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a b s t r a c t

This paper addresses the problem of global graph alignment on supercomputer-class clusters. We define
the alignment of two graphs, as a mapping of each vertex in the first graph to a unique vertex in the
second graph so as to optimize a given similarity-based cost function.1 Using a state of the art serial
algorithm for the computation of vertex similarity scores called Network Similarity Decomposition (NSD),
we derive corresponding parallel formulations. Coupling this parallel similarity algorithm with a parallel
auction-based bipartite matching technique, we obtain a highly efficient and scalable graph matching
pipeline. We validate the performance of our integrated approach on a large parallel platform and on
diverse graph instances (including Protein Interaction, Wikipedia and Web networks). Experimental
results demonstrate that our algorithms scale to large machine configurations (thousands of cores) and
problem instances, enabling the alignment of networks of sizes two orders of magnitude larger than
reported in the current literature.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction and motivation

Graph-structured datasets are commonly encountered in
diverse domains, ranging from biochemical interaction networks,
to networks of social and economic transactions. Effective analyses
of these datasets hold the potential for significant applications’
insights. Graphs in current databases often scale to millions of
vertices and beyond, requiring efficient serial algorithms as well
as scalable parallel formulations. Graph kernels such as traversals,
centrality computations, andmodularity have been studied in both
serial and parallel contexts [9,7,35,16]. The problem of matching
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vertices across graphs based on their topological similarity is
more computationally expensive. This follows from the fact
that topological similarity of a pair of nodes selected from two
graphs, respectively, is determined by their network contexts
(broader neighborhood in graphs). Consequently, efficient parallel
formulations determine the feasibility envelope for such problems.

The graph alignment problem can be informally stated as
follows: given two graphs, ‘‘how similar is each vertex in the first
graph to each vertex in the second?’’ or ‘‘what is the best match for
each vertex in the first graph to a vertex in the second graph?’’. A
complete solution to the first problem takes the formof a similarity
matrix X; its entry xij corresponds to the similarity of vertex i in
the first graph to vertex j in the second. Solution to the second
problem takes the similarity matrix X and uses bipartite matching
to map each vertex in the first graph to its most similar vertex
in the second graph, to maximize the overall similarity across the
graphs.

To illustrate the problem, we consider the graph in Fig. 1
and compute its similarity matrix using the IsoRank method
(summarized later in the paper) for this graph aligned to itself
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X =



0.000 0.924 0.371 0.286 1.394 1.312 0.304 1.029 0.432 0.383
0.924 0.000 0.686 0.396 3.93 3.622 0.454 2.773 0.874 0.715
0.371 0.686 0.000 0.301 1.004 0.975 0.320 0.714 0.458 0.416
0.286 0.396 0.301 0.000 0.515 0.491 0.268 0.408 0.314 0.297
1.394 3.930 1.004 0.515 0.000 5.924 0.621 4.455 1.343 1.041
1.312 3.622 0.975 0.491 5.924 0.000 0.586 4.096 1.272 1.034
0.304 0.454 0.320 0.268 0.621 0.586 0.000 0.471 0.339 0.317
1.029 2.773 0.714 0.408 4.455 4.096 0.471 0.000 0.930 0.750
0.432 0.874 0.458 0.314 1.343 1.272 0.339 0.930 0.000 0.455
0.383 0.715 0.416 0.297 1.041 1.034 0.317 0.750 0.455 0.000


.

Box I.
Fig. 1. The example graph used for illustrating the alignment process.

(self-similarity). A normalization step is applied to the similarity
matrix after zeroing diagonal elements (to preclude the trivial
solution ofmatching each nodewith itself). The resulting similarity
matrix X (entries scaled by a factor of 100) is given in Box I.

We apply a matching process and compute the following
pairs of ‘‘similar’’ vertices: (5, 6), (2, 8), (3, 9), (1, 10) and (4, 7).
The same matching pairs are also produced in the case when
no normalization is performed after zeroing the diagonal of the
similarity matrix.

This methodology has several important applications. In the
analysis of biomolecular networks, nodes represent proteins and
edges represent the functional association between proteins (bind-
ing, co-localization, etc.). A matching computed using the above
method reveals proteins that have similar interaction profiles, and
consequently are functionally similar. This is a complementary and
important similarity measure to the traditional sequence-based
similarity for proteins.

A number of other formulations and solutions exist in the
literature to both the similarity computation and matching
problems [47,6,27,41,4]. An important class of methods relies on
the notion that the similarity of two vertices is determined by the
similarity of their neighbors. Variants within this class differ on
their treatment of dissimilar neighbors (normalization), a-priori
vertex similarity (also called elemental similarity), the topological
scope (how much of the neighborhood is incorporated into the
similarity score), and the iterative procedure to compute similarity.
Our recent work in the area has resulted in the development
of a serial algorithm called Network Similarity Decomposition
(NSD) [23]. NSD can be viewed as an accelerator for a large class
of iterative similarity computation algorithms. It has been shown
to reduce the computational cost of traditional algorithms by over
three orders of magnitude in specific instances.

Given a similarity matrix, algorithms for bipartite matching
have a rich history in theoretical computer science. Proposed
solutions range from the classic Hungarian and greedy methods to
auction-based techniques. Serial and parallel computing tradeoffs
of many of these methods have also been studied in the prior
work. Even with the reduced computational cost of NSD and
auction-based bipartite matching, for large graphs of interest
(106 vertices and beyond), it is necessary to exploit scalable
parallelism to achieve the acceptable performance. This paper
focuses on parallel formulations of the graph alignment problem.
In particular, it demonstrates that parallel NSD formulations
have low communication and synchronization overheads—making
them ideal for large-scale parallel platforms. Furthermore, NSD
similarity computations flow naturally into our parallel auction-
based matching algorithm. This integrated pipeline is shown to
have excellent performance and scalability on large-scale parallel
platforms in the context of diverse applications. We use this
software pipeline to solve some of the largest similarity/matching
problems (over twoorders ofmagnitude larger than those reported
earlier) on thousands of processing cores. These results have
significant implications for applications ranging from systems
biology to social network analysis.

The rest of this paper is organized as follows: we overview the
related work in Section 2. Section 3 presents a brief description
of serial NSD and auction-based matching algorithms. Section 4
presents parallel NSD, the need for sparsification, parallel auction-
basedmatching, and an efficient integration of the two into a single
workflow. In Section 5, we present comprehensive performance
and scalability results for parallel versions of similarity computa-
tions from large-scale experiments (networkswithmillions of ver-
tices on thousands of processing cores) for the integrated pipeline.
Concluding remarks and avenues for the futurework are presented
in Section 6.

2. Related results

In (serial) graph alignment, matrix similarity computation
has traditionally been the computational bottleneck, particularly,
when heuristic methods are used for bipartite graph matching
to post-process similarity scores. However, as a result of the
reduction in time using NSD for similarity computation, bipartite
matching represents the dominant computational cost. As a
consequence, integrating a parallel bipartite weighted graph
matching algorithm with a parallel NSD-accelerated similarity
computation algorithm should result in a highly efficient pipeline.
The main theme of this paper is the detailed presentation of
this scheme and the experimental verification of its performance
characteristics.

We highlight here related efforts on the two major com-
ponents—algorithms for computing the similarity matrix X
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illustrated above, and algorithms that compute pair-wise corre-
spondences across the two graphs using the similarity matrix. We
provide a brief overview of the serial methods, followed by prelim-
inary efforts at parallelizing these methods.

2.1. Computing graph similarities

Graph similarity computations can be broadly classified into
two groups. In the first group of methods, the outcome of
the computation is a single similarity score sim(G,G′), typically
normalized in the range [0, 1]. This similarity score indicates
how similar two graphs G,G′ are in their entirety. Papadimitriou
et al. [37] present an excellent survey of approaches in this group.

In the second group of methods, the outcome of the computa-
tions is a matrix of elements xij, representing the similarity of each
vertex i in the first graph to every vertex j in the second graph. This
notion of node-wise similarity can be extended to edge-wise simi-
larity, or to the similarity of small subgraphs in the two graphs. This
second class of methods reflects a finer-grained notion of graph
similarity. We can further categorize methods in this group as lo-
cal or global methods. Local methods attempt to reward similar-
ity among small subgraphs, without penalizing for dissimilarities
over non-aligned parts of the graph [20,24,45,28,48]. Global meth-
ods, on the other hand, consider a cost function computed over all
vertex alignments [33,42,47].

The focus of this paper is on global methods. A large subset of
these methods can be viewed as computing the rank of a vertex
(in a PageRank [36,46] sense) in the product graph of the input
networks. Of the PageRank-based methods for network similar-
ity, the IsoRank algorithm [47] computes vertex similarity scores
by integrating both vertex attributes and topological similarities.
The graph kernel approach [43], uses characteristics of networks
(bounded degree) to specialize Page-Rank to their target struc-
tures. Specifically, in each iteration of similarity update, optimal
mappings between neighborhoods of each pair of vertices are com-
puted to determine the topological similarity. In the GRAAL fam-
ily of algorithms – GRAAL [25], H-GRAAL [32], MI-GRAAL [26],
C-GRAAL [31] – the ‘‘seed and extend’’ idea is utilized, basically
driven by node similarities, as computed by affinities to local con-
nectivity structures. Building on its local counterpart, Graemlin
2.0 [14] integrates a priori known node (protein sequence) similar-
ities and phylogenetic (evolutionary) relations. In NetAlignBP [2],
a belief propagation approach is proposed, interestingly allowing
the consideration of only a subset of potential pairs; Lagrangian,
Markov random field and integer quadratic programming formu-
lations have also been proposed [13,1,29,22]. SimRank is a generic
method introduced in [18] for computing the structural-context
similarity between vertices of a single graph.

An excellent survey of early serial results in this area is provided
in [15]. Our parallel similarity construction relies on an accelera-
tion scheme, called Network Similarity Decomposition (NSD) [23],
which relies on low-rank decompositions of the initial similarity
matrix to decouple the matrix construction process. This acceler-
ation has been shown to yield orders of magnitude improvement
in serial runtime, depending on the size of the networks. We pro-
vide an overview of NSD acceleration in Section 3 to motivate our
parallel formulations.

There have been some recent efforts aimed at parallel graph
alignment. GHOST [38] computes histograms of the spectra of the
weighted Laplacians of the subgraphs induced around each vertex
up to a number of shortest path lengths. These serve as vertex sig-
natures that can drive matching at the next stage—implementing
a seed-and-extend strategy which is sequential; however com-
puting signatures is parallelizable. In its current version though,
GHOST does not support traditional high-performance computing
environments. In [21], two methods, Matching Relaxation (MR)
and Belief Propagation (BP) are used to compute the similarity ma-
trix, followed by 1/2-approximate matching, are parallelized for
a shared memory platform. Section 5.3.1 presents a comparative
study of our method with the work of Khan et al. [21].

We are not aware of any parallelizations that utilize the
decoupled accelerations in NSD.

2.2. Weighted matching algorithms in bipartite graphs

Weighted graph matching algorithms extract a matching M
of similar vertices subject to the constraint that a vertex is an
endpoint of at most one matching edge. A typical objective of
matching algorithms is to find a matching whose weight i.e., the
sum over the matched edges, is maximized. There are two broad
classes of algorithms that achieve a matching with a maximum
weight:

Approximate weighted matching algorithms compute a maxi-
mal matching, i.e., no edge can be added to M without violating
the matching property, with a maximum weight. A well-known
representative of this class is a simple greedy heuristic, the 1/2-
approximation algorithm [41] with a linear-time implementation.
Sophisticated approaches such as 2/3-or 3/4-approximation have
also been proposed (please see e.g., [11,40]). Attempts to paral-
lelize these methods have been reported in [8,17,30,39].

Exact weightedmatching algorithmsobtain amaximummatch-
ing, i.e., a matching with the largest possible number of edges,
with a maximumweight. The maximumweightedmatching prob-
lem can be optimally solved in polynomial time using the idea of
the augmenting path. An augmenting path is a path that has odd
length, its ends are not in M , and its edges are alternatively out
of and in M . Implementations based on the concept are, for in-
stance, the Hungarian method and its variants [12,19,27,34] – not
amenable to massive parallelization – or auction-based matching
algorithms [4].

Recently, a highly scalable distributed auction algorithm has
been developed that computes weighted matchings on sparse and
dense bipartite graphs running on hundreds of compute nodes,
while efficiently using multiple cores at each compute node [44].
This formulation provides the basis for thematching component of
our algorithmic workflow.

3. Serial algorithm for similarity matrix computation and
auction-based matching

We first provide the necessary background on the serial
algorithms for constructing the similarity matrix, and the auction-
based scheme for bipartite matching. Please note that this
description is not meant to be comprehensive, rather, we provide
sufficient details to motivate our parallel formulations. We refer
the readers to [23,44] for more details on these methods.

3.1. Terminology and preliminaries

We represent a directed graph GA = (VA, EA) by its adjacency
matrix A, where aij = 1 iff vertex i points to vertex j, indicated
by i → j, and zero otherwise. VA and EA denote the vertices and
edges of GA respectively, and nA = |VA|. Matrix Ã is the normalized
version of the matrix AT ; formally, (Ã)ij = aji/

nA
i=1 aji for nonzero

rows j of A and zero otherwise. An nA-by-nB similarity matrix X ,
where nA ≤ nB, can be transformed into a bipartite graph G =
(VA, VB, E), where E ⊆ VA × VB. Each row i represents a vertex
in VA, and each column j a vertex in VB. A nonzero entry xij in the
matrix represents a weight of the edge (i, j) ∈ E. A subset M ⊆ E
in a bipartite graph is called a matching if no pair of edges ofM are
incident to the same vertex.
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3.2. Network Similarity Decomposition (NSD)

Singh et al. [47] propose IsoRank, a two-step approach to
computing pair-wise similarity of vertices in two graphs. The
first step in their method computes a similarity matrix X , of two
graphs GB and GA with m and n vertices, respectively (m ≤ n).
Matrix X is computed through an iterative procedure that accrues
similarities diffused over successively larger neighborhoods. The
resulting matrix Xm×n is normalized – its elements sum to unity –
and elements xij represent the similarity score of the vertices i ∈ VB
and j ∈ VA. The second step of the algorithm uses a maximum-
weight bipartite matching algorithm to find the best matching
pairs of vertices in graphs GA and GB based on the similarity scores
X computed in the first step.

The IsoRank iteration kernel is of the form:

X ← αB̃XÃT
+ (1− α)H, (1)

where H is a known elemental similarity score matrix that quan-
tifies the similarity of vertex pairs based on a-priori knowledge.
This knowledge may be in the form of vertex label distances, dis-
tances derived from other vertex characteristics, etc. Note that
the topological connectivity of vertices does not figure in this el-
emental similarity score. The computation in Eq. (1) – αB̃XÃT (a
triple-matrix product) – implements the recursive intuition be-
hind this similarity computation approach. The factor α ∈ [0, 1]
is the damping factor that denotes the relative contribution of the
topological component to matrix X; the remaining 1−α portion is
injected at each iterative step by the independent similarity infor-
mation represented in matrix H .

Although semantically appealing, this iteration is hard to apply
to graphs with hundreds of thousands of vertices and beyond,
since the storage requirements for (dense) matrix X outgrow the
physicalmemory of typical computing platforms. Parallelizing, and
thus distributing the storage, across a compute cluster (or cloud) is
a potential solution to this problem. However, the triple-matrix-
product introduces significant compute overheads.

To address the high serial complexity of IsoRank, we recently
proposed an acceleration technique called Network Similarity
Decomposition (NSD), which drastically reduces the computation
andmemory requirements of the algorithm in specific (frequently-
encountered) cases. NSD adopts the approach of IsoRank, but
models the similarity computation as a series of matvecs, instead,
to avoid the costs of a triple-matrix-product. The series-of-matvecs
formulation is briefly described as follows:

without loss of generality, we useH as the initial condition X (0),
and after t iterations, X (t) takes the form

X (t)
= (1− α)

t−1
k=0

αkB̃kH(ÃT )k + αt B̃tH(ÃT )t . (2)

However, matrix H can be decomposed into a set of s vector pairs
(components) that can generally be expressed as:

H =
s

i=1

wizTi . (3)

Substituting decomposition (3) in Eq. (2) yields

X (t)
=

s
i=1

X (t)
i , (4)

where

X (t)
i = (1− α)

t−1
k=0

αkw
(k)
i z(k)

i
T
+ αtw

(t)
i z(t)

i
T
, (5)

and w
(k)
i = B̃kwi, z

(k)
i = Ãkzi. This formulation provides the basis

for the NSD method. The method is presented in Algorithm 1. For
more details on NSD, including the derivation of the associated
expressions, please see [23].

Algorithm 1 NSD: calculate X (n) given A, B, {wi, zi|i = 1, . . . , s}, α
and n
1: compute Ã, B̃
2: for i = 1 to s do
3: w

(0)
i ← wi

4: z(0)
i ← zi

5: for k = 1 to n do
6: w

(k)
i ← B̃w(k−1)

i

7: z(k)
i ← Ãz(k−1)

i
8: end for
9: zero X (n)

i
10: for k = 0 to n− 1 do
11: X (n)

i ← X (n)
i + αkw

(k)
i z(k)

i
T

12: end for
13: X (n)

i ← (1− α)X (n)
i + αnw

(n)
i z(n)

i
T

14: end for
15: X (n)

←
s

i=1 X
(n)
i

3.3. Auction-based bipartite weighted matching

Auction algorithms find the maximum weighted matching via
an auction: VA and VB represent the set of buyers and objects,
respectively. This metaphor naturally implies the concurrent
activity reflecting on the amenability of these algorithms to parallel
implementations. A weighted edge xij is the benefit that buyer i
obtains by acquiring object j. The auction-based algorithm (see
Algorithm 2) consists of three phases: the initialization phase (lines
1–4), the bidding phase (lines 6–9), and the assignment phase (lines
10–11). Each object j has an associated price pj, which is initially set
to zero. In an auction iteration, the bidding and assignment phase,
and the update of the price and of the increment ε are performed
until every buyer is assigned to an object. We will discuss the
initialization and update of the crucial term ε (lines 4, 12) in the
next Section 4.

3.4. Quality measures for matching

Given two graphsGA andGB, the quality of the computedmatch-
ingsmi,mj is computed from the alignment graph: ifmi = (vA

i , v
B
i )

and mj = (vA
j , v

B
j ) in GA × GB are two matches, then (mi,mj)

∈ EA×B ⇔ (vA
i , v

A
j ) ∈ EA and (vB

i , v
B
j ) ∈ EB.

When analyzing the alignment graph of two networks, a
measure for the computed matching is the number of conserved
edges across the two networks. This corresponds to the number
of edges in the alignment graph. Each conserved edge implies
matching of the corresponding edges connecting the elements of
the endpoints in the input networks. Consequently, the vertex
matching naturally follows from the edgematching and vice-versa.
An alternate measure called similarity rate is defined as the ratio
of conserved edges over the minimum of the edges in the two
networks. For a more comprehensive discussion of the qualitative
assessment of graph matching, we refer readers to [23].

4. Building an integrated parallel graph matching formulation

Using the NSD-accelerated similarity construction and the
auction-based bipartite matching as our serial bases, we propose
highly efficient and scalable parallel formulations. Specifically, we
show that both phases of the alignment process lend themselves
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Algorithm 2 Sequential Auction Algorithm for Maximum
Weighted Matching
Input: Bipartite graph G = (VA, VB, E, w)
Output: MatchingM
1: M ← ∅ ◃ current matching
2: I ← {i : 1 ≤ i ≤ nA} ◃ set of unassigned buyers
3: pj ← 0 for j = 1, . . . , nB ◃ initialize prices for objects
4: initialize(ε) ◃ initialize ε
5: while I ≠ ∅ do ◃ auction iteration
6: ji ← argmaxj{wij − pj} ◃ find best object of buyer i
7: ui ← wiji − pji ◃ store profit of the best object
8: vi ← maxj≠ji{wij − pj} ◃ store second-best profit
9: pji ← pji + ui − vi + ε ◃ update price with the bid ui − vi

and ε
10: M ← M ∪ {i, ji}; I ← I \ {i} ◃ assign buyer to the desired

object
11: M ← M \ {k, ji}; I ← I ∪ {k} ◃ free previous owner k if

available
12: update(ε) ◃ increment/decrement ε
13: end while

naturally to parallel implementations and that the output from
the first phase flows naturally into the second phase without
introducing significant copying overheads.

4.1. Parallelizing NSD

NSD-based similaritymatrix construction consists of twoparts:

• computing iterates of Ã and B̃ applied over each of the corre-
sponding z(0)

i and w
(0)
i vectors (Algorithm 1, lines 3–8);

• computing outer products of the iterates and their sum (Algo-
rithm 1, lines 9–13, 15).

In the rest of this section we describe two possible approaches to
NSD parallelization. The first approach is generic, not customized
for integration with a subsequent matching extraction stage.
It has been used in preliminary standalone experiments of
NSD parallelization over heterogeneous parallel testbeds. More
specifically, in Algorithm 3 the iterates are computed by the root
process and are subsequently partitioned and distributed to a p×q
process grid (lines 2–14). Outer products are then independently
computed, and the final, naturally distributed, similarity matrix is
synthesized by worker processes (lines 15–23).

Setting p = 1 (or q = 1), we reduce this to a 1-D formulation.
In this scenario, choosing to parallelize only the second part of
NSD can be justified on the grounds of its quadratic complexity (in
the number of vertices) compared to the linear complexity (in the
number of edges) of the first part.

The second approach is specifically targeted towards integra-
tion with the parallel auction algorithm for matching, and is the
one adopted for the large-scale experiments reported in Sec-
tion 5 (Algorithm 6, lines 2–9). Auction-based algorithms intro-
duce the metaphors of buyers and objects, respectively mapped to
row and column indices of the similarity matrix. We partition the
set of ‘‘buyers’’ only; this means a buyer has access to all objects
within the boundaries of a single process saving in communication
and synchronization. To further increase concurrency, B̃-generated
vector iterates are computed using a parallel sparse matrix–vector
multiplication kernel (Algorithm 6, line 8).

4.2. Parallel auction-based weighted matching

Algorithm 2 corresponds primarily of the bidding and assign-
ment phase. The bidding phase contains the bid computation of a
free buyer, and the assignment phase includes the matching of the
Algorithm 3 Parallel NSD (generic)
1: Root (lines 2–14) and (r, u)worker process in the p×q grid (lines

15–23).
2: compute Ã, B̃
3: for i = 1 to s do
4: w

(0)
i ← wi, z

(0)
i ← zi

5: for k = 1 to n do
6: w

(k)
i ← B̃w(k−1)

i

7: z(k)
i ← Ãz(k−1)

i
8: end for
9: end for

10: for i = 1, . . . s, k = 0, . . . , n do
11: Partition w

(k)
i in p fragments, w(k)

i,1 , . . . , w
(k)
i,p

12: Partition z(k)
i in q fragments, z(k)

i,1 , . . . , z(k)
i,q

13: end for
14: Send to every process (r, u) in the process grid p × q its

corresponding w
(k)
i,r , z

(k)
i,u fragments, ∀i = 1, . . . s, k = 0, . . . , n

(r = 1, . . . , p, u = 1, . . . , q)
15: Receive corresponding w

(k)
i,r , z

(k)
i,u fragments, ∀i = 1, . . . , s, k =

0, . . . , n from the root process
16: for i = 1 to s do
17: zero X (n)

i,ru
18: for k = 0 to n− 1 do
19: X (n)

i,ru ← X (n)
i,ru + αkw

(k)
i,r z

(k)
i,u

T

20: end for
21: X (n)

i,ru ← (1− α)X (n)
i,ru + αnw

(n)
i,r z

(n)
i,u

T

22: end for
23: X (n)

ru ←
s

i=1 X
(n)
i,ru

buyer to the object and the price update of the object. In a parallel
version of the algorithm (see Algorithm 4), bids of free buyers can
be simultaneously computed. Each free buyer computes a bid for
the most-valuable object according to the current price of the ob-
ject. The buyerwith the highest bid for an object is determined and
is assigned to the object. The prices of the objects are updated ac-
cording to the highest bids. The parallel bidding phase starts again
with the free buyers.

The parallel auction algorithm is based on a 1D row-wise
distribution of the entire matrix. Each process procures a set
of buyers and performs the auction iterations until locally free
buyers are assigned in the global matching. The bid computation
on each process can be further accelerated using the existing
shared memory parallelization strategies that differ in how the
number of threads are involved in the bid calculation for a
buyer. We map, block-wise, the number of available threads to
unassigned buyers. The communication cost of the parallel auction
algorithm corresponds to the exchange of local prices for the
objects among the processes to determine the winner for the
object. This communication cost can be reduced by exchanging
only locally altered prices, and by bundling messages together.
Additionally, every process submits only the locally highest price
for the objects. The auction algorithm also has excellent memory
scalability. If the graph is distributed a-priori, a price vector p ∈ RnB

is stored at each process.

4.2.1. ε-scaling
ε-scaling is an important aspect of the auction-based bipartite

matching described in Algorithms 2 and 4. Consider line 9 in
Algorithm 2. Here, a new price for an object is computed by adding
the bid and a small increment ε to the old value of the price. To
understand the importance of ε in the price update, assume that ε
is set to zero. Furthermore, imagine that two buyers are bargaining
for the same valuable object, while the best and second-best profits
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Algorithm 4 Parallel Auction Algorithm for Weighted Matchings
Input: Bipartite graph G = (VA, VB, E, w)
Output: MatchingMglobal

1: Mlocal ← ∅ ◃ set of locally matched buyers
2: Ilocal ← {i : 1 ≤ i ≤ nA

P } ◃ reindexing set of locally free buyers
3: Iglobal ← allgather(Ilocal) ◃ globally free buyers
4: pj ← 0 for j = 1, . . . , nB ◃ global price vector for the objects
5: initialize(εlocal)
6: while Iglobal ≠ ∅ do
7: ji ← argmaxj{wij − pj} ◃ computation phase via threading
8: ui ← wiji − pji
9: vi ← maxj≠ji{wij − pj}

10: pji ← pji + ui − vi + εlocal ◃ update prices with bid ui − vi
and εlocal

11: Mlocal ← Mlocal ∪ {i, ji} ◃ locally assign buyer i to desired
object

12: gather_changed_prices() ◃ communication phase
13: check_winner(i) ◃ if overbidded update local price
14: Ilocal ← Ilocal \ {i} orMlocal ← Mlocal \ {i, ji} ◃ update sets
15: Iglobal ← allgather(Ilocal) ◃ update global free buyers
16: update(εlocal)
17: end while
18: Mglobal ← gather(Mlocal)

are of the same value. In this case, the updated price remains
unchanged. In such a scenario, neither buyer will be satisfied with
the current assignment, and the process ends in a price war, where
a small number of buyers are competing for equally desirable
objects. In order to ensure that the price for an object is raised after
each iteration, a small increment ε is introduced. A practical way of
looking at ε is as an indicator of the aggressiveness of the auction.
Large values of ε, although increasing the risk for a buyer to pay
an unnecessarily high price for an object, accelerate assignments,
thus shortening the time for the auction to come to an end.

We have evaluated various ε-scaling strategies in order to
identify the one resulting in best performance (in terms of the
number of auction rounds and the sumofweights for the computed
matchings). Please refer to [44] for a comprehensive presentation
of available options; note that two of the authors of our current
work are also the first two authors in the cited publication. We
use the following strategy here: the value of εlocal is initialized,
to a small value and adaptively increased relatively to the overall
progress (see Algorithm 5). More specifically, at each round, while
the number of free buyers in the auction exceeds a threshold
value δ – that decreases dynamically – we get more aggressive
by increasing εlocal, however constrained by a ‘‘ceiling’’ value of γ ,
which also changes in the inner loop of Algorithm 5. In practice,
this approach matches a buyer faster in the early stage of the
algorithm. This aggressive ε-scaling strategy is embedded in the
main routines in Algorithm 4 and delivers a maximal matching
with the maximum weight; however the quality of the match is
adequate in the context of graph similarity. The proposed heuristic
terminates if every buyer is matched, or the prices for the objects
are too expensive, so the bids for unassigned buyers are negative.

4.3. A parallel sparsification strategy

While our similarity computation routines are capable of
analyzing large graphswith 106 vertices and beyond, they generate
similarity matrices in outer product forms. To the best of our
knowledge there are currently no matching algorithms that can
be applied directly on such low-rank matrix representations.
Therefore, it becomes imperative to explicitly compute the
similarity matrix from these outer product forms. This task poses
constraints in terms of storage requirements for the similarity
Algorithm 5 Adaptive Parallel Auction Algorithm
1: Perform the initialization phase of algorithm 4 (lines 1–4)
2: θ ← 16; γ ← n+1

θ

3: δ←

min


|Iglobal|

2 , n
θ


◃ initialize threshold δ

4: while Iglobal ≠ ∅ do
5: εlocal ←

θ
n+1 ◃ reset εlocal to small value

6: while |Iglobal| > δ do
7: Perform bidding and assignment phase of algorithm 4

(lines 7–15)
8: if γ > εlocal then
9: εlocal ← εlocal · 2

10: else
11: εlocal ← γ
12: end if
13: γ ← γ /2
14: end while
15: δ← δ/2; θ ← θ · 2 ◃ update δ and θ
16: end while

Table 1
Let k be the number of the largest values retained from each row of the
similarity matrix we generate. For various values of k we compute the number of
conserved edges resulting from this sparsified similarity matrix instance (for two
PPI networks). Percentages are computed based on the fact that the number of
columns is 7518 (k column) and the number of conserved edges from the dense
similarity matrix is 1455.

k #Conserved edges

5 (0.07%) 784 (53.88%)
10 (0.13%) 913 (62.75%)
100 (1.33%) 1263 (86.80%)
200 (2.66%) 1317 (90.52%)
500 (6.65%) 1413 (97.11%)
1000 (13.30%) 1442 (99.11%)

matrix, which is quadratic in the number of vertices in the graphs.
As an example, the similarity matrix for two graphs of 106 vertices
each, is a dense matrix of 1012 entries. This requires a distributed
memory of the order of a few terabytes, simply for storing the
similarity scores.

To address this storage requirement, we propose a sparsifica-
tion scheme that is integrated into the assembly process for the
similarity matrix from the outer products. In addition to reducing
storage, while not significantly impacting the match quality, the
result of the sparsification scheme must be in a form that can be
directly used by the parallelmatching algorithm (i.e., in a row-wise
block partitioned form). We use the following strategy:

• use the jth element of each of thew
(n)
i,r vectors (in lines 19 and 21

of Algorithm 3; q = 1) to scale the z(k)
i

T
vectors consecutively

for all local row indices j;
• once a row of the similarity matrix is constructed, retain only

the k largest values in the row (with k ≪ n) before advancing
to the next row.

This sparsification procedure decreases the storage require-
ment associated with the similarity matrix by a factor k

n . It can be
adaptively tuned to trade-off available memory and input network
sizes. Our intention here is to provide a practical and intuitive ap-
proximation strategy, rather than a formally quantified pruning so-
lution. We empirically note that this strategy works remarkably
well for our protein–protein network alignment, which was the
most convenient to check for a range of sparsification factors: Ta-
ble 1 shows that the proposed sparsification preserves, to a large
extent, the ‘‘quality’’ of the similarity matrix output: with 5% of
similaritymatrix entrieswe canmatch almost 95%of the conserved
edges for the two PPI networks.
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Fig. 2. The NSD-based graphmatching pipeline: NSD outputs a similarity matrix and the auctionmatching algorithm generates pairs of vertices from the two networks that
match; indices can characterize the quality of these matches and can be computed at the right end of the pipeline.
Algorithm 6 NSD-based Parallel Graph Matching
1: � = root process, no labels = all processes r
2: � load adjacency matrices A, B and component vectors wi, zi;
3: � compute Ã, B̃;
4: broadcast Ã, wi, zi;
5: distribute B̃ by row blocks ◃ each process r gets its B̃r part;
6: for all components i and all steps k (z(0)

i = zi, w
(0)
i = wi) do

7: compute vector iterates z(k)
i ← Ãz(k−1)

i

8: compute vector iterates w
(k)
i,r ← B̃rw

(k−1)
i , gatherw

(k)
i (//

matvec);
9: end for

10: compute row-wise the local similarity matrix Xr (embarrass-
ingly //)

11: ◃ NSD-based, sparsify if needed (sort row entries, keep largest
ones);

12: compute weighted matchings using the parallel auction
algorithm

13: ◃matching permutation lands on root;
14: � compute number of conserved edges, similarity rate;

We collect all stages in our workflow (parallel similarity ma-
trix construction, sparsification, parallel auction-based matching,
computation of quality indices) into an integrated procedure for
parallel graph matching. This is described in Algorithm 6, the basis
for the implementation running on a large, supercomputer-class
cluster. Note that a subset of sparse matrix–vector products is also
parallelized. Some of the steps in this skeleton algorithm have al-
ready been described as parts of Algorithm 3 (computation of the
local similarity matrix, specifically for a p× 1 process grid), in Sec-
tion 4.3 (sparsification), in Algorithm 4 (parallel matching) and in
Section 3.4 (quality measures).

4.4. Complexity of the integrated approach

The sparsification procedure requires sorting (per row), and
this introduces an extra average complexity term of O(n2 log n),
for networks of size n. This is in addition to the standard O(n2)
complexity of matrix similarity construction (per component,
without sparsification). The sorting procedure can be the dominant
part of the computation for a small number of components
(e.g., s = 1). However, this cost is amortized for larger values
of s. Furthermore, other hash-based approaches can be used to
approximate these ranges. Note also that the auction matching
stage that follows this step in the integrated pipeline of Fig. 2 has a
worst case complexity of O(nm log(nC)); n and m are respectively
the size and the number of nonzero values of the (sparsified)
similarity matrix and C = maxij |xij| [3].

5. Experimental results

We present results from a detailed set of experiments to
quantify the performance of our methods on large-scale parallel
platforms for diverse sets of input networks. Results are presented
for two variants of the method: with and without sparsification
of the similarity matrix. Performance results are complemented
by quality measures, computed as conserved edges frommatching
results.

5.1. Experimental setup

The code is implemented in C using a ‘‘hybrid’’ parallel pro-
grammingmodel (MPI andOpenMP). Thismodel efficiently utilizes
both shared address spacemodels supported bymultiple cores and
messaging across nodes.

In all cases, the parameter α used in similarity matrix construc-
tion is set to 0.8 (recall that α is the fraction of the similarity score
that comes from the topological similarity; the rest comes from
the elemental similarity), the number of iterations is fixed. Further,
s = 10 randomly generated components were input in all runs;
this choice reflects the fact that no specific, a-priori matching pref-
erences are available in general.

Our experiments are performed on the Cray XE6 at the Swiss
National Supercomputing Centre in Manno, Switzerland. The Cray
XE6 has 176 dual-socket compute nodes, each socket is a 12-core
AMD Opteron (aka Magny-Cours), connected through a Gemini
communication interface.Wemap eachMPI process to a socket, fix
the number of OMP threads either to 8 or 12, and test scalability
for up to 256 MPI processes, resulting in 3072 compute cores,
at maximum. The PathScale programming environment (version
3.1.61) is used with its accompanying compiler.

As datasets, a diverse set of networks (see Table 2) available in
the form of their adjacency matrices are taken from the University
of Florida sparse matrix collection [10], the Wikipedia datasets
containing its inter-article link structure [5], and well-known
protein–protein interaction networks [47]. We also report timings
and number of cores to run the full integrated pipeline on diverse
adjacency pairs (see Table 3). These are the baseline computations
for the speedup plots.

5.2. Results with sparsification

In this set of experiments, we construct a sparsified version
of the similarity matrix. Sparsification can be driven by two
different objectives as we increase the number of cores. In the
first approach, the total number of nonzero entries of the global
(sparsified) similarity matrix is kept constant. This can be enforced
by using a constant value for k (the number of values per row
we keep). It follows that the number of nonzero entries for the
local part of the resulting similarity matrix will decrease for larger
configurations, since the number of rows locally assigned is also
reduced in this case. This corresponds to the strong scaling case
for auction matching. In this case, near-linear speedup is observed
for all compute-intensive intermediate steps for up to 1024 cores.
We note that our algorithm can extract matching pairs for half-a-
million vertex networks in less than 30 min using our cluster (see
Table 4).
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Table 2
Characteristics of networks (organized in pairs) used in experiments. Note the extra
separators defining the 7 graph pair sets, directly correlated to the containing graph
size ranges; it is the size that drives the different experimental configurations
(baseline and increments in core counts).

Pair Graph #Vertices #Edges

(a)

protein–protein yeast 5,499 31,898
fruitfly 7,518 25,830

net/pfinan net4-1 88,343 1,265,035
pfinan512 74,752 335,872

snapA soc-slashdot090221 82,144 549,202
soc-slashdot090216 81,871 545,671

snapB soc-slashdot0902 82,168 948,464
soc-slashdot0811 77,360 905,468

usroads usroads 129,164 165,435
usroads-48 126,146 161,950

dnvs halfb 224,617 6,306,219
fullb 199,187 5,953,632

b3 m133-b3 200,200 800,800

shar_te2-b3 200,200 800,800

coAuthors coAuthorsDBLP 299,067 977,676
coAuthorsCiteseer 227,320 814,134

notreDame NotreDame_www 325,729 929,849
web-NotreDame 325,729 1,497,134

stanford Stanford 281,903 2,312,497
web-Stanford 281,903 2,312,497

(b)

amazon amazon0505 410,236 3,356,824
amazon0601 403,394 3,387,388

delaunay delaunay_n19 524,288 1,572,823
delaunay_n18 262,144 786,396

authorsSelf coAuthorsCiteseer 227,320 814,134
coAuthorsCiteseer 227,320 814,134

coPapers coPapersDBLP 540,486 15,245,729
coPapersCiteseer 434,102 16,036,720

papersSelf coPapersCiteseer 434,102 16,036,720
coPapersCiteseer 434,102 16,036,720

dbpedia1 dbpedia-3.0_300k 300,000 1,320,138
dbpedia-3.5.1_500k 500,000 10,546,881

eu/in eu-2005_300k 300,000 10,835,193
in-2004_500k 500,000 8,506,508

dbpedia2 dbpedia-3.0_500k 500,000 2,680,807
dbpedia-3.5.1_1500k 1,500,000 26,794,451

euSelf eu-2005 862,664 19,235,140
eu-2005 862,664 19,235,140

In the second approach, the total number of nonzero entries in
the local part of the similarity matrix is kept constant. We imple-
ment this in our code by adaptively increasing k with the num-
ber of cores (which also implies a decrease in the number of rows
locally assigned), so as to utilize the full 16 GB memory available
for each socket of the Cray XE6. This is the weak scaling case for
auction matching. Note that in this scenario, the auction matching
algorithm is effectively applied to different (successively denser)
similarity matrices as the number of cores is increased, and this
impacts the matching pairs returned. Weak scaling results for auc-
tionmatching and strong scaling for similaritymatrix construction
are shown in Fig. 3 for up to 2048 cores. We can process pairs of
million-vertex networks and extract similar vertex pairs in a cou-
ple of hours on such configurations.

5.3. Results without sparsification

The scalability of our approach is also demonstrated for datasets
and configurationswithout using sparsification. In Fig. 4 near linear
speedup is reported for parallel similarity matrix construction
and also for the overall time. This follows from the fact that
parallel auction matching scales reasonably well and takes only a
Table 3
Networks (organized in pairs) used in experiments, together with base timings
recorded at corresponding compute core counts. Note the extra separators defining
the 7 graph pair sets.

Pair Total time (s) #Cores

(a)

protein–protein 75 1

net/pfinan 796 48
snapA 2,688 48
snapB 1,497 48

usroads 281 384
dnvs 880 384
b3 1,593 384

coAuthors 659 768
notreDame 764 768
stanford 615 768

(b)

amazon 558 3,072
delaunay 938 3,072
authorsSelf 226 3,072
coPapers 2,167 3,072
papersSelf 1,630 3,072

dbpedia1 17,382 128
eu/in 18,122 128

dbpedia2 16,838 256
euSelf 10,939 256

Fig. 3. Speed improvement of the similarity matrix construction in the strong
scaling sense, and the parallel auction in theweak scaling sense by using up to 2048
compute cores.

small fraction of the overall time. Particularly, for protein–protein
interaction networks, a dramatic time reduction for the full
pipeline is achieved through parallelization: extracting matching
pairs for two typical networks using 64 cores takes only about
three seconds. Using sequential state-of-the-art approaches like
IsoRank [47] these matchings require about 1.5 h for a solution of
comparable quality. Fig. 4 presents timing results for the largest
instances tested. Similarity computation requires 256 sockets
(3072 cores) to store the entire data.

5.3.1. Comparisonwith themultithreaded network alignment of Khan
et al. [21]

There are a number of fundamental differences between our
approach and the parallelization reported by Khan et al. [21],
apart from their target platform of shared-memory machines.
These differences relate to the encoding of prior preferences—their
method uses a sparse matrix representation of similarities (matrix
L), whereas our method relies on a sum of outer vector products
(matrix H is typically dense). Their matchings are constrained to
non-zero pairs in matrix L. It is not therefore straightforward to
encode, in L, the absence of prior similarities—the case where
all node alignments are equally likely, a-priori. This is in fact
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Table 4
Timing results (in s) from various phases of the similarity analysis process for the eu/in and dbpedia1 datasets. With reference to Algorithm 6, t_generateIterates corresponds
to lines 7–8, t_generateRow and t_sort are subparts of t_similarityMatrix (lines 10–11), t_parallelAuction corresponds to lines 12–13 and t_total is the total time elapsed.

Pair eu/in dbpedia1

Cores 128 256 512 1024 128 256 512 1024

t_generateIterates 5.07 5.04 5.33 6.13 11.00 11.19 11.53 12.36
t_generateRow 16,451 8,152 4,030 1,225 15,704 7,475 3,254 1,229
t_sort 1,578 788 395 197 1,606 802 401 201
t_similarityMatrix 18,046 8,949 4,429 1,424 17,327 8,287 3,660 1,431
t_parallelAuction 55.16 28.82 16.32 11.90 31.97 19.78 14.37 14.93
t_total 18,122 8,999 4,467 1,458 17,382 8,329 3,697 1,471
Fig. 4. Speed improvement and timing results (in s) from the major steps in our integrated approach for variable-sized dataset using up to 3072 compute cores.
the more frequently encountered case in real applications since
information for constructing node similarity priors for large graphs
is rarely available. Even in caseswhere this information is available,
constructing and storing such a matrix may itself be prohibitively
expensive. In contrast, our formulation is well-suited to this
case. Conversely, our method cannot effectively integrate multiple
vertex–vertex priors which is the preferred format for L. In our
experiments, input matrices H are dense—though not explicitly
formed. They are composed of s = 10 randomly generated rank-
1 components. Obviously the construction of the corresponding
matrix L proved difficult even for the smallest network pair
(protein–protein), well exceeding 1 GB of storage. Consequently,
we generated sparse random matrices L with nonzero densities of
1% (ppi1) and 10% (ppi10), with dimensions commensurate to
our fly/yeast datasets.
For 400 iterations, batch size r = 10 and the default parameters
in the code provided by Khan et al. (compiled with Gnu C++ Com-
piler, version 4.5.3) we run experiments for up to 64 cores in
8-processor/80-core system based on Intel Xeon 2.40 GHz CPU.
Pure solution times lie in the range of 25.8 s (1 core) down to 5.8 s
(16 cores) a maximum speedup approximately of 4×. Although
these numbers seem competitive with ours as absolute numbers
for the same dataset pair (but with dense preferences)—about 3 s
for 64 cores and 75 s for the single core (see Table 3 and Fig. 4, top
left plot), this is not the case:

• scalability is generally poor in [21], only up to ×15 with satu-
ration at around 40 cores; we include computations scaling up
to 3072 cores;
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Table 5
Quality measurement indices from experiments with various network pairs:
number of conserved edges (CE) and the similarity rate (rate). The extra separators
define the 7 graph pair sets (in the sense of the caption in Table 2).

Pair #CE Rate

(a)

protein–protein 745 0.03

net/pfinan 74,778 0.22
snapA 14,296 0.02
snapB 77,617 0.09

usroads 2,666 0.02
dnvs 1,750,799 0.29
b3 29,217 0.15

coAuthors 85,437 0.11
notreDame 113,992 0.12
stanford 107,968 0.05

(b)

amazon 46,278 0.01
delaunay 112,152 0.14
authorsSelf 814,134 1.00
coPapers 3,520,545 0.23
papersSelf 16,036,720 1.00

dbpedia1 1,100 0.004
eu/in 80,884 0.04

dbpedia2 2,082 0.007
euSelf 219,759 0.26

• experimenting with ppi10 (which is still ×10 less dense than
ourH) absolute solution times increase considerably (e.g., 55.4 s
for the 32-core run).

Perhaps, most interestingly, the topological quality of our match-
ing is highly competitive: we conserve 745 edges in the mapping
while our L for ppi1 only reports 89 edge ‘‘overlaps’’. Although
partly expected, since the mappings of Khan et al. are a subset of
nonzero entries injecting the biologically motivated priors gives a
maximum of 381 edge overlaps (see Fig. 3 in [21]).

5.4. Quality measurement

Up to 3072 cores are used for matching up to approximately
500k-vertex networks. We report on the similarity rate, that is
a ‘‘normalized’’ version of the number of conserved edges. Our
intention here is to assess the robustness of our approach for
the case of self-similarity (matching a graph with itself): since no
approximation is introduced (e.g., by sparsification) it is expected
to obtain a number of conserved edges equal to the number of
edges in the graph in the optimal case. This is indeed the case for
authorsSelf and papersSelf pairs (Table 5).

6. Conclusions and future work

We address the problem of matching similar vertices of graph
pairs in parallel. Our approach consists of two basic components:
parallel NSD, a highly efficient and scalable parallel formulation
based on a recently introduced serial algorithm for similarity
matrix computation and parallel auction-based bipartite matching.
We validate the performance of our integrated pipeline on a large,
supercomputer-class cluster and diverse graph instances. We
provide experimental results demonstrating that our algorithms
scale to large machine configurations and problem instances. In
particular, we show that our integrated pipeline enables alignment
of networks of sizes two orders of magnitude larger than currently
possible (millions of vertices, tens of millions of edges).

As part of future work, we investigate the feasibility of a bipar-
tite matching algorithm accepting as input the vectors of low-rank
approximations of the similarity matrix, rather than the fully as-
sembled similarity matrix. We will explore the possibility of sub-
stituting a formal pruning strategy for the optional sparsification
stage.
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