in Haskell, execution flows can share data
simply by using the same variables. An underlying synchronization
mechanism ensures that lazy expressions are only evaluated by
one execution flow; if other execution flows try to evaluate an
expression which is already being evaluated, they are blocked
until the first execution flow finishes evaluation and overwrites
the expression with its value. Despite being based on a purely
functional programming language, Concurrent Haskell provides a
mutable state variable, by means of monads, to allow execution
flows to share data and explicitly recognizes the need for such
mechanism for a number of reasons outlined by Peyton Jones
et al. [100].

Yet another example of immutability used as a building block
to support concurrency is the D programming language [3]. It
uses message passing to allow for communication among threads
and its variables are, by default, local to each thread. Moreover,
messages can only contain immutable values, a restriction which is
enforced by the compiler. Fig. 8 presents a simple implementation,
in D, of a program with two threads that uses immutability to
share data. The first thread, defined in the main function, creates
the second thread with the spawn function and the executes a
read loop over chunks of unsigned bytes, each with a size equal
to bufferSize. At each iteration, a new buffer of immutable
unsigned bytes is allocated and its values are initialized with
the chunk that was read. Then, the buffer is sent to the second
thread, which in turn, executes a writer loop, receiving the array
and writing its contents to an output. If we changed the buffer
type from immutable unsigned bytes (immutable (ubyte) [1)to
simply unsigned bytes (ubyte []), the call to the send function
would not compile.

V]

A. Skyrme et al. / J. Parallel Distrib. Comput. 74 (2014) 2266-2285

import std.algorithm, std.concurrency, std.stdio;

2281

3 |void main() {

4 enum bufferSize = 1024 * 100;

5 auto tid = spawn(&fileWriter);

6 // Read loop

7 foreach (immutable(ubyte) [] buffer;

8 stdin.byChunk (bufferSize)) {
9 send(tid, buffer);

10 }

1 |}

12

13 |void fileWriter() {

14 // Write loop

15 for (;;) {

16 auto buffer = receiveOnly! (immutable(ubyte) [1) ();
17 tgt.write (buffer);

18 T

19 |}

Fig. 8. Asimple program in the D language that uses immutability to share data between two threads: a reader and a writer.

3.4.2. Discussion

Adisadvantage of immutable objects is the need to create a new
object for every distinct value (or set of values). This can represent
a performance bottleneck for large objects or for methods where
it is necessary to create multiple intermediate objects that will
be discarded once a final result is reached. In this case, the
performance bottleneck is not only caused by the time taken to
create each new object, but also by the potential burden of intense
garbage collection.

Another commonly discussed issue regarding immutability lies
in the complexity of properly defining its semantics. Pechtchanski
and Sarkar [99], for instance, argue that common type modifiers
associated with immutability, like const and final, have limited
significance as they cannot be used to express immutability
patterns commonly observed in programs. Additional evidence of
the complexity associated with the semantics of immutability are
presented by Haack et al. in their work to enhance the Java type
system to support immutability [57,55].

3.4.3. Structured communication support

Despite being a useful feature for communication, immutability
by itself is not enough to ensure structured communication. Most
obviously, because allowing both mutable and immutable data to
be used in a program, as well as supporting referential semantics
to access objects, makes it difficult to enforce that only immutable
objects are shared and that they are not changed throughout a
program’s execution. The semantics of immutability are also not
trivial to implement on programming languages that have not
considered this model from start.

Working exclusively with immutable data requires a paradigm
shift for programmers used to imperative programming languages,
as programs must be structured considering that data cannot
be modified in place. Even worse, modifying data in place
is a fundamental functionality in object-oriented programming
languages. This can explain why it is complex to implement and
enforce immutability in languages like Java.

Reasonability

The semantics of immutability are simple to understand, in par-
ticular when it is used for fine-grained concurrency, yet hard to im-
plement, specially on programming languages like Java, that allow

both mutable and immutable objects, as well as supports referen-
tial semantics. Immutable data is simple to reason about, as long
as its immutable status is explicit. Since no updates are possible,
writes are disallowed and concurrent read operations can be safely
executed without concerns about data races or unpredictable be-
haviors. The lack of mechanisms to enforce that data can only be
shared as long as it is immutable, however, invalidates that benefit.

Performance

When using immutable data, implementations can benefit
from performance optimizations, like passing references instead
of copying values; this allows, for instance, the implementation
of message-passing semantics without copying data and thus with
performance similar to that of shared memory.

Composability

Immutability is well suited as a building block for other models,
however it has limited applicability by itself to concurrency
and offers no constructs that can be composed. Therefore, we
understand the composability property is not applicable.

3.4.4. Summary
A summary of structured communication support with im-
mutability is presented in Table 4.

4. Discussion

In this section we summarize the previous discussions of each
surveyed concurrency control model, plus of data immutability.
Then, we comment on some of ours findings after having analyzed
them.

Monitors, as implemented in Concurrent Pascal, probably
represent the concurrency control model which comes the closest
to providing structured communication among execution flows. In
particular, the enforcement that shared data access can only occur
from within monitors is a fundamental aspect in that respect; it
simplifies reasoning about the execution of a program that uses
monitors and removes from programmers much of the burden of
controlling mutual exclusion. Unfortunately, there are no recent
implementations of the original monitor model—programming

2282 A. Skyrme et al. /J. Parallel Distrib. Comput. 74 (2014) 2266-2285

Table 4
Summary of structured communication support with immutability.

Immutability

Reasonability

Predictable, due to easy to understand semantics for fine-grained concurrency when accessing immutable objects.

Performance Restrained, as implementations can benefit from optimizations such as passing references instead of copying values but must
create new objects for distinct values.
Composability n/a

Table 5
Summary of structured communication support in surveyed models.

Monitors Transactional memory Tuple spaces
Reasonability Predictable Unpredictable Fine-grained predictable
Performance Restrained Restrained Optimizable
Composability Ad hoc Implemented Ad hoc

languages such as Java permit access to shared data outside the
scope of monitors. We believe that one of the reasons for this is
that it is difficult to enforce that data sharing occurs only inside a
given syntactic construct when working with memory references.

Transactional memory shares some similarity with monitors,
such as controlling communication by defining operations that
must be executed atomically. However, differently from monitors,
it does not bind the atomic operations to the data accessed during
their execution. There are no mechanisms to enforce that shared
data is accessed only from within transactions, and therefore
transactional memory cannot prevent low-level race conditions
and all resulting problems. An exception is Concurrent Haskell, that
uses monads and the Haskell type system to prevent free access to
shared variables, but there are as yet no proposals for applying this
technique to more conventional languages. Additionally, despite
all the interest in transactional memory, it still lacks widespread
hardware support and it is difficult to implement transactional
memory efficiently in software.

Tuple spaces are extensively cited in the literature and imple-
mented in different programming languages. The concept of sepa-
rating computation from coordination, implemented in the Linda
programming language, relates to our concept of structured com-
munication as it allows for clear distinction, in source code, of
points where non-deterministic behaviors may occur. However,
coarse-grained (or collective) operations in tuple spaces can lead
to unpredictable results and require additional constructs to en-
sure atomicity.

Data immutability is not a concurrency model per se. It lacks the
means, by itself, to provide or to enforce structured communica-
tion. However, it offers a way to solve one of the main obstacles in
the way of structured communication mechanisms, namely using
references to share data. Initiatives such as that of the D program-
ming language show that immutability can be used by the compiler
to provide the programmer with some guarantees, accomplishing
a mechanism akin to message passing in terms of reasonability
but with the performance of shared memory. Higher-level, com-
posable constructs have yet to be explored. Moreover, we believe
immutability has not yet been thoroughly researched as a building
block to support structured communication in concurrency. Its po-
tential suggests that future work could be carried out to improve
type systems to better support concurrency and enforce its correct-
ness.

Table 5 presents a summary of structured communication
support in each of the surveyed models. The table purposely does
not include immutability, as it does not really make sense to
compare it side-by-side with the other models.

One result that was somewhat surprising is that we did not find
that composability was modeled in any of the studied concurrency
control mechanisms. In Linda, the lack of support for composabil-
ity seems well integrated with the design of the model, as authors

have explicitly expounded the advantages of allowing program-
mers to build their own data structures from the fine grained prim-
itives [30], and the idea of nesting is not immediately applicable. In
the case of monitors and transactional memory, however, nesting
seems to be a rather intuitive occurrence but in neither case was
the semantics for nesting thoroughly discussed in initial proposals.

A common pattern we observed when analyzing each model
is that authors seem to expect that a single concurrency control
model will be enough to address all communication requirements
of a program. Examples provided in the literature are usually
based on carefully chosen programs, which can be neatly rewritten
according to a specific concurrency control model in order to
improve the performance or simplify the communication among
execution flows. Although fine from a didactic point of view, real-
world programs present different communication requirements
which can prevent a single concurrency control model from being
used, or at least may force the programmer to use a model in
unintended or sub-optimal ways just to maintain homogeneity.
Using multiple concurrency control models in a single program,
on the other hand, can quickly increase the complexity and
make reasoning about a program'’s execution harder; how can
a programmer evaluate, and reason about, the composition of
communication constructs from different concurrency control
models?

We found that the reasonability property is commonly
neglected in many research papers on concurrency control models.
More often than not, too much effort is placed in improving
performance or exploring niche use cases, while too little effort is
placed in defining and enforcing precise semantics, as well as in
evaluating the practical implications for programmers of using a
model in real-world programs. The lack of reasonability is a major
cause of the complexity of concurrent programming; it is mostly
related to the unstructured communication among multiple
execution flows, which usually results in unexpected behaviors.

We understand that the enforcement of the use of constructs
limits flexibility, as it is common for programmers to try to im-
prove performance by circumventing standard communication
patterns [107]. However, it is our belief that in the vast majority
of situations the price for such flexibility is too high; concurrent
programming is already inherently complex and very few pro-
grammers can (or want to) afford the responsibility of maintaining
communication consistency in a concurrent program.

The choice between flexibility and simplicity is a common one.
Aninteresting parallel is with memory management, regarding the
choice between manual and automatic memory management [54].
For a long time, programmers despised automatic memory
management as too slow for real applications; currently, many
programmers and programming languages adopt it, making
dangling pointers and memory leaks things of the past. We believe
that concurrency must do a similar transition.

A. Skyrme et al. / J. Parallel Distrib. Comput. 74 (2014) 2266-2285 2283

5. Conclusion

In this paper we analyzed three concurrency control models
- monitors, transactional memory and tuple spaces - plus data
immutability and evaluated their support for structured commu-
nication among execution flows. We concluded that the analyzed
models mostly lack support for structured communication since
they do not prevent the use of constructs that can lead to unpre-
dictable results.

One of the major difficulties in enforcing well-behaved accesses
to shared data seems to be related to memory references
(pointers). The possibility of having complex data structures leak
references to nested data seems to be a crucial difficulty for
enforcing that data is shared only inside monitors or inside
transactions. It is also the source of difficulties in guaranteeing that
only immutable values are shared. Thus, it seems that any work
on structured communication must from the start consider how to
deal with references. The recent work with types and effects seems
to be a promising direction [17,18].

Another conclusion is that the analyzed concurrency models
have not given much thought to the issue of composability in their
design. The composition of concurrent operations is a common
requirement, and should be taken into consideration from the start.

In fact, the design of a programming language must deal with
concurrency from the start. As pointed out by Boehm and Adve
[20,1], the language memory model itself can prevent the construc-
tion of predictable concurrent programs. In the interest of flexi-
bility, languages should probably not have ingrained concurrency
models, but it is adamant that they offer sufficient conditions for
the implementation of structured models with the enforcement of
conditions that guarantee predictability.

References

[1] S.V. Adve, H.-J. Boehm, Memory models: a case for rethinking parallel
languages and hardware, Comm. ACM 53 (8) (2010) 90-101.

[2] G.Agha, Actors: A Model of Concurrent Computation in Distributed Systems,
MIT Press, Cambridge, MA, USA, 1986.

[3] A. Alexandrescu, The D Programming Language, Addison-Wesley Profes-
sional, Upper Saddle River, NJ, USA, 2010.

[4] G.R. Andrews, Paradigms for process interaction in distributed programs,
ACM Comput. Surv. 23 (1991) 49-90.

[5] G.R. Andrews, F.B. Schneider, Concepts and notations for concurrent
programming, ACM Comput. Surv. 15 (1983) 3-43.

[6] J. Armstrong, Why I don't like shared memory, personal Blog - Armstrong
on Software (September 2006). URL
http://armstrongonsoftware.blogspot.com/2006/09/why-i-dont-like-
shared-memory.html.

[7] J. Armstrong, Programming Erlang: Software for a Concurrent World,
Pragmatic Bookshelf, 2007.

[8] J. Armstrong, Erlang — a survey of the language and its industrial applications,
in: INAP'96 — The 9th Exhibitions and Symposium on Industrial Applications
of Prolog, Hino, Tokyo, Japan, 1996.

[9] J. Armstrong, The development of Erlang, in: Proceedings of the Second
ACM SIGPLAN International Conference on Functional Programming, ICFP'97,
ACM, New York, NY, USA, 1997.

[10] D.F.Bacon, R.E. Strom, A. Tarafdar, Guava: a dialect of Java without data races,
in: Proceedings of the 15th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA’00, ACM, New
York, NY, USA, 2000.

[11] H.E.Bal,].G. Steiner, A.S. Tanenbaum, Programming languages for distributed
computing systems, ACM Comput. Surv. 21 (1989) 261-322.

[12] A. Birka, M.D. Ernst, A practical type system and language for reference
immutability, in: Proceedings of the 19th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA’04, ACM, New York, NY, USA, 2004.

[13] K.P.Birman, T.A. Joseph, Exploiting virtual synchrony in distributed systems,
ACM SIGOPS Oper. Syst. Rev. 21 (1987) 123-138.

[14] A.D. Birrell, BJ. Nelson, Implementing remote procedure calls, ACM Trans.
Comput. Syst. 2 (1984) 39-59.

[15] R. Bjornson, N. Carriero, D. Gelernter, T. Mattson, D. Kaminsky, A. Sherman,
Experience with Linda, Tech. Rep., Yale University, YALE/DCS/TR866B, 1991.

[16] J. Bloch, Effective Java (The Java Series), second ed., Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2008.

[17] R.L. Bocchino Jr., V.S. Adve, S.V. Adve, M. Snir, Parallel programming must be
deterministic by default, in: Proceedings of the 1st USENIX Conference on
Hot Topics in Parallelism, HotPar’09, USENIX Association, Berkeley, CA, USA,

2009.
[18] R. Bocchino Jr., S. Heumann, N. Honarmand, S.V. Adve, V.S. Adve, A.

Welc, T. Shpeisman, Safe nondeterminism in a deterministic-by-default
parallel language, in: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL'11, ACM, New
York, NY, USA, 2011, URL http://doi.acm.org/10.1145/1926385.1926447.

[19] H.-J. Boehm, Transactional memory should be an implementation technique,
not a programming interface, in: Proceedings of the First USENIX Conference
on Hot Topics in Parallelism, HotPar'09, USENIX Association, Berkeley, CA,
USA, 2009.

[20] H.-J. Boehm, Threads cannot be implemented as a library, in: Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI'05, ACM, New York, NY, USA, 2005, URL
http://doi.acm.org/10.1145/1065010.1065042.

[21] H.-J. Boehm, S.V. Adve, You don’t know jack about shared variables or
memory models, Comm. ACM 55 (2) (2012) 48-54.

[22] C. Boyapati, R. Lee, M. Rinard, Ownership types for safe programming:
preventing data races and deadlocks, in: Proceedings of the 17th ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA’02, ACM, New York, NY, USA, 2002.

[23] J. Boyland,]. Noble, W. Retert, Capabilities for sharing: A generalisation of
uniqueness and read-only, in: Proceedings of the 15th European Conference
on Object-Oriented Programming, ECOOP’01, Springer-Verlag, London, UK,
UK, 2001.

[24] P. Bright, IBM’s new transactional memory: make-or-break time for multi-
threaded revolution, Website (August 2011). URL
http://arstechnica.com/hardware/news/2011/08/ibms-new-transactional-
memory-make-or-break-time-for-multithreaded-revolution.ars.

[25] J.-P. Briot, R. Guerraoui, K.-P. Lohr, Concurrency and distribution in object-
oriented programming, ACM Comput. Surv. 30 (3) (1998) 291-329.

[26] P.A. Buhr, M. Fortier, M.H. Coffin, Monitor classification, ACM Comput. Surv.
27 (1995) 63-107.

[27] P.A.Buhr, A.S. Harji, Implicit-signal monitors, ACM Trans. Program. Lang. Syst.
27 (2005) 1270-1343.

[28] M.G. Burke, K. Knobe, R. Newton, V. Sarkar, Concurrent collections
programming model, in: D. Padua (Ed.), Encyclopedia of Parallel Computing,
Springer, US, 2011, pp. 364-371.

[29] R.H.Campbell, A.N. Habermann, The specification of process synchronization
by path expressions, in: Operating Systems, Proceedings of an International
Symposium, Springer-Verlag, London, UK, 1974.

[30] N. Carriero, D. Gelernter, Linda in context, Comm. ACM 32 (1989) 444-458.

[31] N.Carriero, D. Gelernter, Applications experience with Linda, in: Proceedings
of the ACM/SIGPLAN Conference on Parallel Programming: Experience with
Applications, Languages and Systems, PPEALS'88, ACM, New York, NY, USA,

1988.

[32] C.Cascaval, C. Blundell, M. Michael, H.W. Cain, P. Wu, S. Chiras, S. Chatterjee,
Software transactional memory: why is it only a research toy?, ACM Queue
6(5)(2008) 46-58.

[33] D.G.Clarke, .M. Potter, J. Noble, Ownership types for flexible alias protection,
in: Proceedings of the 13th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA’98, ACM, New
York, NY, USA, 1998.

[34] P. Costa, L. Mottola, A.L. Murphy, G.P. Picco, TeenyLIME: transiently shared
tuple space middleware for wireless sensor networks, in: Proceedings of the
International Workshop on Middleware for Sensor Networks, MidSens’06,
ACM, New York, NY, USA, 2006.

[35] C.Curino, M. Giani, M. Giorgetta, A. Giusti, A.L. Murphy, G.P. Picco, TinyLIME:
bridging mobile and sensor networks through middleware, in: Proceedings
of the Third IEEE International Conference on Pervasive Computing and
Communications, IEEE Computer Society, Washington, DC, USA, 2005.

[36] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, D. Nussbaum,
Hybrid transactional memory, in: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS-XII, ACM, New York, NY, USA, 2006.

[37] A.L. de Moura, R. lerusalimschy, Revisiting coroutines, ACM Trans. Program.
Lang. Syst. 31 (2) (2009) 6:1-6:31.

[38] D.Dice, N. Shavit, Understanding tradeoffs in software transactional memory,
in: Proceedings of the International Symposium on Code Generation and
Optimization, CGO’07, IEEE Computer Society, Washington, DC, USA, 2007.

[39] E.W. Dijkstra, The structure of THE — multiprogramming system, Comm.
ACM 11 (1968) 341-346.

[40] E.W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of
programs, Comm. ACM 18 (8) (1975) 453-457.

[41] A.Dragojevi¢, P. Felber, V. Gramoli, R. Guerraoui, Why STM can be more than
a research toy, Comm. ACM 54 (4) (2011) 70-77.

[42] R. Ennals, Software Transactional Memory Should not be Obstruction-free,
Tech. Rep. IRC-TR-06-052, Intel Research Cambridge Tech. Report (January
2006). URL
http://www.cs.wisc.edu/trans-memory/misc-papers/052_Rob_Ennals.pdf.

[43] A.B. Ericsson, Erlang/OTP System Documentation, erlang/OTP System Docu-
mentation 5.8.5, October 2011.

[44] N.Ford, Functional thinking: immutability — make Java code more functional
by changing less (July 2011).

URL http://[www.ibm.com/developerworks/java/library/j-ft4.

http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref1
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref2
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref3
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref4
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref5
http://armstrongonsoftware.blogspot.com/2006/09/why-i-dont-like-shared-memory.html
http://armstrongonsoftware.blogspot.com/2006/09/why-i-dont-like-shared-memory.html
http://armstrongonsoftware.blogspot.com/2006/09/why-i-dont-like-shared-memory.html
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref7
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref9
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref10
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref11
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref12
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref13
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref14
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref16
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref17
http://doi.acm.org/10.1145/1926385.1926447
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref19
http://doi.acm.org/10.1145/1065010.1065042
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref21
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref22
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref23
http://arstechnica.com/hardware/news/2011/08/ibms-new-transactional-memory-make-or-break-time-for-multithreaded-revolution.ars
http://arstechnica.com/hardware/news/2011/08/ibms-new-transactional-memory-make-or-break-time-for-multithreaded-revolution.ars
http://arstechnica.com/hardware/news/2011/08/ibms-new-transactional-memory-make-or-break-time-for-multithreaded-revolution.ars
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref25
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref26
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref27
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref28
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref29
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref30
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref31
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref32
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref33
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref34
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref35
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref36
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref37
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref38
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref39
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref40
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref41
http://www.cs.wisc.edu/trans-memory/misc-papers/052_Rob_Ennals.pdf
http://www.ibm.com/developerworks/java/library/j-ft4

2284 A. Skyrme et al. /J. Parallel Distrib. Comput. 74 (2014) 2266-2285

[45]].S. Foster, M. Fahndrich, A. Aiken, A theory of type qualifiers, in: Proceedings
of the ACM SIGPLAN 1999 Conference on Programming Language Design and
Implementation, PLDI'99, ACM, New York, NY, USA, 1999.

[46] E.Freeman, K. Arnold, S. Hupfer, JavaSpaces Principles, Patterns, and Practice,
first ed., Addison-Wesley Longman Ltd., Essex, UK, UK, 1999.

[47] V. Gajinov, F. Zyulkyarov, O.S. Unsal, A. Cristal, E. Ayguade, T. Harris,
M. Valero, QuakeTM: parallelizing a complex sequential application using
transactional memory, in: Proceedings of the 23rd International Conference
on Supercomputing, ICS'09, ACM, New York, NY, USA, 2009.

[48] D. Gelernter, Generative communication in Linda, ACM Trans. Program. Lang.
Syst. 7 (1985) 80-112.

[49] D. Gelernter, N. Carriero, Coordination languages and their significance,
Comm. ACM 35 (1992) 97-107.

[50] B. Goetz, Java theory and practice: to mutate or not to mutate? - Immutable
objects can greatly simplify your life (February 2003). URL
http://www.ibm.com/developerworks/java/library/j-jtp02183.

[51] S.Gorlatch, Send-receive considered harmful: Myths and realities of message
passing, ACM Trans. Program. Lang. Syst. 26 (2004) 47-56.

[52] J. Gray, The transaction concept: virtues and limitations (invited paper), in:
Proceedings of the seventh International Conference on Very Large Data
Bases, VLDB'1981, vol. 7, VLDB Endowment, 1981.

[53] W. Gropp, E.L. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming
with the Message Passing Interface, second ed., MIT Press, 1999.

[54] D. Grossman, The transactional memory/garbage collection analogy, in: Pro-
ceedings of the 22nd Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA’07, ACM, New
York, NY, USA, 2007.

[55] C.Haack, E. Poll, Type-based object immutability with flexible initialization,
in: ECOOP 2009, in: LNCS, vol. 5653, Springer, 2009.

[56] C.Haack, E. Poll, J. Schdfer, A. Schubert, Immutable objects in Java, Dept. of
Computer Science ICIS-R06010, Radboud University Nijmegen, 2006.

[57] C. Haack, E. Poll, J. Schéfer, A. Schubert, Immutable objects for a Java-like
language, in: R.D. Nicola (Ed.), ESOP’07, in: LNCS, vol. 4421, Springer, 2007.

[58] B.K. Haddon, Nested monitor calls, ACM SIGOPS Oper. Syst. Rev. 11 (1977)
18-23.

[59] P. Haller, M. Odersky, Event-based programming without inversion of
control, in: Proceedings of the Joint Modular Languages Conference,
in: Springer LNCS, 2006.

[60] P.B.Hansen, Concurrent programming concepts, ACM Comput. Surv. 5 (1973)
223-245.

[61] P.B.Hansen, Structured multiprogramming, Comm. ACM 15 (1972) 574-578.

[62] P.B. Hansen, An outline of a course on operating system principles,
in: C.A.R. Hoare, R.H. Perrott (Eds.), Operating Systems Techniques, in: A.P.I.C.
Studies in Data Processing, vol. 9, Academic Press, London, 1972.

[63] P.B. Hansen, Operating System Principles, Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1973.

[64] P.B. Hansen, Monitors and Concurrent Pascal: a personal history, in: The
second ACM SIGPLAN Conference on History of Programming Languages,
HOPL-II, ACM, New York, NY, USA, 1993.

[65] P.B. Hansen, The programming language Concurrent Pascal, IEEE Trans.
Softw. Eng. 1 (2) (1975) 199-207.

[66] P.B. Hansen, Java’s insecure parallelism, ACM SIGPLAN Notices 34 (1999)
38-45.

[67] P.B. Hansen, The invention of concurrent programming, in: The Origin of
Concurrent Programming, Springer-Verlag New York, Inc., New York, NY,
USA, 2002, pp. 3-61.

[68] P.B. Hansen, A programming methodology for operating system design, in:
IFIP Congress, 1974.

[69] T. Harris, Language constructs for transactional memory, in: Proceedings
of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL'09, ACM, New York, NY, USA, 2009.

[70] T. Harris,]. Larus, R. Rajwar, Transactional Memory, second ed., Morgan and
Claypool Publishers, 2010.

[71] T. Harris, S. Marlow, S. Peyton-Jones, M. Herlihy, Composable memory
transactions, in: Proceedings of the Tenth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP’05, ACM, New York,
NY, USA, 2005.

[72] M. Herlihy, Wait-free synchronization, ACM Trans. Program. Lang. Syst. 13
(1991) 124-149.

[73] M. Herlihy, Technical perspective: Highly concurrent data structures, Comm.
ACM 52 (2009) 99.

[74] M. Herlihy, V. Luchangco, P. Martin, M. Moir, Nonblocking memory
management support for dynamic-sized data structures, ACM Trans.
Program. Lang. Syst. 23 (2005) 146-196.

[75] M. Herlihy, V. Luchangco, M. Moir, W.N. Scherer III, Software transactional
memory for dynamic-sized data structures, in: Proceedings of the Twenty-
second Annual Symposium on Principles of Distributed Computing, PODC'03,
ACM, New York, NY, USA, 2003.

[76] M. Herlihy, J.E.B. Moss, Transactional memory: architectural support for
lock-free data structures, in: Proceedings of the 20th Annual International
Symposium on Computer Architecture, ISCA’93, ACM, New York, NY, USA,
1993.

[77] C.AR. Hoare, Towards a theory of parallel programming, in: C.A.R. Hoare,
R.H. Perrott (Eds.), Operating Systems Techniques, in: A.P.I.C. Studies in Data
Processing, vol. 9, Academic Press, London, 1972.

[78] C.A.R. Hoare, Monitors: an operating system structuring concept, Comm.
ACM 17 (1974) 549-557.

[79]]J.H. Howard, Signaling in monitors, in: Proceedings of the 2nd International
Conference on Software Engineering, ICSE'76, IEEE Computer Society Press,
Los Alamitos, CA, USA, 1976.

[80] E. Johansson, K. Sagonas,]. Wilhelmsson, Heap architectures for concurrent
languages using message passing, in: Proceedings of the 3rd International
Symposium on Memory Management, ISMM'02, ACM, New York, NY, USA,
2002.

[81] S.P. Jones, Beautiful concurrency, in: G. Wilson, A. Oram (Eds.), Beautiful
Code: Leading Programmers Explain How They Think, OReilly Media, Inc.,
2007, pp. 385-406 (chapter 24).

[82] A.Kauppi, Lualanes — multithreading in Lua, Website (2009). URL
http://kotisivu.dnainternet.net/askok/bin/lanes/.

[83] J.L. Keedy, On structuring operating systems with monitors, ACM SIGOPS
Oper. Syst. Rev. 13 (1979) 5-9.

[84] J.LW. Kessels, An alternative to event queues for synchronization in
monitors, Comm. ACM 20 (1977) 500-503.

[85] L. Kotulski, About the semantic nested monitor calls, ACM SIGPLAN Notices
22(1987) 80-82.

[86] H.C. Lauer, R.M. Needham, On the duality of operating system structures,
ACM SIGOPS Oper. Syst. Rev. 13 (1979) 3-19.

[87] E.A. Lee, Disciplined Message Passing, Tech. Rep., EECS Dept. University of
California Berkeley, January 2009.

[88] E.A. Lee, The problem with threads, IEEE Computer 39 (5) (2006) 33-42.

[89] Y. Lev, J.-W. Maessen, Toward a safer interaction with transactional memory
by tracking object visibility, in: Proceedings, Workshop on Synchronization
and Concurrency in Object-Oriented Languages, San Diego, CA, 2005.

[90] A. Lister, The problem of nested monitor calls, ACM SIGOPS Oper. Syst. Rev.
11(1977) 5-7.

[91] M. Martin, C. Blundell, E. Lewis, Subtleties of transactional memory atomicity
semantics, [EEE Comput. Architect. Lett. 5 (2) (2013).

[92] S.W. McLaughry, P. Wyckoff, T Spaces: the next wave, in: Proceedings of the
Thirty-second Annual Hawaii International Conference on System Sciences,
vol. 8, HICSS'99, IEEE Computer Society, Washington, DC, USA, 1999.

[93] Message Passing Interface Forum, MPI: A Message-Passing Interface
Standard, version 3.0 (September 21, 2012).

[94] M.M. Michael, Hazard pointers: Safe memory reclamation for lock-free
objects, IEEE Trans. Parallel Distrib. Syst. 15 (2004) 491-504.

[95] J.E.B. Moss, A.L. Hosking, Nested transactional memory: model and architec-
ture sketches, Sci. Comput. Program. 63 (2) (2006) 186-201.

[96] M. Odersky, P. Altherr, V. Cremet, I. Dragos, G. Dubochet, B. Emir, S. McDirmid,
S. Micheloud, N. Mihaylov, M. Schinz, E. Stenman, L. Spoon, M. Zenger, An
Overview of the Scala Programming Language, Tech. Rep., EPFL Lausanne,
Switzerland, 2004.

[97]]. Ousterhout, Why threads are a bad idea (for most purposes), Presentation
given at the 1996 USENIX Annual Technical Conference.

[98] D.L.Parnas, The non-problem of nested monitor calls, ACM SIGOPS Oper. Syst.
Rev. 12 (1978) 12-18.

[99] L Pechtchanski, V. Sarkar, Immutability specification and its applications,
in: Java Grande/ISCOPE 2002, Concurrency and Computation: Practice and
Experience 17 (5-6) (2005) 639-662 (special issue).

[100] S. Peyton Jones, A. Gordon, S. Finne, Concurrent Haskell, in: Proceedings of
the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, New York, NY, USA, ACM, 1996.

[101] G.P.Picco, A.L. Murphy, G.-C. Roman, LIME: Linda meets mobility, in: Proceed-
ings of the 21st International Conference on Software Engineering, ICSE’99,
ACM, New York, NY, USA, 1999.

[102] B.C. Pierce, Types and Programming Languages, MIT Press, Cambridge, MA,
USA, 2002.

[103] R.Rajwar,].R. Goodman, Transactional lock-free execution of lock-based pro-
grams, in: Proceedings of the 10th International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS-X,
ACM, New York, NY, USA, 2002.

[104] R.Rajwar, M. Herlihy, K. Lai, Virtualizing transactional memory, in: Proceed-
ings of the 32nd Annual International Symposium on Computer Architecture,
ISCA’05, IEEE Computer Society, Washington, DC, USA, 2005.

[105] J. Reinders, Transactional synchronization in Haswell, Website (February
2012). URL http://software.intel.com/en-us/blogs/2012/02/07 /transactional-
synchronization-in-haswell/.

[106] Rinda — a module to implement the Linda distributed computing paradigm
in Ruby, Website, 2011. URL
http://www.ruby-doc.org/stdlib-1.9.3/libdoc/rinda/rdoc/Rinda.html.

[107] Z.B. Rui Zhang, W.N. Scherer III, Composability for application-specific
transactional optimizations, in: Proceedings of the 5th ACM SIGPLAN
Workshop on Transactional Computing, TRANSACT 2010, 2010.

[108] J.L. Schilling, Dynamically-valued constants: an underused language feature,
ACM SIGPLAN Notices 30 (1995) 13-20.

[109] Scientific Computing Associates Inc., Linda User Guide (September 2005).
URL http://www.lindaspaces.com/downloads/lindamanual.pdf.

[110] N. Shavit, D. Touitou, Software transactional memory, in: Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC'95, ACM, New York, NY, USA, 1995.

[111] H. Sutter, The trouble with locks, Dr. Dobb’s Journal. (March) (2005).

[112] H. Sutter, Lock-free code: A false sense of security, Dr. Dobb’s Journal.
(September) (2008).

[113] H. Sutter,]J. Larus, Software and the concurrency revolution, ACM Queue 3
(2005) 54-62.

http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref45
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref46
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref47
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref48
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref49
http://www.ibm.com/developerworks/java/library/j-jtp02183
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref51
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref53
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref54
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref55
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref57
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref58
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref59
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref60
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref61
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref62
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref63
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref64
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref65
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref66
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref67
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref69
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref70
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref71
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref72
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref73
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref74
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref75
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref76
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref77
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref78
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref79
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref80
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref81
http://kotisivu.dnainternet.net/askok/bin/lanes/
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref83
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref84
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref85
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref86
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref87
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref88
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref90
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref91
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref94
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref95
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref96
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref98
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref99
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref100
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref101
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref102
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref103
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref104
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://www.ruby-doc.org/stdlib-1.9.3/libdoc/rinda/rdoc/Rinda.html
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref108
http://www.lindaspaces.com/downloads/lindamanual.pdf
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref110
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref111
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref112
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref113

A. Skyrme et al. /J. Parallel Distrib. Comput. 74 (2014) 2266-2285 2285

[114] TCP Linda case studies, last accessed September 2013. URL
http://www.lindaspaces.com/casestudies/index.html.

[115] E. Vallejo, T. Harris, A. Cristal, O. Unsal, M. Valero, Hybrid transactional
memory to accelerate safe lock-based transactions, in: 3rd ACM SIGPLAN
Workshop on Transactional Computing, TRANSACT 2008, Salt Lake City, UT,
USA, 2008.

[116] R. von Behren, J. Condit, E. Brewer, Why events are a bad idea (for high-
concurrency servers), in: Proceedings of the 9th Conference on Hot Topics in
Operating Systems - Volume 9, USENIX Association, Berkeley, CA, USA, 2003.

[117] G.C.Wells, A programmable matching engine for application development in
Linda, Ph.D. Thesis, University of Bristol, July 2001.

[118] G. Wells, Coordination languages: back to the future with Linda, in:
Proceedings of WCAT'05, 2005.

[119] G.C. Wells, New and improved: Linda in Java, in: Proceedings of the 3rd
International Symposium on Principles and Practice of Programming in Java,
PPPJ'04, Trinity College Dublin, 2004.

[120] G.C. Wells, A.G. Chalmers, P.G. Clayton, Linda implementations in Java
for concurrent systems: research articles, Concurrency and Computation:
Practice and Experience 16 (2004) 1005-1022.

[121] G. Wells, P. Clayton, A.G. Chalmers, A comparison of Linda implementations
in java, in: P.H. Welch, AW.P. Bakkers (Eds.), Communicating Process
Architectures 2000, 2000.

[122] H. Wettstein, The problem of nested monitor calls revisited, ACM SIGOPS
Oper. Syst. Rev. 12 (1978) 19-23.

[123] A. Wilkinson, PyLinda - an implementation of the tuplespace based
distributed computing system, Website (2011). URL
http://pypi.python.org/pypi/linda/0.5.1.

[124] RM. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai, H.-H.S. Lee, Kicking
the tires of software transactional memory: why the going gets tough,
in: Proceedings of the Twentieth Annual Symposium on Parallelism in
Algorithms and Architectures, SPAA’08, ACM, New York, NY, USA, 2008.

[125] S.E. Zenith, Process interaction models, Ph.D. Thesis, Ecole Nationale
Supérieure des Mines de Paris, Centre de Recherche en Informatique - 35
rue Saint-Honore 77305 - Fontainebleau - France (1992).

[126] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kiezun, M.D. Ernst, Object and reference
immutability using Java generics, in: Proceedings of the the 6th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ESEC-FSE'07, ACM,
New York, NY, USA, 2007.

Alexandre Skyrme is a Ph.D. student at PUC-Rio (the
Pontifical Catholic University of Rio de Janeiro). His re-
search interests include concurrency, parallelism, dis-
tributed computing, computer networks and information
security.

Noemi Rodriguez is an Associate Professor of Computer

3] Science at PUC-Rio (the Pontifical Catholic University of

Rio de Janeiro), where she works with concurrent and

8 distributed programming.

Roberto lerusalimschy is an Associate Professor of
Computer Science at PUC-Rio (the Pontifical Catholic
University of Rio de Janeiro), where he works with
programming-language design and implementation.

http://www.lindaspaces.com/casestudies/index.html
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref120
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref121
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref122
http://pypi.python.org/pypi/linda/0.5.1
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref124
http://refhub.elsevier.com/S0743-7315(13)00232-3/sbref126

	A survey of support for structured communication in concurrency control models
	Introduction
	Conventional communication models
	Shared memory
	Message passing
	Hybrid implementations

	Concurrency control models
	Monitors
	In practice
	Discussion
	Structured communication support
	Summary

	Transactional memory
	In practice
	Discussion
	Structured communication support
	Summary

	Tuple spaces
	In practice
	Discussion
	Structured communication support
	Summary

	Data immutability
	In practice
	Discussion
	Structured communication support
	Summary

	Discussion
	Conclusion
	References

