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This paper introduces a framework that tackles the costs in area and energy consumed by methodologies
like spatial or temporal redundancy with a different approach: given an algorithm, we find a transforma-
tion in which part of the computation involved is transformed into memory accesses. The precomputed
data stored in memory can be protected then by applying traditional and well established ECC algorithms
to provide fault tolerant hardware designs. At the same time, the transformation increases the perfor-
mance of the system by reducing its execution time, which is then used by customized software-based
fault tolerant techniques to protect the system without any degradation when compared to its original
form. Application of this technique to key algorithms in a MP3 player, combined with a fault injection
campaign, show that this approach increases fault tolerance up to 92%, without any performance
degradation.
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1. Introduction

Future technologies will be much more unreliable [1] and, at
the same time, the performance gap between memory and proces-
sors will not get any smaller [2]. Memories have long been pro-
tected against multiple fabrication defects [3,4]. Hence, thanks to
their regularity, memories would be a natural fabric to help one
cope with unreliable technologies. Although the idea of bringing
computation to memory is old [5,6], it never quite succeeded.
However, as we move from an era where single defects, high reli-
ability and high yield were present, to a situation with multiple de-
fects and low yield in the logic, the idea of using high reliable
memories as a substitute to traditional computation gets more
appealing.

In this paper we present a framework for algorithm transforma-
tion with the purpose of achieving reliable fault tolerant designs
and, at the same time, improve performance. We show that mem-
ory can be used as a direct replacement of computations, thus
decreasing the area of unreliable hardware that cannot be easily
corrected or protected [7]. Furthermore, the same strategy that fa-
vors reliability also favors parallelism. The main idea is to analyze a
given algorithm and, using induction variables analysis [8,9] and
other related tools like memorization [10], replace most of the
computations a processor performs by accesses to some tables of
precomputed values stored in memory. Our aim is to transform
the algorithm in such a way that the computations left are just
applications of simple functions over the input data and the pre-
computed data. By simplifying the amount of computations that
must still be done by the processor, software-based fault tolerance
can be better applied, and hence no performance penalties are in-
curred, but fault tolerance improves by 92%.

Many of the algorithms for data processing used nowadays al-
low for the transformations here proposed. We will focus on two
of the key algorithms which are part of the MP3 [11] coding
scheme, namely the modified cosine discrete transformation
(MDCT) [12] and the Huffman coding algorithm [13], along with
the discrete Fourier transformation (DFT) [14] widely used in sig-
nal processing. Finally, we will discuss how the proposed fault tol-
erant strategy can be deployed in this real life application.
2. Related work

Enhancing reliability has become one of the key issues for cur-
rent and future hardware designs. Several research trends on this
subject are described in [1,15]. Aside from the ongoing efforts on
fault avoidance [16,17], current fault tolerance techniques rely on
space or time redundancy to provide fault tolerance [18,19] which,
for TMR, triplicates the amount of space/time required.

In the 70s Stone [5] described a technique to use memory as an
alternative to classical computation. However, it has never gained
substantial attraction, as it posed restrictions on the way the pro-
gram running on such devices should be written. Later, with the
introduction of Computational RAM, a new architecture to bring
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computation to memory was proposed [6]. It allows a dual use of
memories; memory modules can be seen either as traditional
DRAMs, or as independent SIMD systems which are amenable for
parallel applications. Even though the performance improvement
with this technique looks promising, it appears that more research
is needed to develop applications that take advantage of it.

The use of static analysis tools like induction variables analysis
is very common in the compiler construction area [9,20] as it al-
lows one to improve the performance of the compiled code. It
has also been used as a tool for code optimization targeted to VLSI
designs [21,22]. Memorization, on the other hand, relates to a dy-
namic optimization technique used primarily to compute any gi-
ven function only once, and return a cached value any time it is
required again. Although usually a software based technique, it
has also been incorporated in hardware based solutions [23,24].
Our work relies on these tools to analyze and transform a given
algorithm, but now focusing on reliability enhancement and fault
tolerance as a major goal. Nonetheless, as we later show, the same
tools that help one improve reliability also favor performance.

Using memories to help one to achieve high reliability designs
is a common task nowadays [4,25]. The regularity found on mem-
ories, the use of error correcting codes and small extra logic added
to cope with spare memory rows and columns allow one to effi-
ciently protect them against multiple faults [3]. Furthermore, with
the introduction of magnetic and ferroelectric RAMs, the soft error
rate of such devices dumped near zero [7]. This is why we believe
one should take advantage of the regular structure of memories
(that ease low cost ECC introduction) to better use them at the soft-
ware level, increasing global reliability, without compromising
performance.

 

 

input: vector x (size 2N), matrix M 
output: vector X (size N) 
for k = 0 to N-1 
  for n = 0 to 2N-1 
    X(k) = X(k) + 
    + x(n)*cos(pi/N*(n+1/2+N/2)*(k+1/2))
  next n 
next k

Fig. 1. Naïve MDCT implementation.
3. Proposed algorithm transformation method

The framework for algorithm transformation proposed in this
paper consists of rounds of analysis/transformation steps which
are repeated until no more transformations are feasible. In every
round, parts of the algorithm which apply some computations
are extracted to memory in the form of precomputed indexed data
structures. Care must be taken to assure that the optimized algo-
rithm yields the same results as the original algorithm, and at
the same time the time/space required by the optimized algorithm
does not exceed that of other fault-tolerant approaches like triple
modular redundancy.

The extraction of computation to memory is basically addressed
by the use of precomputed tables, which in turn are indexed by
variables related to the algorithm itself (typically updated by the
algorithm’s inner loops). Thus, to keep the time required to com-
pute the algorithm constrained, care has to be taken just for the
precomputation of the data structures which will be put in mem-
ory. On the other hand, space requirements will need much more
attention as the size needed to hold the precomputed data might
grow too large, whenever the number of indices or their range be-
come too large.

The first step is to analyze the algorithm to find some portions
that fit in the description above. Those portions typically compute
some values based on input values derived from the algorithm it-
self (indices of inner loops and other variables), or the algorithm’s
input data, provided that the range of these inputs are not too
large. This step might be performed manually or automatically
with the aid of static analysis tools (induction variables analysis)
usually found on modern compilers. The next step involves the
rewriting of the identified portions as accesses to data structures
stored on memory. Finally the data structure must be populated
with the precomputed values prior to the execution of the
algorithm. These steps might be performed repeatedly until no
more portions of the algorithm are susceptible of such
transformations.

After all the transformations are applied, two things must be ta-
ken care of to improve the reliability of the hardware it will oper-
ate on. On one hand, the data structures which hold the
precomputed values have to be protected. This can be done using
any of the existing memory protection techniques usually found
on literature. Note that at this point the hardware designer has
quite some flexibility regarding the level of protection (i.e. guard
against multiple defects, etc.) depending on the chosen the protec-
tion scheme and, contrary to traditional TMR implementations,
space/time requirements grow logarithmically with the fault toler-
ance protection.

On the other hand, even as we move computations to memory,
there is still the need to compute something (the memory address
for one thing), and the hardware involved in these computations
must also be protected. This can be accomplished by applying tra-
ditional fault tolerance techniques and by taking into account that,
as the computation needed to execute the algorithm gets smaller,
the hardware involved could be simpler and well protected, with-
out loss of performance compared to the original algorithm.
4. Applying algorithm transformation methods to case study
algorithms

Not every problem is amenable to the transformations we pro-
pose to apply. For example, the simple scalar code A = x.y where x
and y are 16 bits variables would require a giant and slow memory,
and hence the granularity of the proposed approach is important.

Furthermore, once one chooses a problem to optimize, one has
to select a proper algorithm that solves it. For now, we will focus
on algorithms which are heavily based on matrix operations. These
algorithms usually are built over the application of some functions
over the internal loop indices, and the actual input data generally
fulfills our requirements of memory space constraints. For the
experiments reported in this paper, we manually transformed
the algorithm using the approach described in previous sections,
so that most of the complex operations are already precomputed
in memory, and we leave simple operations that handle large range
dynamic data (input or temporary) to be computed online using
the precomputed data. The resulting algorithms allow a fault-toler-
ant hardware implementation via the protection of the precomput-
ed data structures held in memory. For our case study, we focused
on modules which are responsible for more than 70% of the execu-
tion time of an MP3 player and other signal processing problems.

4.1. Case study 1: MDCT algorithm optimization

We first work on the MDCT problem, which is defined as [12]:

Xk ¼
X2N�1

n¼0

xn cos
p
N

nþ 1
2
þ N

2

� �
kþ 1

2

� �� �
; 0 � k < N

where for MP3 coding, N is either 12 or 18. The naïve implementa-
tion is described in Fig. 1. Note that in the second term the cosine



input: vector x (size 2N), matrix M
output: vector X (size N) 
for k = 0 to N-1 
  for n = 0 to 2N-1 
    X(k) = X(k) + x(n)*M(k, n) 
  next n 
next k

Fig. 2. Optimized MDCT implementation.

input: vector p probabilities (size N) 
output: matrix A with height bounded 

subtree 

S,A = initialize 
h = ceil(log2(N)); 
for i = 0 to h 
   A_prod = tropical_product(A, A) 
   A_h_right = matrix_sum(A_prod, S) 
   A = matrix_min(A, A_h_right) 
next i 

procedure initialize: S, A 
for j = 0 to N-1 
  for i = 0 to N-1 
    if (j <= i) 
      S(j,i) = sum(p(k), j<=k<=i) 
    else 
      S(j,i) = INFINITE 
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calculation performed does not depend on the actual input data, but
rather solely on the indices of the two loops.

Thus, we may precompute the result of all those operations and
gather them in a matrix MN�2N, where Mði; jÞ ¼
cos p

N iþ 1
2þ N

2

� �
jþ 1

2

� �� 	
. The optimized code shown in Fig. 2 per-

forms just a series of accumulate-multiply operations.
      A(j,i) = INFINITE 
  next i 
  A(j,j) = 0 
next j 

procedure tropical_product(A,B):Product 
for j = 0 to N-1 
  for i = 0 to N-1 
    min = INFINITE 
    for k = 0 to N-1 
      if A(j,k-1) + B(k,i) < min 
          min = A(j,k-1) + B(k,i) 
    Product(j,i) = min; 
  next i 
next j 

procedure matrix_sum(A,B):Sum 
for j = 0 to N-1 
  for i = 0 to N-1 
    Sum(j,i) = A(j,i) + B(j,i) 

procedure matrix_min(A,B):Min 
for j = 0 to N-1 
  for i = 0 to N-1 
    if A(j,i) > B(j,i) 
      Min(j,i) = B(j,i) 
    else Min(j,i) = A(j,i)

Fig. 3. Naïve Huffman implementation.

input: vector p probabilities (size N) 
output: matrix A with height bounded 

subtree 

S,A = initialize 
h = Log2Table(N); 
for i = 0 to h 
   A = tropical_square_minsum(A, S) 
next i 

procedure tropical_square_minsum(A, 
S):TSM 
for j = 0 to N-1 
  for i = 0 to N-1 
    min = INFINITE 
    for k = 0 to N 
      if A(j,k-1) + B(k,i) < min 
          min = A(j,k-1) + B(k,i) 
    data = min + S(j,i) 
    if dato < A(j,i) 
      TSM(j,i) = data 
    else TSM(j,i) = A(j,i) 
   next i 
next j

Fig. 4. Initial optimized Huffman implementation.
4.2. Case study 2: Huffman algorithm optimization

We will focus on another of the algorithms used by an MP3 co-
der, the Huffman code [13]. The Huffman coding problem is a var-
iable length entropy encoder which derives an optimal weighed
path length of the code given an input alphabet and a set of fre-
quencies for each input symbol. Formally, let A = {a1,a2, . . .,an} be
the input symbol alphabet of size n, and W = {w1,w2, . . .,wn} be
the set of symbol weights of the input source. Then, let C = {c1,c2, -
. . .,cn} be the set of codewords derived for that input by the algo-
rithm. The goal of the algorithm is to find such a set C so that
the weighed path length of C is optimal compared to any other
code constructed based on the sets A and W. The algorithm so de-
scribed can be generated in O(nlog(n)) sequential time. However, in
this format the algorithm is not amenable neither to parallelization
nor to have its behavior moved to memory with precomputed ta-
bles. Thus, we will work over another solution described in [26].
Moreover, instead of constructing the Huffman code we optimize
the construction of the height bounded subtree [26] from which
the actual Huffman code can be derived.

Our starting point is the algorithm described in Fig. 3. All the
arithmetic is done using the tropical semiring [27]. Initially two
matrices S and A are initialized with appropriate values using the
non-decreasing vector of input probabilities. After that, three oper-
ations are applied sequentially log2(N) times. The resultant matrix
A contains the set of average codeword length, from which the ac-
tual Huffman code can be derived.

We begin our optimization by applying two simple optimiza-
tions. First we use a table of precomputed values for the log2(N)
function, as it depends only on the upper bounded input value N.
Then we collapse all three operations (tropical_product, matrix_-
sum and matrix_min) onto a unique operation, tropi-
cal_square_minsum depicted in Fig. 4. This way, all the overhead
of performing the loops is done only once.

Manually applying an induction variable analysis we note
that the computation of the resulting value in each location de-
pends on whether min + S(j, i) < A(j, i), if it is not the case then the
value for TSM(j, i) will be A(j, i). Thus, we may apply a further
transformation to S so as to avoid the if-then-else. In the final
implementation, shown in Fig. 5, the initialization of the S ma-
trix and the initial value for min are slightly modified to accom-
plish this.

However, there is still a comparison and an addition over the
tropical semiring that, at this point, cannot be further optimized
without the use of a huge memory, because its input indices over
a precomputed data structure have a large range. Therefore we
conclude our transformations and stop at this point. The resulting
algorithm is again suitable for a fault tolerant hardware implemen-
tation. Aside from moving part of the computations to memory, we
also removed some of the inner loops contained in the initial algo-
rithm which leads to a faster implementation.



procedure initialize: S, A 
for j = 0 to N-1 
  for i = 0 to N-1 
    if (j < i) 
      S(j,i) = sum(p(k), j<=k<=i) 
    else 
      S(j,i) = 0 
      A(j,i) = INFINITE 
  next i 
  A(j,j) = 0 
next j   

procedure tropical_square_minsum(A, 
S):TSM 
for j = 0 to N-1 
  for i = 0 to N-1 
    min = A(j,i) 
    for k = 0 to N 
      if A(j,k-1) + B(k,i) < min 
          min = A(j,k-1) + B(k,i) 
      TSM(j,i) = min + S(j,i) 
   next i 
next j

Fig. 5. Final optimized Huffman implementation.

input: vector x, y (size N),  
       matrix Mcos, Msin 
output: vector x2, y2 (size N) 
for j = 0 to N-1 
  for i = 0 to N-1 
    x2[j] += x1[i]*Mcos[j][i]-          

         y1[i]*Msin[j][i]; 
    y2[j] += x1[i]*Msin[j][i] +  

         y1[i]*Mcos[j][i];     
  next i 
next j 

Fig. 7. Optimized DFT implementation.

Table 1
Comparison of naïve and optimized algorithm implementations.

Naïve Optimized

MDCT
Program size (number of instructions) 60 19
Memory size (bytes) 1600 2592
Execution time (ms) 2.05 0.64

Huffman
Program size (number of instructions) 104 76
Memory size (bytes) 3072 3136
Execution time (ms) 1.59 1.49

DFT
Program size (number of instructions) 81 56
Memory size (bytes) 3456 2304
Execution time (ms) 1.20 0.76
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4.3. Case study 3: DFT algorithm optimization

We will now shift our attention to another signal processing
tool, the Discrete Fourier Transform (DFT) [14], which is broadly
used in digital signal processing applications. Although there exists
fast algorithms to compute the transform (Fast Fourier Transform)
we will focus on the DFT as it can scale well with parallel process-
ing, which the FFT cannot.

The DFT is defined as

Xk ¼
XN�1

n¼0

xne�
2pi
N kn; 0 � k < N

where in our case we use N = 16, thus computing the 16-point com-
plex DFT. Fig. 6 shows de initial naïve implementation, where in-
stead of using complex exponentiation we use sines and cosines.

As with the case of the MDCT, we can precompute the cosines
(and sines) used with respect to the indices of the for loops in-
volved in the computation. Also, the computation of the DFT re-
quires a division of every term by N. We can also move that
division to the precomputed tables, according to the following
matrices M cosN�N, and M sinN�N, where M cosðj; iÞ ¼ cos½ð�ij2pÞ�

N and
M sinðj; iÞ ¼ sin½ð�ij2pÞ�

N .
The transformed algorithm, shown in Fig. 7, uses this precom-

puted matrices to compute the DFT with a series of additions
and subtractions.

4.4. Implementation notes

We developed implementations of the three algorithms dis-
cussed for both versions (naïve and optimized algorithms). Table 1
shows a comparison of the results obtained for each implementa-
tion. For the MDCT algorithm, the naïve version relies on a table of
input: vector x, y (size N) 
output: vector x2, y2 (size N) 
for j = 0 to N-1 
  for i = 0 to N-1 
    cos = cos(-i * (pi * 2* j / N)); 
    sin = sin(-i * (pi * 2* j / N)); 
    x2[j] += (x1[i]*cos - y1[i]*sin)/N; 
    y2[j] += (x1[i]*sin + y1[i]*cos)/N;  
  next i 
next j 

Fig. 6. Naïve DFT implementation.
400 cosine values evenly spaced, while the optimized algorithm re-
lies on a table of precomputed cosine values which are the exact
values that the algorithm uses. The optimized algorithm uses
60% more memory to hold the precomputed cosines table, but
the program itself can be implemented with 66% less code and
the execution time is reduced by 68%. In the case of the Huffman
algorithm, aside for a small lookup table used in the optimized
algorithm to find a logarithm, both versions utilize the same
amount of memory to hold the auxiliary matrices, although the
data stored in memory is slightly different. The program size of
the optimized algorithm shows a 25% reduction and the execution
time shows a 6% improvement. For the DFT algorithm, the naïve
versión relies on two tables, one holding 400 cosine values evenly
spaced and the other for a 400 sine values. The optimized algo-
rithm does not use these tables. Instead it uses two precomputed
matrices that already hold the information needed to compute
the DFT. Therefore the memory requirements decrease in the opti-
mized version as the memory required to hold the precomputed
matrices is inferior than the size of the cosine and sine tables used
in the naïve version. Choosing a careful layout for the memory
structures (vectors and matrices of precomputed values) results
in simple yet efficient programs. The final versions of both pro-
grams resemble the application of a simple operation over a ma-
trix. One level of fault tolerance is achieved by protecting the
data structures held in memory. The actual protection scheme used
might be selected according to the level of reliability the applica-
tion needs to meet.

Those parts of the algorithm not suitable for transformation
(the for-loops, multiply-accumulate and minima’s search) which
are left will be protected using software-based fault tolerant tech-
niques. Table 1 shows a comparison between the naïve and opti-
mized implementations, while Table 2 presents the instruction
count for each implemented version.

5. Applying software-based techniques to case study algorithms

Fault tolerance techniques based on software can provide high
flexibility, low development time and low cost for computer-based
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dependable systems [28–30]. Such techniques offer fault tolerance
by exploiting information redundancy, control flow analysis and
comparisons to detect errors during the program execution. For
that, software-based techniques use additional instructions in the
program code to either recompute instructions or to store and to
check suitable information in hardware structures.

Software-based techniques increase the execution time and
memory occupation, since instruction replication is inserted in
the program code, comparing the replicated data stored in the data
memory and executing code interpolated with the original pro-
gram. Considering software-based fault tolerance, the memory
overhead is not an issue, since the memory can be protected with
ECC techniques. On the other hand, the execution time can be an
issue, depending on the application. In this section, software-based
techniques will be adapted to the optimized algorithms in order to
increase their execution time up to the naïve version execution
time, which can be seen on Table 1. The hardening transformation
will be performed using a tool called HPCT [31].

5.1. Case study 1: Optimized MDCT algorithm hardening

According to Table 1, the optimized MDCT algorithm executes
in 0.64 ms. Therefore, its design space allows us to increase its run-
time up to 2.2 times, while maintaining the original execution
time. The program code uses 7 registers and executes a program
code with a total of 19 instructions.

In order to harden the optimized MDCT, we transformed the
code using three different software-based techniques, called signa-
tures, variables and inverted branches, described in [32]. The first
technique divides the program code into basic blocks and associ-
ates a unique identifier to each one. The unique identifier is then
set at the beginning of each basic block, and verified upon its exit
by instructions inserted on the original code. The second technique
duplicates all instructions (except branch instructions) over repli-
cated registers. It then verifies register values with their replicas
whenever a register is read by any instruction. By duplicating the
instructions and registers, the variables technique replicates the
whole data-flow and is then capable of detecting all faults upset-
ting the microprocessor’s data path. The last technique replicates
the branch instructions, by inserting a replicated branch after the
original instruction and an inverted branch in the target address
of the original instruction. Both replicated branch instructions have
an error subroutine as target address.

Table 3 shows that even applying all three techniques, the exe-
cution time remained lower than the original, with a 25% reduc-
tion, from 2.05 ms to 1.53 ms.

5.2. Case study 2: Optimized Huffman algorithm hardening

The optimized Huffman algorithm offers a smaller design space
than the MDCT, since the reduction in execution time from the

 

 

Table 3
Comparison of naïve, optimized and protected algorithm implementations.

Naïve

MDCT
Program size (number of instructions) 60
Memory size (bytes) 1600
Execution time (ms) 2.05

Huffman
Program size (number of instructions) 104
Memory size (bytes) 3072
Execution time (ms) 1.59

DFT
Program size (number of instructions) 83
Memory size (bytes) 3456
Execution time (ms) 1.20
original was 6.7%, and therefore not all techniques could be ap-
plied. The same three techniques used in case study 1 were applied
separately to the optimized Huffman algorithm, resulting in a
higher execution time overhead than the allowed 6.7% for all tech-
niques. This means that one technique should be chosen and cus-
tomized in order to fit the allowed overhead in execution time.

In this case, we chose as a starting point the variables tech-
nique, due to its better fault tolerance rates [31] and due to the fact
that it can be easily customizable to protect a selected group of
registers, decreasing the overhead in execution time proportionally
to its fault tolerance rate. We started protecting a group of one reg-
ister and added new registers until the execution time reached the
allowed 1.59 ms.

The execution time of the optimized and protected Huffman
algorithm reached 1.59 ms when the group of protected registers
had 5 registers, from a total of 19 used in the program code. Table 3
shows the results for the optimized and protected Huffman algo-
rithm compared to the naïve and optimized versions.

5.3. Case study 3: Optimized DFT algorithm hardening

The optimized DFT algorithm presented a reduction of 36% in
execution time, restricting the application hardening through soft-
ware-based techniques. The same three techniques applied in the
other case studies were applied in the DFT algorithm, resulting in
higher execution times than the naïve version. Therefore, one tech-
nique should be chosen and customized to fit the allowed over-
head, as we performed on case study 2.

As in case study 2, we started the hardening by applying the
variables technique [31], because of their easy customization and
high detection rates. We started by hardening a group of registers
and added new registers until the execution time reached the high-
er value lesser than the naïve version, which is 1.20 ms.

The execution time of the optimized and protected DFT algo-
rithm reached 1.18 ms when the group of protected registers had
6 registers, from a total of 10 used in the program code. Table 3
shows the results for the optimized and protected DFT algorithm
compared to the naïve and optimized versions.
6. Fault injection experimental results

The chosen case-study microprocessor is a five-stage pipeline
microprocessor based on the MIPS architecture, but with a reduced
instruction set. The miniMIPS microprocessor is described in [33].

In order to perform the fault injection campaign, 10 thousand
faults were randomly generated for each program, considering
the execution time and a list of every signal of the microprocessor
description (including registered signals). SEU and SET types of
faults were injected directly in the microprocessor VHDL code by
using ModelSim XE/III 6.3c, one fault per program execution. SEUs
Optimized Optimized and protected

19 109
2592 5184
0.64 1.53

76 128
3136 6272
1.49 1.59

58 102
2304 4608
0.76 1.18



Table 4
Results for set and seu fault injection campaign in the MDCT, Huffman and NEWAPP
algorithms for 10 thousand faults.

(I) Naïve (II) Optimized (III) Optimized and protected

MDCT
Incorrect results 1913 1412 149

Huffman
Incorrect results 1056 1291 840

DFT
Incorrect results 2655 2931 1826
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were injected in registered signals, while SETs were injected in
combinational signals, both during one and a half clock cycle.
The fault injection campaign is performed automatically. At the
end of each execution, the results stored in memory were com-
pared with the expected correct values. If the result did not match,
the fault was classified as a wrong result.

For each of the three case study algorithms, three software
implementations were tested: (I) Naïve version, (II) Optimized ver-
sion and (III) Optimized and Protected version. Each of them was
upset with 15 thousand faults. Results of the fault injection cam-
paign are presented in Table 4.

The quantity of faults that caused an error in the system for the
MDCT algorithm (I) was reduced in 26% by optimizing it (II), and in
92% by optimizing and protecting it with software-based tech-
niques (III), aside from the 25% reduction in execution time (Ta-
ble 4). The Huffman algorithm presented an increase of wrong
answers when optimized (II) and compared to the original (I),
due to the use of a bigger number of registers. On the other hand,
a reduction of 20% on the number of wrong answers was achieved
when combining the optimization and the protection through soft-
ware-based techniques (III), while maintaining the original execu-
tion time of 1.59 ms (Table 4). For the DFT algorithm the number of
errors of the optimized version (II) compared to the original (I) in-
creased by 22% and the execution time dropped almost 40%. How-
ever, when comparing the original (I) with the optimized and
protected (III) the number of incorrect results decreased over 30%
with the same execution time.

7. Conclusion and future work

This work presents a framework for algorithm transformation
which leverages on static analysis tools like induced variables anal-
ysis and memorization usually found on modern compilers to de-
rive a modified algorithm which makes use of precomputed data
structures stored in memory to be used instead of traditional com-
putation. These techniques let us create fault-tolerant hardware
designs by protecting the precomputed memory segments with
any of the available and well established memory protection
schemes used nowadays. The ratio of reliability-overhead sought
may be tuned by adjusting the parameters of the ECC used to pro-
tect the memories.

As an effect of the transformations derived from our approach
the final algorithms show performance improvements, which are
then used to protect the program code with software-based tech-
niques. The application of customized software-based techniques
is able to increase the fault tolerance from 20% to 92%, varying
according to the performance gain due to the optimization
methods.

We showed the application of this framework with two simple
algorithms used on the MP3 coding scheme and also for a algo-
rithm used in signal processing. Even though at this point the algo-
rithms have been optimized with the simple application of
induction rules, one of our future work concerns the automatic
definition of the granularity of operations that must be memorized,
since this has a direct impact on the size of the final memory.
Moreover, we plan to apply other software-based techniques, and
balance them with some protection at the hardware level, to
achieve 100% fault coverage with minor area, performance and
power overhead.
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