
Computers & Geosciences 59 (2013) 31–40
Contents lists available at SciVerse ScienceDirect
Computers & Geosciences
0098-30
http://d

n Corr
nn Cor
E-m

limanch
journal homepage: www.elsevier.com/locate/cageo
Parallel scanline algorithm for rapid rasterization of vector
geographic data

Yafei Wang, Zhenjie Chen, Liang Cheng n, Manchun Li nn, Jiechen Wang
Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, 22 Hankou Road, Nanjing 210097, China
a r t i c l e i n f o

Article history:
Received 7 September 2012
Received in revised form
15 May 2013
Accepted 17 May 2013
Available online 27 May 2013

Keywords:
Vector geographic data
Rasterization
Parallel processing
Scanline
Speedup
04/$ - see front matter & 2013 Elsevier Ltd. A
x.doi.org/10.1016/j.cageo.2013.05.005

esponding author. Tel.: +86 18652071855; fax
responding author. Tel.: +86 13705167312; fa
ail addresses: lcheng@nju.edu.cn (L. Cheng),
un_nju@126.com (M. Li).
a b s t r a c t

With the expansion of complex geographic calculations and the increase of spatial data types involved in
the spatial analysis of large areas, the need becomes urgent for fast rasterization of massive multi-source
geographic vector data. A parallel scanline algorithm is proposed for rapid rasterization. It provides a
systematic solution to solve the complicated situation in parallel processing (cross-processor boundaries,
common boundaries, and tiny polygons), thus ensuring the accuracy of the parallel scanline algorithm.
The relationship of parallel speedup with the number of processors, the data partition pattern, and the
raster grid size is discussed. Massive vector geographic data (approximately 0.7 million polygons) used in
the experiment were effectively processed, thereby dramatically reducing the processing time and
getting good speedup.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Vector data and raster data are the two basic geographic data
types used in the Geographic Information System (GIS) (Maguire
et al., 1991), and the latter is more suitable for spatial analysis and
spatial simulation (Goodchild, 2011). As satellite technologies advance
forward, raster data have become increasingly more popular than
vector data. At present, raster data is already the most dominant
format used by data sources. With the expansion of complex
geographic calculations and the increase of spatial data types involved
in the spatial analyses on large areas (Lee et al., 2011), the need for
rasterization of massive multi-sourced vector geographic data
becomes more and more urgent. However, due to the sequential
architecture of existing rasterization algorithms and the traditional
desktop computer platform, current solutions cannot meet the strong
demand of fast rasterization on massive vector geographic data. In
recent years, the gradual popularity of the new parallel hardware
architecture, such as computer clusters and multi-core processors,
offers a new opportunity to improve the conversion speed of massive
geographic data, which had been restricted by the limited computing
performance of older technologies (Kenneth et al., 2003; Gong and
Xie, 2009). To achieve the requirements of rapid rasterization on
massive vector data, it is necessary to combine geographic data
conversion technology with parallel hardware architecture by devel-
oping new parallel algorithms, thereby reducing processing time
through parallel computing (Mariethoz, 2010; Schiele et al., 2012).
ll rights reserved.

: +86 25 83597359.
x: +86 25 83597359.
Parallel rasterization of vector geographic data includes parallel
rasterization of point data, of line data, and of polygon data. Among
these three, parallel rasterization of polygon data is relatively
complex. Therefore, this paper focuses on the study of parallel
rasterization algorithms on polygon data. Based on the analysis of
the limitations of the existing researches, a new parallel scanline
algorithm for rapid rasterization of vector polygon data is proposed.
Its main procedures include: (1) Executing particle-sized partitions
on vector polygon data, according to the number of processors and
the spatial location of the vector polygon data, so as to adapt to
different-sized grid blocks, and (2) Fusing partition parts, in which a
parallel strategy using pixel-center scanlines is proposed to solve
the complicated situation, including cross-processor boundaries,
common boundaries, and tiny polygons.

The algorithm was implemented for multi-core processors. The
land use data of Changsha City, China was used to check the
performance of this algorithm, and the results were compared
with those derived from the commercial software ArcGIS. Mean-
while, this research measures the operating time and speedup of
this parallel algorithm, and this paper discusses the relationship of
the parallel speedup with the number of processors, the data
partition pattern, and the grid cell size.
2. Related work

2.1. Parallelization potential of existing serial rasterization
algorithms

Vector data rasterization is the basic issue in the Geographic
Information System (GIS) (Congalton, 1997). Rasterization is a lossy

www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2013.05.005
http://dx.doi.org/10.1016/j.cageo.2013.05.005
http://dx.doi.org/10.1016/j.cageo.2013.05.005
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cageo.2013.05.005&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cageo.2013.05.005&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cageo.2013.05.005&domain=pdf
mailto:limanchun_nju@126.com
mailto:limanchun_nju@126.com
http://dx.doi.org/10.1016/j.cageo.2013.05.005

Begin do

Create a null raster dataset according to spatial location of the polygon datasets.

Get the row size of raster dataset rasterYsize and the number of the processors np. Calculate the

size of raster partition nYchunksize by the by the following formula

nYchunksize ceil [rasterYsize / np]

where ceil[n] function is to return the smallest value that is not smaller than n.

Calculate the first row coordinate of each raster partition iY is calculated by the following formula

iY cp× nYchunksize

where cp is the process ID.

//Calculate the first row coordinate of the last processor

If (iY + nYchunksize)< RasterYsize

iY rasterYsize-iY

/*Divide the polygons through a spatial query operation*/

// Four corner points’ coordinates of each raster block

dulx 0, duly iY, dlrx rasterXsize-1, dlry iY+nYChunkSize-1

←

←

←

← ← ←←

Y. Wang et al. / Computers & Geosciences 59 (2013) 31–4032
conversion process; therefore, errors are inevitable, regardless of
improvements in the conversion accuracy (Liao and Bai, 2010).
Different GIS software applications have different raster algorithms,
which could produce different results, evenwith the same data (van
der Knaap, 1992). Traditional polygon rasterization algorithms
include the point-based rendering method, the X-ray method, the
scanline method, and the boundary algebraic method. Later raster-
ization algorithms were mostly derived from or improvements of
these methods. Some researchers focused on the fast implementa-
tion of rasterization, such as the winding number algorithm
(Hormann and Agathos, 2001), the hierarchical triangle-based
method (Jiménez et al., 2009), and the point-in-polygon method
based on the quasi-closest point (Yang et al., 2010). Other research-
ers considered the lossy conversion process and focused on improv-
ing the accuracy of the rasterization, such as the optimization
algorithm based on errors in minimized areas (Wang et al., 2006)
and the conversion of equal areas (Zhou et al., 2007). Among all the
available methods, the scanline algorithm is the simplest and the
most efficient. Moreover, average partitioning of rows and columns
is easy to do, because different rows and columns are not related,
making the algorithm ideal for parallel processing. This algorithm is
also highly accurate and can solve difficult problems, such edge
pixels and tiny polygons, by defining a threshold.

2.2. Analysis of existing parallel rasterization algorithms

Two kinds of parallel rasterization algorithms exist: one is
geared toward the computer graphics field, while the other is
geared toward the GIS field. Parallel rasterization algorithms have
long been used in computer graphics research, resulting in
relatively significant advancements. Pineda (1988) examined the
position between the point and the polygon and drew the 3D
graph in parallel by interpolating pixels through linear marginal
functions. McManus and Beckmann (1997) proposed a mathema-
tical method to decide the best screen-blocking process and to
render the sub-partitions using a multi-core processor. Correa
et al. (2003) presented a sort-first parallel system for out-of-core
rendering of large models on cluster-based tiled displays, which
rendered high-resolution images of large models at interactive
frame rates using off-the-shelf PCs. Popescu and Rosen (2006)
presented two forward rasterization algorithms designed for small
polygonal primitives, which were efficiently rasterized by inter-
polation among a polygon's vertices. Roca et al. (2010) presented a
rasterization approach that could be fully integrated in the current
GPU rendering pipeline and that was optionally selected by API
users to process streams of microtriangles. Hollander et al. (2011)
proposed a new GPU algorithm to perform an efficient parallel
computation of multiple-view levels of detail from a Bounding
Volume Hierarchy, which could be used on low-detail representa-
tions such as polygon soups. Aimed toward the GIS geographic
data processes, Healey et al. (1998) designed a parallel algorithm
that converts vector data into raster data, which provided the
selection criteria for and used the parallel vector data algorithm.
However, none of these algorithms has considered the storage
characteristics of the vector polygon in GIS, such as the class area,
the shape and structure of the polygon, its geometric position, and
its attributes, thus making the algorithms difficult to apply to
vector polygon rasterization.
Transform dulx, duly, dlrx, dlry to the new coordinates belonging to spatial references in the

vector data through affine transform

Create a window by the four corner points and use the window to intersect the polygons through a

spatial query operation

Get the intersected polygons for each raster partition

End do

Fig. 1. Pseudo-code for the procedure of data partition.
3. Design of parallel algorithm

3.1. Partition of polygon data

Common architectures of parallel algorithms include the task
parallel architecture, the pipeline parallel architecture, and the
data parallel architecture (Subhlok et al., 1993). The scanline
algorithm on vector polygons is simple and has strong data
dependencies; therefore, the task parallel architecture would
waste significant communication time. Different processes have
very different computing times, with the majority of the time
spent on calculating intersections for the scanline algorithm;
therefore, the pipeline parallel architecture is very difficult to
use. The scanline algorithm uses almost the same operation on
each pixel of every line/column, making it easy to slice the data
and to achieve an optimal loading balance (Guan and Clarke,
2010).

For this study, we chose the data parallel architecture, which
focuses on dividing the data. The main process is presented in
Fig. 1 using pseudocode.

The affine transform describes the relationship between raster
positions (in pixel/line coordinates) and georeferenced coordi-
nates. It consists of six coefficients that map pixel/line coordinates
(xPixel, yLine) into georeferenced space (xGeo, yGeo) using the
following equations:

xGeo¼ gT ½0� þ xPixel� gT ½1� þ yLine� gT ½2�

yGeo¼ gT ½3� þ xPixel� gT ½4� þ yLine� gT ½5�
For north-up images, the gT[2] and gT[4] coefficients are zero,

gT[1] is the pixel width, and gT[5] is the pixel height. The (gT[0], gT
[3]) position is the upper left corner of the upper left pixel of the
raster.

All raster blocks derived from the raster partition are processed
using the equations above. If one polygon crosses several raster
blocks, it will be extracted by the corresponding raster blocks.

3.2. Parallel partition fusion

This section focuses on the processes used in complicated
situations, including cross-processor boundaries, common bound-
aries, and tiny polygons.

3.2.1. Cross-processor boundary
As shown in Fig. 2(a), Polygon A covers two adjacent raster

blocks (Block 0 and 1). The boundaries (blue and red) cross these
two blocks (corresponding to two processors) and are named

PP P

Processor ID =0

Processor ID =1

Processor ID =0

Processor ID =1

B
lock 0

B
lock 1

B
lock 0

B
lock 1

Fig. 2. Parallel scanline processing of the cross-processor boundaries. (a) Vector Polygon A and B operated in parallel by Processors 0 and 1 (the blue and red boundaries
named as cross-processor boundaries), (b) Scanline operation performed to two polygons in Processor 0 and 1, simultaneously, (c) The corresponding rasterization results
(gray and pink area) to Polygon A and B (green area not involved in rasterization based on pixel center-based scanline algorithm). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Y. Wang et al. / Computers & Geosciences 59 (2013) 31–40 33
cross-processor boundaries. The process used with these cross-
processor boundaries significantly influences the accuracy of the
rasterization. As shown in Fig. 2(b), Polygon A is divided into two
parts by Processor 0 and Processor 1. In Processor 0, a pixel-center-
based scanline strategy is presented to examine the position
between Polygon A and the raster grids in Block 0. Line L0 scans
from left to right, and two points P0 and P1 are then obtained by
intersecting L0 with Polygon A. The region between P0 and P1 in
Block 0 is filled by using the attribute of Polygon A. In parallel, the
same process is implemented in Processor 1 to fill the correspond-
ing raster region of Block 1 by using Polygon A. Similar operations
are applied to Polygon B and other polygons.

The main advantage of this pixel-center-based strategy is that
the slight cross-processor boundaries (the blue boundary of Polygon
B in Fig. 2) can be processed accurately. Although Polygon B also
covers two adjacent raster blocks, the green area in Block 1 is not
filled with Polygon B, because no intersecting points exist between
line L1 and Polygon B. The use of this strategy improves the accuracy
of the rasterization. The corresponding rasterization results (gray
and pink area) to Polygon A and B are shown in Fig. 2(c).
3.2.2. Common boundary
In Fig. 3(a), a common edge exists between Polygon A and

Polygon B and covers the black area. The task is to determine the
polygon that each grid in the black area belongs to. If a grid's pixel
center point is inside Polygon A, the grid is assumed to belong to
Polygon A. Before conducting the scan, all vertices of the polygon
are pushed into the stack according to ID number, and the vertices
coordinates are transformed from the geospatial coordinate sys-
tem into the pixel/line coordinate system through the affine
transform, as shown in Fig. 3(b). In order to ensure accuracy, the
coordinates of the polygon vertices are recorded as double-
precision data types after the affine transform. In Fig. 3(b), Point
Piðxi; yiÞ and Piþ1ðxiþ1; yiÞ (red point) are obtained by intersecting
the scanline with Polygon A. The x coordinate of the raster grid M
(green) belonging to the common boundaries is set to dx. The
attribute of M is examined by Eq. (1). If dx satisfies Eq. (1), then
grid M belongs to Polygon A. If not, the next common edge pixel is
selected. If two polygons equally share the area of a pixel, the pixel
is considered to belong to the polygon with the smaller ID number.

floorðxi þ 0:5Þ≤dx ≤floorðxiþ1 þ 0:5Þ ð1Þ
where floor(n) returns the largest integer less than or equal to the
specified double-precision floating-point number.

3.2.3. Tiny polygon
Tiny polygons are an exception to the intersection case, because

the size of the polygon is smaller than the cell size, as shown in
Fig. 4(a). The generation of tiny polygons is related to its data source
and to the cell size when creating the raster datasets. In Fig. 4(b),
Point P1 and P2 were created by intersecting a scanline with Polygon
A. Point P3 and P4 were created by intersecting a scanline with
Polygon B. If the coordinate difference between two intersection
points of a polygon is greater than 0.5 pixel, the grid is assigned as
belonging to this polygon; otherwise, the tiny polygon is discarded.

Y. Wang et al. / Computers & Geosciences 59 (2013) 31–4034
In Fig. 4(b), the coordinate difference between P1 and P2 is greater
than 0.5 pixel; therefore, the corresponding grid is assigned as
belonging to Polygon A. However, the coordinate difference between
P3 and P4 is less than 0.5 pixel; therefore, Polygon B is discarded.
Fig. 4. Processing of tiny polygons. (a) vector

1a
2ana . . .

1b
2b

nb

. . .

Processor ID=0

Processor ID=1

B
lock 0

B
lock 1

M

A

B

A

B

0

x

Processor ID=0

Processor ID=1

B
lock 0

B
lock 1

y

Fig. 3. Parallel scanline processing of the common boundaries. (a) Common
boundaries (black), (b) The pixel value of the green grid estimated by analyzing
the relationship between it and two red points.
3.3. Design of parallel efficiency analysis

Speedup is the most common standard for judging the effi-
ciency of parallel algorithms (Xie, 2012). Speedup can be defined
as the ratio of execution time of an optimal serial algorithm to that
of the corresponding parallel algorithm for the same task. The
speedup of this parallel scanning algorithm can be evaluated by
considering three factors: number of processors, data partition
pattern, and raster grid size. This study discusses the relationship
of parallel speedup with these three factors.

Multi-core processors were used for the experiment, and the
change of speedup with different numbers of processors was
measured. The influence of the data partition on the speedup
can be analyzed by two partition patterns: row-partition and
column-partition. The row-partition pattern divides the input data
into several partitions by row, as illustrated in Fig. 2. The column-
partition pattern divides the input data into several partitions by
column. We compared the difference in parallel speedup between
the two partition patterns. Finally, the relationship between the
raster grid size and the speedup is considered. The following raster
grid sizes were selected for this experiment: 5 m, 10 m, 20 m,
30 m, 40 m, 50 m, 60 m, 70 m, 80 m, 90 m, 100 m, 200 m, 300 m,
400 m, and 500 m. For each of these grid sizes, the corresponding
maximum speedup value was obtained and compared with the
others.

In order to compare with the parallel scanline algorithm in this
paper, we designed and implemented another parallel rasteriza-
tion algorithm, based on cell rasterization algorithm, which is one
of the most accurate rasterization algorithms. It pinpoints the
inclusion relationships between a specific raster grid cell and the
polygons, one by one. We adopted the same parallel architecture
in our parallel cell rasterization algorithm.
4. Implementation of parallel algorithm

We used the C++ programming language to implement the
parallel algorithm with Message Passing Interface (MPI), using the
development platform Microsoft Visual Studio 2008. The raster-
ization of vector data mainly consists of three parts: reading the
vector data, calculating, and writing the raster data. All parts can
be parallelized by MPI. The read and write operations were
implemented using the open-source Geospatial Data Abstraction
Library (GDAL). The data formats of the available polygon vector
data included ESRI Shapefile, MapInfo MIF (n.mif), MapInfoTab
(n.tab), AutoCAD (n.dxf), and MicroStation Design (n.dgn). The
output data formats were raster data formats like the ENVI.hdr
P P P P
A

B

tiny polygon, (b) Result of rasterization.

Y. Wang et al. / Computers & Geosciences 59 (2013) 31–40 35
Labelled Raster, ERDAS Imagine(n.img), GeoTIFF(n.tif), and ESRI.hdr
Labelled. The pixel values of the output raster were assigned as the
attribute fields of a polygon, and the input field types determined
the types of the output raster. The specific procedures of the raster
parallel algorithm on vector polygons are as follows:

Step 1: The master processor opens the vector file and
determines the extent of the vector data.
Step 2: The master processor creates a null raster dataset,
according to the minimum bounding window of all vector
polygons, and assigns its parameters, including the grid size
and data format.
Step 3: The master processor perform data partition and
creates Block 0, 1, …, n−1 by dividing the raster dataset.
Step 4: The master processor sends a message to slave
processors by point-to-point communication. The message
includes the start row, the rows of raster partition, and the
end row. All slave processors (n−1) are called to read the n−1
raster blocks in parallel synchronously.
Each slave processor is used for the subsequent processing
from Step 5 to Step 8.
Step 5: In one slave processor (Processor 1), the coordinates of
four corner points belonging to Block 1 are transformed
according to the spatial reference information of the vector
data through affine transform. A window created by the
transformed coordinates extracts the polygons through a spa-
tial query operation.
Step 6: Each slave processor reads the extracted vector poly-
gons, and the vertex coordinates and attribute values of the
polygons are stored in a vector, according to the polygon's ID
number.
Step 7: Processor 1 performs the parallel scanline operation. The
detailed process is presented in Fig. 5 using pseudocode.
Step 8: The slave processors write the n−1 raster blocks(n−1).
Step 9: A new raster image is created by combining the
rasterization results from all slave processors.

Complicated situations, especially cross-processor boundaries,
common boundaries, and tiny polygons, are handled based on the
proposed systematic solution to ensure the accuracy of the parallel
scanline algorithm.
Calculate the total number of polygons pcount and the vertex number of each polygon vcount

of within Block 1

Estimate the start -row and end -row of scanning line according to the minimum bounding

window of the polygons in this block.

For Linex = start-row to end-row

dy= Linex +0.5

For Polygony=0 to pcount-1

For Vertexz = 0 to vcount-1

The row coordinates of two adjacent vertex are set to (dx1,dy1), (dx2,dy2) (dx1

<dx2,dy1 <dy2)

Calculate the intersection coordinates of polygons with dy

If((dy < dy2) && (dy >= dy1))

Intersect ionx= (dy-dy1) * (dx2-dx1) / (dy2-dy1) + dx1

Sort by the row and record the coordinates of the intersections

Set the pixel value of each raster grid between two intersections in this line by the

corresponding polygon ID

End for Vertexz loop

End for Polygony loop

End for Linex loop

Fig. 5. Pseudo-code for specific procedures of parallel scanline operation.
5. Experiment

5.1. Experimental data and parallel environment

The experiment data, which comes from the land use data of
Changsha City in China (Fig. 6), has a specific area range of 28.666
degrees north latitude, 27.836 degrees south latitude, 111.877
degrees west longitude, and 114.256 degrees east longitude,
covering an area of 11,819.46 square kilometers. The data format
is the ESRI shapefile. The total number of the polygons is 692,177,
and the data volume is 938 MB. Its spatial reference system is the
1980 Xi'an coordinate system of China. The land use types have 24
categories (Table 1), including paddy fields, irrigated land, dry
land, garden plots, forest land, pasture land, agricultural land for
facilities, rural roads, etc.

The computer used for this program is an IBM System x3500-
M3X, which is equipped with eight CPUs (Intel Xeon Quad Core
E5620 with a 2.4 GHz speed, 12 MB cache, quad-core processors),
two 4 GB memory chips (DDR3 1333 MHz LP RDIMM); four hard
drives of 500 GB each (7.2 K 6 Gbps NL SAS 2.5-in. SFF Slim-HS
HD). The network is the Integrated Dual Gigabit Ethernet, and the
operating system is the CentOS Linux 6.0. OpenMPI 1.4.1 was
selected among the MPI products.

5.2. Accuracy analysis

The indexes used to judge the rasterization accuracy usually
include the area accuracy, perimeter accuracy, and classifica-
tion accuracy. For this study, we chose the area accuracy and
classification accuracy indexes. The field values of the land use
type in the polygon data are chosen as the pixel values in the
process of rasterization.

This experiment compares the result of this parallel algorithm
rasterization with the result of rasterization using the ArcGIS
software. ArcGIS9.3 provides 3 kinds of rasterization methods
including the CELL_CENTER method, the MAXIMUM_AREA method,
and the MAXIMUM_COMBINED_AREA method. In the CELL_CEN-
TER method, the polygon that overlaps the center of the cell
provides the attribute to assign to the cell. In the MAXIMUM_AREA
method, the single feature with the largest area within the cell
provides the attribute to assign to the cell. In the MAXIMUM_COM-
BINED_AREA method, the areas of features with the same value are
combined and the combined feature with the largest area within
the cell determines the value to assign to the cell. This experiment
compares the result of this algorithm with the result of the
CELL_CENTER method, which is very similar to this algorithm.

The vector polygon data used in this experiment is shown in
Fig. 7(a). The size of the output raster data is 11630�4510, and the
grid size is 20 mn, as shown in Fig. 7(b). Using a spatial scale of 20 m
and comparing the rasterization results against the results from the
ArcGIS software, we estimated the rasterization accuracy (classifi-
cation accuracy) of various land use types by processing the data
using the proposed parallel algorithm, and the results are listed in
Table 1. From this table, the accuracy of the rural roads type is
99.45%, whereas the accuracy of other types is larger than 99.70%.

We also calculated the classification accuracy of the proposed
parallel algorithm under different spatial scales. Table 2 lists the
classification accuracy for the parallel scanline algorithm and for
the parallel cell algorithm under various spatial scales (5 m, 20 m,
50 m, 100 m, and 500 m). The classification accuracy of the parallel
cell algorithm is greater than that of the parallel scanline algo-
rithm, and it very slightly declines with the increase of raster
spatial scale.

The area accuracy of the proposed parallel algorithm was also
computed by taking the rasterization results of the ArcGIS soft-
ware as reference. Table 3 lists the area accuracy results for the

Fig. 6. Study area.

Table 1
The accuracy of rasterization in various land use types by the proposed parallel algorithm under 20 m spatial scale (classification accuracy).

Land use type ArcGIS rasterization (reference) Parallel rasterization Area difference Classification accuracy (%)

Paddy fields 7,080,997 7,081,321 324 99.99
Irrigated land 22,118 22,093 25 99.88
Dry land 873,431 873,440 9 99.99
Garden plots 301,605 301,404 201 99.93
Forest land 15,418,648 15,418,607 41 100.00
Pasture land 634 633 1 99.84
Agricultural land for facilities 12,506 12,535 29 99.76
Rural roads 1,474 1,482 8 99.45
Pond surface 900,171 900,254 83 99.99
Land for farmland water conservancy 27,427 27,454 27 99.90
Areas of cities and town 1,006,040 1,006,248 208 99.98
Residential quarters in rural areas 2,458,507 2,458,407 100 99.99
Mining land 94,769 94,666 103 99.89
Railways 31,520 31,520 0 100.00
Highways 1,87,802 1,87,592 210 99.88
Civil airports 9,639 9,646 7 99.92
Harbors and wharfs 842 840 2 99.76
Reservoir surface 135,031 135,189 158 99.88
land for water-control structures 50,447 50,333 114 99.77
Scenic spots 61,435 61,355 80 99.87
River surface 480,713 480,683 30 99.99
Lake surface 25,127 25,113 14 99.94
Beaches and flats 100,059 100,078 19 99.98
Natural reserved area 266440 266407 33 99.98

Total 29,547,382 29,547,300 1,826 99.99

Y. Wang et al. / Computers & Geosciences 59 (2013) 31–4036
two parallel algorithms. Only the area accuracy at 500 m resolu-
tion is 99.97%, whereas other area accuracies reached 100.00% for
the parallel scanline algorithm.

The detailed comparisons of rasterization results from the
parallel scanline algorithm and from ArcGIS in various spatial
scales are shown in Fig. 8. Based on these experimental results, we
can see that the parallel cell rasterization algorithm gets higher
accuracy than the parallel scanline rasterization algorithm. Both of
them are almost identical to the results of the ArcGIS rasterization,
thus leading to a very high accuracy.
5.3. Efficiency analysis

5.3.1. Relationship of the number of processors and speedup
The computing time of the parallel algorithm is the basic

performance measurement. If the number of processors is 1, the
serial processing is performed; otherwise, the parallel algorithm is
used. This experiment compares the execution times of serial
processing and the parallel algorithm, as shown in Fig. 9. The
execution time of the serial processing was 42.775 s. When
using less than 12 processors, the execution time of the parallel

Fig. 7. (a) Vector polygons, (b) rasterization results of (a).

Table 2
The classification accuracy of the proposed parallel algorithm in different raster gird scales.

Raster grid size
(m)

ArcGIS rasterization
(reference)

Parallel cell rasterization Parallel scanline rasterization

Total of Raster
grids

Grid
difference

Classification accuracy
(%)

Total of Raster
grids

Grid
difference

Classification accuracy
(%)

5 472,758,808 472,758,806 4,769 100.00 472,758,809 10,769 100.00
20 29,547,382 29,547,395 568 100.00 29,547,300 1,826 99.99
50 4,727,561 4,727,568 378 99.99 4,727,550 1,053 99.98

100 1,181,866 1,181,869 176 99.99 1,181,872 500 99.96
500 47,268 47,256 98 99.98 47,283 625 98.68

Table 3
The area accuracy of rasterization in different raster gird scales by the proposed parallel algorithm.

Raster grid size (m) ArcGIS rasterization (reference) Parallel cell rasterization Parallel scanline rasterization

Total of Raster grids Area difference Area accuracy (%) Total of Raster grids Area difference Area accuracy (%)

5 472,758,808 472,758,806 2 100.00 472,758,809 1 100.00
20 29,547,382 29,547,395 13 100.00 29,547,300 82 100.00
50 4,727,561 4,727,564 3 100.00 4,727,550 11 100.00

100 1,181,866 1,181,872 6 100.00 1,181,872 6 100.00
500 47,268 47,261 7 99.99 47,283 15 99.97

Y. Wang et al. / Computers & Geosciences 59 (2013) 31–40 37
algorithm improves as the number of processors increase. The
execution time reaches its best value (9.508 s) when 12 processors
are used. When the number of processors is greater than 12, the
operating time gradually increases and eventually reaches a
plateau. The I/O time and the computation time are shown in
Figs. 10 and 11, respectively. The I/O operation time improves
when the number of processors is less than 12 and increases as
more processors are used. Computation time improves consis-
tently as the number of processors increase. However, the mini-
mum time achieved by the parallel cell algorithm is 69.462 s when
the processor number is 12, while the time cost of the serial
algorithm is 454.384 s. This huge difference of time cost is the

Fig. 8. Comparison between results of the proposed parallel algorithm (left) and ArcGIS software (right) in different spatial scales. (a) 20m*20m, (b) 50m*50m, (c)
100m*100m, (d) 500m*500m.

Fig. 9. Comparison of the execute time between the parallel algorithm and serial
algorithm.

Fig. 10. The cost time of I/O for parallel scanline algorithm.

Y. Wang et al. / Computers & Geosciences 59 (2013) 31–4038
reason that we chose scanline algorithm as the parallel architec-
ture, even though the cell algorithm achieves higher rasterization
accuracy.

Fig. 12 shows the change of speedup with the parallel scanline
rasterization algorithm, when the number of processors increase.
The speedups show that good parallel efficiency is maintained. The
speedup reaches its maximum value (4.496) when the number of
processors is 12. As the number of processors increases, the com-
munication cost also increases, and the load on different processors
become imbalanced; therefore, the speedup tends to decline.

In theory, the best speedup should be directly related to the
number of processors in a parallel environment. Our parallel
environment had 16 processors, and we should have achieved
the best speed-up at 16 processors. However, the algorithm
achieved the best speedup between 11 and 15 processors, and
the results could be attributed to system overhead and instability.
5.3.2. Relationship of data partition pattern and speedup
The experiment compares the effect of two partition patterns

(row-partition and column-partition) used with this parallel algo-
rithm. Fig. 13 shows the comparison diagram of the speedup,
which shows that the maximum speedup of the row-partition
pattern is significantly bigger than that of the column–partition

Fig. 11. The computation time of parallel scanline algorithm.

Fig. 12. The change of speedup with the increase of processor numbers.

Fig. 13. Comparison of speedup change between row-partition and column-
partition in this parallel algorithm.

Fig. 14. Comparison between operation time of the serial algorithm and minimum
operation time of the parallel algorithm in different raster grid sizes.

Fig. 15. The relationship between maximum speedup and raster grid size.

Y. Wang et al. / Computers & Geosciences 59 (2013) 31–40 39
pattern. The speedup change of the row-partition pattern is
generally smoother, as the number of processors changes. The
reason is that the raster is recorded by line or row, which means
that, with the row-partition pattern, the reading and writing are
performed directly on the original data, whereas, with the col-
umn-partition, the reading and writing are performed in a
segmented way. As a result, speedup is strongly related to the
pattern of data partition and the correctness of the partition
pattern depends on how the data is stored.
5.3.3. Relationship of raster grid size and speedup
Fig. 14 shows the operating time of the serial algorithm and the

minimum execution time of the proposed parallel algorithm.
Under serial algorithm, the operating time dramatically decreases
with the increase of the raster size, especially with sizes from 5 m
to 100 m. This proves that rasterization time using the proposed
algorithm is closely related to the raster cell size. Under a parallel
environment, the minimum execution time with different raster
grid sizes decreases with the increase of the grid cell size and the
change is generally slow. Fig. 15 shows the relationship between
the maximum speedup and the raster grid sizes. The speedup
decreases with the increase of the raster grid size, especially with
sizes from 5 m to 100 m. Above 100 m, the change becomes slow
and tends to be balanced. We attempted to select a grid cell size
that was smaller than 4 m; however, the processing load exceeded
the capacity of the processors. The reason for the memory over-
flow is that the system cannot satisfy the memory allocation for
the raster blocks. As the grid size decreases, the memory allocation
increases, and a grid size of 4 m is the threshold for our parallel
environment. Based on this experiment, we can predict that the
smaller the grid cell size is, the greater the speedup is.
6. Conclusion

This paper proposes a parallel scanline algorithm for rapid
rasterization of massive geographic vector data. The following
conclusions were reached based on our experimental analysis.

Y. Wang et al. / Computers & Geosciences 59 (2013) 31–4040
(a)
 Massive geographic vector data (about 0.7 million polygons)
used in the experiment were effectively processed, dramati-
cally reducing the data transformation time and achieving
good speedup.
(b)
 In comparison to the rasterization results from the ArcGIS
software, the parallel algorithm leads to almost identical
results, thus ensuring a high accuracy.
(c)
 The speedup of this algorithm can be optimized by selecting
the number of processors, the data partition pattern, and the
raster grid size.
However, the parallel efficiency of this algorithm is related to
the spatial distribution of the vector polygons. A better scheduling
strategy might achieve greater parallel efficiency; therefore, this
requires further study and experiment. Further research is needed
on finding the right balance among raster grid size, number
of processors, and speedup, in order to make full use of the
existing hardware architecture to meet the specific application
requirements.
Acknowledgment

This work is supported by the National Natural Science
Foundation of China (GrantNo.41001238), the National 863 Project
of China (GrantNo.2011AA120301), the gons, are handled based
on the proposed systematic solution theNational Key Technology
R&D Program of China (GrantNo.2012BAH28B02). Sincere thanks
are given to Mr. ZHOU Chen and Mr. YANG Kang for technical
assistances. Many thanks are given for the comments and
contributions of anonymous reviewers and members of the
Editorial team.

References

Congalton, R.G., 1997. Exploring and evaluating the consequences of vector-to-
raster and raster-to-vector conversion. Photogrammetric Engineering & Remote
Sensing 63 (4), 425–434.

Correa, W.T., Klosowski, J.T., Silva, C.T., 2003. Out-of-core sort-first parallel render-
ing for cluster-based tiled displays. Parallel Computing 29 (3), 325–338.

Goodchild, M.F., 2011. Scale in GIS: an overview. Geomorphology 130 (2), 5–9.
Guan, Q.F., Clarke, K.C., 2010. A general-purpose parallel raster processing pro-

gramming library test application using a geographic cellular automata model.
International Journal of Geographical Information Science 24 (5), 695–722.
Gong, J.Y., Xie, J.B., 2009. Extraction of drainage networks from large terrain
datasets using high throughput computing. Computers & Geosciences 35 (2),
337–346.

Healey, R., Dowers, S., Gittings, B., Mineter, M., 1998. Parallel Processing Algorithms
for GIS [M]. Taylor and Francis, London, UK, pp. 253–263.

Hollander, M., Ritschel, T., Eisemann, E., Boubekeur, T., 2011. ManyLoDs: parallel
many-view level-of-detail selection for real-time global illumination. Computer
Graphics Forum 30 (4), 1233–1240.

Hormann, K., Agathos, A., 2001. The point in polygon problem for arbitrary
polygons. Computational Geometry 20 (3), 131–144.

Jiménez, J.J., Feito, F.R., Segura, R.J., 2009. A new hierarchical triangle-based point-
in-polygon data structure. Computers & Geosciences 35 (9), 1843–1853.

Kenneth, A.H., Coddington, P.D., James, H.A., 2003. Distributed frameworks and
parallel algorithms for processing large-scale geographic data. Parallel Comput-
ing 29 (10), 1297–1333.

Lee, C.A., Gasster, S.D., Plaza, A., Chein-I, C., Bormin, H., 2011. Recent developments
in high performance computing for remote sensing: a review. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 4 (3),
508–527.

Liao, S.L., Bai, Y., 2010. A new grid-cell-based method for error evaluation of vector-
to-raster conversion. Computational Geoscience 14 (4), 539–549.

Maguire, D.A., Goodchild, M.F., Rhind, D.W., 1991. Geographical Information
Systems: Principle. 1. Longman Group UK Limited, Essex, U.K, pp. 45–54.

Mariethoz, G., 2010. A general parallelization strategy for random path based
geostatistical simulation methods. Computers & Geosciences 36 (7), 953–958.

McManus, D., Beckmann, C., 1997. Optimal static 2-dimensional screen subdivision
for parallel rasterization architectures. Computers & Graphics 21 (2), 159–169.

Pineda, J., 1988. A parallel algorithm for polygon rasterization. Computer Graphics
22 (4), 17–20.

Popescu, V., Rosen, P., 2006. Forward rasterization. ACM Transactions on Graphics
25 (2), 375–411.

Roca, J., Moya, V., Gonzalez, C., Escandell, V., Murciego, A., Fernandez, A., Espasa, R.,
2010. A SIMD-efficient 14 instruction shader program for high-throughput
microtriangle rasterization. The Visual Computer 26, 707–719.

Schiele, S., Möller, M., Blaar, H., Thürkow, D., Müller-Hannemann, M., 2012.
Parallelization strategies to deal with non-localities in the calculation of
regional land-surface parameters. Computers & Geosciences 44, 1–9.

Subhlok, J.M., Stichnoth, J.M., O'Hallaron, D.R., Gross, T., 1993. Exploiting task and
data parallelism on a multicomputer. ACM SIGPLAN Notices 28 (7), 13–22.

van der Knaap, W.G.M., 1992. The vector to raster conversion: (Mis)use in
geographical information systems. International Journal of Geographical Infor-
mation Systems 6 (2), 159–170.

Wang, X.L., Sun, Q.H., Jiang, C.S., 2006. An optimization algorithm for transferring
vector to raster data based on minimized area error. Acta Geodaeticaet
Cartographica Sinica 35 (3), 273–277. [in Chinese].

Xie, J.B., 2012. Implementation and performance optimization of a parallel contour
line generation algorithm. Computers & Geosciences 49, 21–28.

Yang, S., Yong, J.H., Sun, J.G., Gu, H.J., Paul, J.C., 2010. A point-in-polygon method
based on a quasi-closest point. Computers & Geosciences 36 (2), 205–213.

Zhou, C.H., Ou, Y., Yang, L., Qin, B., 2007. An equal area conversion model for
rasterization of vector polygons. Science in China Series D: Earth Science 50
(S1), 169–175.

http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref1
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref1
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref1
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref1
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref2
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref2
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref3
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref4
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref4
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref4
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref5
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref5
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref5
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref5
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref6
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref6
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref7
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref7
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref7
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref8
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref8
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref9
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref9
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref9
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref10
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref10
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref10
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref12
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref12
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref12
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref12
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref13
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref13
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref14
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref14
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref15
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref15
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref15
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref16
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref16
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref16
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref17
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref17
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref18
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref18
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref19
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref19
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref19
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref20
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref20
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref20
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref20
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref21
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref21
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref11
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref11
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref11
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref22
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref22
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref22
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref23
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref23
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref23
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref24
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref24
http://refhub.elsevier.com/S0098-3004(13)00146-5/sbref24

	Parallel scanline algorithm for rapid rasterization of vector geographic data
	Introduction
	Related work
	Parallelization potential of existing serial rasterization algorithms
	Analysis of existing parallel rasterization algorithms

	Design of parallel algorithm
	Partition of polygon data
	Parallel partition fusion
	Cross-processor boundary
	Common boundary
	Tiny polygon

	Design of parallel efficiency analysis

	Implementation of parallel algorithm
	Experiment
	Experimental data and parallel environment
	Accuracy analysis
	Efficiency analysis
	Relationship of the number of processors and speedup
	Relationship of data partition pattern and speedup
	Relationship of raster grid size and speedup

	Conclusion
	Acknowledgment
	References

