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Abstract—The impossibility of measuring non-commuting
quantum mechanical observables is one of the most fascinating
consequences of the quantum mechanical postulates. Hence, to
date the investigation of quantum measurement and projection
is a fundamentally interesting topic. We propose to test the
concept of weak measurement of non-commuting observables
in mesoscopic transport experiments, using a quasiprobabilistic
description. We derive an inequality for current correlators,
which is satisfied by every classical probability but violated by
high-frequency fourth-order cumulants in the quantum regime
for experimentally feasible parameters. We further address the
creation and detection of entanglement in solid-state electronics,
which is of fundamental importance for quantum information
processing. We propose a general test of entanglement based on
the violation of a classically satisfied inequality for continuous
variables by 4th or higher order quantum correlation functions.
Our scheme provides a way to prove the existence of entangle-
ment in a mesoscopic transport setup by measuring higher order
cumulants without requiring the additional assumption of single
charge detection.

I. INTRODUCTION

The standard von Neumann definition of measurement
[1] works only for perfect detectors with instant measure-
ments. For a general, i.e. time-resolved, measurements one
must use positive operator-valued measures [2]. In particular,
this allows measuring noncommuting observables. The major
breakthrough in the problem of measuring noncommuting
observables was achieved by Aharonov, Albert and Vaidman
by defining weak measurements [3]. The price paid is the
large detection noise [9], which can be deconvolved from
the final probability distribution to obtain a quasiprobability.
This approach is consistent with projective measurements, the
definition of symmetrized noise [4] and full counting statistics
[5]. Experimental measurements of current fluctuations in
mesoscopic junctions [6], [7], [8] have to be interpreted using
weak measurements, although there are various additional
effects — like backaction — that make the interpretation
complicated [10] The quasiprobability is sometimes negative,
for example for current fluctuations in tunnel junctions [11].
However, the nonclassicality of the quasiprobability requires at
least fourth order moments. Second order correlations can be
always interpreted classically [12]. Finally, the quasiprobabil-
ity can be used to observe violations of a Bell-type inequality
which requires fourth order correlators. All proposed Bell
tests based on only second order correlators have to assume
dichotomic outcome, which implicitly requires knowledge of

higher moments.
This paper is organized as follows. Firstly, we derive

the correspondence between weak measurement [3] and the
quasiprobability. Next, we show the weak positivity – classi-
cality – of second order correlations. We present the inequality
for current noise fluctuations, satisfied classically but violated
in quantum weak measurement [11]. Finally, we show the Bell-
type inequality [13], [14], which can be violated in mesoscopic
junctions, requiring only 4th order correlations [12], while the
existing one required 20th order [15].

II. WEAK MEASUREMENT AND QUASIPROBABILITY

Aharonov, Albert and Vaidman [3] considered a special
sequence of measurements of a spin 1/2 particle. The spin
is prepared in some initial state |ψi〉, then σ̂z is measured
weakly by introducing an interaction term in the Hamiltonian,
containing σ̂z . Finally, one projects the final state on |ψ〉f and
takes into account only events that passed this postselection.
The (real part of) average f 〈σ̂z〉i = 〈ψf |σ̂z|ψi〉 / 〈ψf |ψi〉 has
been called the weak value and it can take arbitrarily large
values, much exceeding ±1 – eigenvalues of σ̂z . Here we
show that this unusual result can be alternatively interpreted
by means of quasiprobability – the possible outcomes do not
exceed ±1 but the ”probability” – although normalized to 1 –
sometimes takes negative values.

Consider the original weak value measurement of σ̂z of
a spin 1/2 particle with initial state |ψi〉 = cos

(
θ
2

)
|↑〉 +

sin
(

θ
2

)
|↓〉 and final state |ψf 〉 = 1√

2
(|↑〉+ |↓〉) defining a

pre- and post-selected ensemble. The measurement interaction
entangles the spin with an ancillary continuous system whose
initial state is taken to be Gaussian with unit variance and zero
mean. The measurement interaction is Hi(t) = g(t)p̂σ̂z where
g(t) turns the interaction on and off quickly in comparison to
other time dynamics which are ignored for simplicity, g :=∫

dtg(t) is the measurement strength, and p̂ the momentum
of the ancilla. After the interaction and post-selection, the
position x of the ancilla is projectively measured. Defining
the measurement variable σz = x/g to give the correct
behavior in the g → ∞ limit, the probability density of σz

can be written as the convolution P (σz) =
∫

dsφ(σz−s)%(s)
where Φ(x) = g/

√
2π e−

1
2 g2x2

is the scaled probability
distribution of the original state of the ancilla, and %(s) is

2011 21st International Conference on Noise and Fluctuations

978-1-4577-0192-4/11/$26.00 ©2011 IEEE 340

 

 

 



the quasiprobability distribution

%(s) =
cos2( θ

2 )δ(s− 1) + sin2( θ
2 )δ(s+ 1) + sin(θ)e−

g2

2 δ(s)

1 + sin(θ)e−
g2
2

.

(1)
In the strong, projective limit, (1) reduces to projective prob-
abilities at the eigenvalues ±1 of σ̂z . In the weak limit,
the term at 0 contributes with either positive or negative
quasiprobability depending on the value of θ. Furthermore,
in the weak limit the mean value of %(s) is equal to the real
part of the weak value, 〈ψf |σ̂z|ψi〉 / 〈ψf |ψi〉, which may lie
outside of the range of eigenvalues.

These ideas apply to a series of weak measurements without
post-selection. Each weak measurement introduces an ancilla
system and creates entanglement via a von Neumann interac-
tion. The density matrix after the nth measurement is

ρ̂n = e−ignp̂nÂn (ρ̂n−1 ⊗ |φn〉 〈φn|) e−ignp̂nÂn (2)

where |φn〉 is the initial prepared state of detector n. By
inserting identity operations

∫
DA |A〉 〈A| = 1̂, the mea-

surement interaction can be expressed as shifts of the ancilla
wavefunction.

ρ̂n =
∫

DA′
n DA′′

n (|φn(xn − gnA
′
n〉 〈φn(xn − gnA

′′
n|)

× (|A′
n〉 〈A′

n| ρ̂n−1 |A′′
n〉 〈A′′

n|) (3)

The joint probability P (A1, . . . , An) =: P (A) is the proba-
bility of measuring xk = Ak/gk in the ancillas.

P (A) = Tr

{
ρ̂n

∏
k

1
gk

∣∣∣∣Ak

gk

〉 〈
Ak

gk

∣∣∣∣
}

(4)

=
∫

DA′ DA′′ Tr {ρ̃n (A′,A′′)}

×
∏
k

1
gk
φ(gk(Ak −A′

k))φ∗(gk(Ak −A′′
k)) (5)

In (5), ρ̃n is defined recursively as

ρ̃n = |A′
n〉 〈A′

n| ρ̃n−1 |A′′
n〉 〈A′′

n| . (6)

Using Gaussian wavefunctions φ(x) = (2π)−1/4 e−x2/4, a
change of variables to Ā = (A′ +A′′)/2 and δA = A′−A′′

separates the joint probability density into signal and detector
noise.

P (A) =
∫

DĀ Φ(A− Ā) %(Ā) (7)

Φ(A− Ā) =
∏
k

gk|φ(gk(Ak − Āk)|2 (8)

%(Ā) =
∫

DδA e−(g·δA)2/2 Tr
{
ρ̃n(Ā, δA)

}
(9)

The measure DδA depends on Ā. Eq. (9) is the joint
quasiprobability density for the series of von Neumann mea-
surements.

III. CONSTRUCTION OF QUASIPROBABILITY

We will construct the general form quasiprobability by a
deconvolution from a suitable POVM [2]. Let us begin with
the basic properties of a POVM. The Kraus operators K̂(A)
for an observable described by Â with continuous outcome
A need only satisfy

∫
dAK̂†(A)K̂(A) = 1̂. The act of

measurement on the state defined by the density matrix ρ̂
results in the new state ρ̂(A) = K̂(A)ρ̂K̂†(A). The new state
yields a normalized and positive definite probability density
ρ(A) = Tr ρ̂(A). The procedure can be repeated recursively
for an arbitrary sequence of (not necessarily commuting)
operators Â1, . . . , Ân,

ρ̂(A1, . . . , An) = K̂(An)ρ̂(A1, . . . , An−1)K̂†(An) . (10)

The corresponding probability density is given
by ρ(A1, . . . , An) = Tr ρ̂(A1, . . . , An). We
now define a family of Kraus operators, namely
K̂λ(A) = (2λ/π)1/4 exp(−λ(Â − A)2). It is clear that
λ → ∞ should correspond to exact, strong, projective
measurement, while λ→ 0 is a weak measurement and gives
a large error. We also see that strong projection changes the
state (by collapse), while λ → 0 gives ρ̂(A) ∼ ρ̂, and hence
this case corresponds to the weak measurement. However,
the repetition of the same measurement k times effectively
means one measurement with λ→ kλ so, with k →∞, even
a weak coupling λ � 1 results in a strong measurement.
For an arbitrary sequence of measurements, we can write the
final density matrix as the convolution

ρ̂λ(A) =
∫
DA′ %̂λ(A′)

∏
k

gk(Ak −A′
k) (11)

with gk(A) = e−2λkA2√
2λk/π. Here λ = (λ1, . . . , λn)

A = (A1, . . . , An), and DA = dA1 . . . dAn. The quasi-
density matrix %̂ is given recursively by

%̂λ(A) =
∫
dχ

2π
e−iχAn

∫
dφ√
2πλn

e−φ2/2λn × (12)

ei(χ/2+φ)Ân %̂λ(A1, . . . , An−1)ei(χ/2−φ)Ân

with the initial density matrix %̂ = ρ̂ for n = 0. We can
interpret g in (11) as some internal noise of the detectors
which, in the limit λ→ 0, should not influence the system. We
define the quasiprobability %λ = Tr %̂λ and abbreviate % ≡ %0.
In this limit (12) reduces to

%̂(A) =
∫
dχ

2π
e−iχAneiχÂn/2%̂(A1, . . . , An−1)eiχÂn/2 .

(13)
Note that %0...0,λ = %, so the last measurement does not need
to be weak (it can be even a projection). The averages with
respect to % are easily calculated by means of the generating
function (13), e.g. 〈A〉% = Tr Âρ̂, 〈AB〉% = Tr {Â, B̂}ρ̂/2,
〈ABC〉% = Tr Ĉ{B̂, {Â, ρ̂}}/4 for A = (A,B,C). In general

〈X1(t1) · · ·Xn(tn)〉% = (14)

Trρ̂{X̂1(t1), {· · · {X̂n−1(tn−1), X̂n(tn)} · · · }}/2n−1
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for time ordered observables, t1 ≤ t2 ≤ · · · ≤ tn.
The quasiprobability from the spin 1/2 example can

be interpreted as conditional quasiprobability %(A|B) =
%(A,B)/%(B), where B̂ = |ψf 〉 〈ψf |, Â = σ̂z and ρ̂ =
|ψi〉 〈ψi| and g2 = λ→ 0.

IV. WEAK POSITIVITY

We shall prove that first and second order correlations func-
tions can be always reproduced classically. To see this, con-
sider a real symmetric correlation matrix 2Cij = 2〈AiAj〉% =
Trρ̂{Âi, Âj} with {Â, B̂} = ÂB̂+B̂Â for arbitrary, even non-
commuting observables Âi and density matrix ρ̂. This includes
all possible first-order averages 〈Ai〉 by setting one observable
to identity or subtracting averages (Ai → Ai − 〈Ai〉). Since
Trρ̂X̂2 ≥ 0 for X̂ =

∑
i λiÂi with arbitrary real λi, we

find that the correlation matrix C is positive definite and
any correlation can be simulated by a classical Gaussian
distribution ρ ∝ exp(−

∑
ij C

−1
ijAiAj/2).

Note that the often used dichotomy A = ±1 is equivalent
to 〈(A2 − 1)2〉 = 0, which requires 〈A4〉. Moreover, every
classical inequality 〈(f({Ai})2〉 ≥ 0 contains the highest
correlator of even order. Hence, to detect nonclassical effects
with unbounded observables, we have to consider the fourth
moments.

V. TEST OF NEGATIVE QUASIPROBABILITY

We shall apply the above scheme to the measurement of
current I(t) through a mesoscopic junction in a stationary
state, with δI = I − 〈I〉. It is convenient to define the noise
(second cumulant), S̃(α, β) = 2πδ(α+β)Sα = 〈δI(α)δI(β)〉,
and the fourth cumulant C̃(α, β, γ, η) = 2πδ(α + β + γ +
η)C(α, β, γ, η) with

C̃(α, β, γ, η) = 〈δI(α)δI(β)I(γ)δI(η)〉 (15)
−S̃(α, β)S̃(γ, η)− S̃(α, γ)S̃(β, η)− S̃(α, η)S̃(γ, β).

Here and throughout the text we use Latin arguments in
time domain and Greek ones in frequency domain, related
by a(ω) =

∫
dt eiωta(t). Note, that the delta function of the

frequency sum has a cut-off of the order of the measuring time
t0 (larger than all relevant timescales of the system), which
in some following expressions is a simple prefactor and does
not enter final conclusions.

Let us define the fluctuating noise spectral density Xω =∫ ω+

ω−
δI(α)δI(−α)dα with ω± = ω ± δω/2, for which we

obtain the average fluctuations

〈(δXω)2〉/t0 =
∫ ω+

ω−

Cαβdαdβ + 2π
∫ ω+

ω−

S2
αdα,

〈δXωδXω′〉/t0 =
∫ ω+

ω−

dα

∫ ω′+

ω′−

Cαβdβ (16)

where δX = X − 〈X〉 and Cαβ = C(α,−α, β,−β). The
intervals [ω−, ω+] and [ω′−, ω

′
+] are nonoverlapping. Consid-

ering classical correlators of δX at different frequencies we
obtain the Cauchy-Bunyakovsky-Schwarz inequality

B =
〈δXωδXω′〉2

〈(δXω)2〉〈(δXω′)2〉
≤ 1. (17)

If we choose e.g. 0 ≤ ω′− < ω′+ < ω−, the correlators
correspond to a low and high frequency measurement.

To find conditions in which the inequality (17) is violated,
let us take the tunneling junction. Using Eq. (14) we obtain
Sα = ~Gw(α) and Cαβ = ~FGe2(w(α) + w(β))/2 [4],
[16], [10]. Here we denote w(ω) = ω coth(~ω/2kBT ),
conductance G and Fano factor F ' 1 in the tunneling
limit. For T = 35mK, δω = δω′ = 2ω′ = 2π · 200MHz,
ω = 2π · 6GHz, G−1 = 500kΩ, we get B = 1.4, which
contradicts our classical expectation (17) and clearly shows
that the quasiprobability % must take negative values.

VI. BELL-TYPE INEQUALITY

In the last part use the previous concept to discuss a novel
concept of entanglement detection in mesoscopic conductors.
Due to weak positivity discussed earlier, second order correla-
tions are not sufficient to detect entanglement using electronic
currents.

As usual we introduce two separate observers, Alice and
Bob that are free to choose between two observables, (A, A′)
and (B, B′), respectively. The measurements can give arbitrary
outcomes (not just ±1). As shown in Ref. [12] we end up
with our main inequality

|〈AB(A2 +B2)〉+ 〈A′B(A′2 +B2)〉
+〈AB′(A2 +B′2)〉 − 〈A′B′(A′2 +B′2)〉|/2 ≤ (18)(
〈A4〉+ 〈A′4〉+ 〈B4〉+ 〈B′4〉

)
/2 +

1
4

D 6=C;E 6=C,D,D′∑
C,D,E={A,A′,B,B′}

√√
〈C4〉

√
〈D4〉

〈
(D2 − E2)2

〉
,

where D′ = A(B) when D = A′(B′).
The inequality contains up to 4th order averages which

is a trade-off for relaxing the condition of dichotomy (or
trichotomy, considering also 0). It reduces to the standard Bell
inequality

|〈AB〉+ 〈A′B〉+ 〈AB′〉 − 〈A′B′〉| ≤ 2 (19)

if we restrict the possible values of A,A′,B,B′ to ±1. If
all observables are allowed to take the additional value 0
only simultaneously then the inequality still reproduces Bell
multiplied by the probability of nonzero outcomes. All cor-
relations in the inequality are measurable also in a Bell-type
test, because none of them contains AA′ or BB′. Hence, we
can say that the degrees of freedom measured by A(′) and
B(′) are entangled if the inequality (18) of their correlators is
violated. We emphasize that this requires only the assumption
of nonnegative probability distribution ρ(A,A′, B,B′) ≥ 0
and provides an unambiguous proof for entanglement.

Returning to quantum mechanics, let us take the standard
Bell state [14] ρ̂ = (1̂ − σ̂A · σ̂B)/4, σ = (σ1, σ2, σ3), with
σ̂i – standard spin Pauli matrices {σ̂i, σ̂j} = 2δij 1̂ acting
in Hilbert space HA ⊗ HB , Â(′) = a(′) · σ̂A, |a(′)| = 1
(A ↔ B) and averages 〈A(′)nB(′)m〉 = Trρ̂Â(′)nB̂(′)m.
In particular 〈A(′)4〉 = 〈B(′)4〉 = 〈A(′)2B(′)2〉 = 1 and
〈A(′)B(′)3〉 = 〈A(′)3B(′)〉 = a(′) · b(′). The inequality (18)
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(a)

e hx xA B

I

I

I
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1
1

2
2

Alice Bob

(b)

φ
A,A'

φ
B,B'

I1

I1

I2

I2
Alice Bobx xA B

Fig. 1. Proposals of experimental setup for the Bell test. In both cases the
black bar represents the scattering barrier, producing entangled electron-hole
pairs. The tested observable is the difference of currents, I1 − I2, at left
(Alice) or right (Bob) side. The correlations depend on the spin scattering (a)
or magnetic fluxes (b).

is violated as it reads 2
√

2 ≤ 2 for a′,b,a,b′ in one plane at
angles 0, π/4, π/2, 3π/4, respectively.

A. Test on tunnel junction

Now we implement the Bell example in a beam splitting
device involving fermions scattered at a tunnel junction at
the temperature kBT and biased with voltage eV . The Bell
measurement will be performed by adding spin filters or
magnetic flux at both sides of the junctions as shown in
Fig. 1. In both cases, the transmission coefficients for the
total scattering matrix are T11 = T22 = T (1 + a · b)/2 and
T12 = T21 = T (1−a · b)/2 where a = (cosφA, sinφA, 0) in
the case of magnetic fluxes.

As in the previous proposals [17] the tunnel barrier produces
electron-hole pairs with entangled spins or orbitals. Alice and
Bob can test the inequality (18) by measuring the difference
between charge flux in upper and lower arm as shown in Fig.
1. For Alice, the measured observable reads in the Heisenberg
picture

Â =
∫
dt f(t)(Î1(xA, t)− Î2(xA, t))/e. (20)

for the filter setting a. Here xA is the point of measurement,
satisfying max{|eV |, kBT}|xA/vn~| � T with f(t) slowly
changing on the timescale ~/max{|eV |, kBT}. One defines
analogically A′ for a′ and B, B′ for Bob. In the limit

1/NT � t0max{|eV |, kBT}/h� t0/δ � 1 (21)

the averages read 〈A(′)4〉% = 〈B(′)4〉% = 〈A(′)2B(′)2〉% = c

and 〈A(′)B(′)3〉% = 〈A(′)3B(′)〉% = a(′) · b(′)c where c is a
constant. The inequality (18) is violated for the same spin
directions an in the standard Bell test.

VII. CONCLUSIONS

In the present work we have discussed the concept of
a quasiprobability in the context of weak measurement of
current cumulants in a mesoscopic conductor. An important

observation is, what we call the weak positivity, that all
quantum second-order correlation functions can be simulated
by a Gaussian distribution and, hence, cannot be used to
violate classical inequalities. We show several examples, how
the quasiprobabilistic nature of the quantum distribution can be
probed. First, to assess the quantum dynamics of a simple tun-
nel junction, it is possible to violate a Cauchy-Bunyakowski-
Schwarz inequality using the 4th-order correlations. The most
favourable conditions are found at low temperatures and
voltages, but at high frequencies. Second, we have discussed
an inequality for non-local entanglement detection using con-
tineous variables. Using this inequality, we can overcome the
assumptions underlying the usual Bell inequality for second-
order correlators. The experimental violation of our inequality
seem in the range of present technology, if suitable high-
frequency detection is used.
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[4] Y.M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
[5] L.S. Levitov and G.B. Lesovik, JETP Lett. 58, 230 (1993); L.S. Levitov,

H.W. Lee, G.B. Lesovik, J. Math. Phys. 37, 4345 (1996); W. Belzig and
Y.V. Nazarov, Phys. Rev. Lett. 87, 197006 (2001); Y.V. Nazarov and M.
Kindermann, Eur. J. Phys. B 35, 413 (2003); M. Kindermann and Y.V.
Nazarov in Quantum Noise in Mesoscopic Physics, Y.V. Nazarov (Ed.),
(Kluwer, Dordrecht, 2003).

[6] J. Gabelli et al., Phys. Rev. Lett. 93 056801 (2004); E. Zakka-Bajjani et
al., Phys. Rev. Lett. 99, 236803 (2007); 104, 206802 (2010); J. Gabelli
and B. Reulet, 100, 026601 (2008); J. Stat. Mech. P01049 (2009).

[7] M. I. Reznikov et al., Phys. Rev. Lett. 75 3340 (1995); A. Kumar et al.,
76, 2778 (1996); R.J. Schoelkopf et al., 78, 3370 (1997).

[8] B. Reulet et al., Phys. Rev. Lett. 91, 196601 (2003); Y. Bomze et al., 95,
176601 (2005); 101, 016803 (2008).

[9] A. Bednorz and W. Belzig,Positive operator valued measure formulation
of time-resolved counting statistics, Phys. Rev. Lett. 101, 206803 (2008).

[10] Adam Bednorz and Wolfgang Belzig, Quantum tape model of meso-
scopic time-resolved current detection, Phys. Rev. B 81, 125112 (2010).

[11] Adam Bednorz and Wolfgang Belzig, Quasiprobabilistic interpretation
of weak measurements in mesoscopic junctions, Phys. Rev. Lett. 105,
106803 (2010) .

[12] Adam Bednorz and Wolfgang Belzig, Proposal for a cumulant-based
Bell test for mesoscopic junctions, arXiv:1006.4991. (to be published in
Phys. Rev. B)

[13] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935); J.
S. Bell, Physics (Long Island City, N.Y.) 1, 195 (1964).

[14] J.F. Clauser, M. A. Horne, A. Shimony, and R.A. Holt, Phys. Rev. Lett.
23, 880 (1969); A. Shimony in: plato.stanford.edu/entries/bell-theorem/

[15] E. G. Cavalcanti et al., Phys. Rev. Lett. 99, 210405 (2007).
[16] A.V. Galaktionov, D.S. Golubev, and A.D. Zaikin, Phys. Rev. B. 68,

235333 (2003); 72, 205417 (2005).
[17] C. W. J. Beenakker, Proc. Int. School Phys. E. Fermi, Vol. 162 (IOS

Press, Amsterdam, 2006).

343

 

 

 


