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a b s t r a c t

The third-harmonic generation (THG) in asymmetric coupled
quantumwells (ACQWs) for different values of the well parameter
∆ and width of barrier (WB) are theoretically studied. The
analytical expression of the third-harmonic generation is derived
by using the compact density-matrix approach and the iterative
method. Finally, the numerical calculations are presented for
typical GaAs/AlxGa1−xAs asymmetric coupled quantum wells.
Results obtained show that the third-harmonic generation in the
asymmetric coupled quantum wells can be importantly modified
by the parameter∆ andWB. Moreover, third-harmonic generation
also depends on the relaxation rate of the asymmetric coupled
quantum wells.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

As we know, nonlinear effects can be enhanced dramatically in the low-dimension of quantum
systems than that in bulk materials due to the existence of a quantum confinement effect. So
much attention has been paid to the nonlinear optical properties of low-dimensional semiconductor
structures in both theoretical and the applied physics in the past few years [1–18]. Low-dimensional
semiconductor structures include quantumwells, superlattices and nanostructions and so on. Among
the nonlinear optical properties, more and more attention had been paid to second-order nonlinear
properties [5,19,20], such as optical rectification (OR) [4,13,16,21], second-harmonic generation
(SHG) [12,19,22], electro-optic effect (EOE) [10], third-harmonic generation(THG) [23–25]. As we
know second- and third-harmonic generations are very important since those nonlinearities have
potential for device applications in far infrared laser amplifiers. photo-detectors, and high-speed
electro-optical modulators.
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Fig. 1. Schematic diagram for electronic confined potential profile and the two bound energy-levels in an asymmetric coupled
GaAs/AlxGa1−xAs quantum wells.

In most previous works, an asymmetric quantum well structure was used to obtain a large third-
order nonlinear effect and asymmetric quantum well structures such as compositionally asymmetric
quantum wells [22,26], asymmetrically coupled quantum wells [27,28] and applied-field biased
quantum wells [29] were used widely in experiments. Many authors calculated the SHG, OR, EOE,
THG coefficient in single quantum wells. In 2003, bound states and third- harmonic generation in
a semi-parabolic quantum well with an applied electric field was studied by Li Zhang and Hong-
Jing Xie [30]. The strength of the THG susceptibility in the asymmetric quantum well can reach
a magnitude of 10−13 (m/V)2. In Ref. [31], Capasso et al. have reported that they experimentally
achieved a magnitude of 10−14 (m/V)2 in a coupling quantum well. However, The THG has not been
studied in asymmetric coupled quantumwells (ACQWs) system. So it is worth payingmuch attention
to the THG in asymmetric coupled quantumwells. The purpose of this paper is to study the influence
of the parameters of ∆ and width of barrier effect on the THG. ∆ represents the width difference
between the left well and the right well.
In this paper, the THG susceptibility in the GaAs/AlxGa1−xAs ACQWs is investigated. In Section 2,

with the compact density matrix approach and iterative method, the Hamiltonian, relevant
eigenstates and eigenenergies, and the analytical expression of the THG susceptibility are described.
In Section 3, numerical results are presented for GaAs/AlxGa1−xAs ACQWs. Finally, brief conclusions
are given in Section 4.

2. Theory

Fig. 1 shows the schematic diagram for electronic confined potential profile in ACQWs. The
effective-mass Hamiltonian for the electron in ACQWs system is

H = −
h̄2

2m∗

[
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

]
+ V (z) (1)

with

V (z) =
{
V0, z < −(WL +WB/2),−WB/2 ≤ z ≤ WB/2, z > WB/2+WR
0, elsewhere (2)

for ACQWs. Where z represents the growth direction of this quantumwells, h̄ is Planck’s constant,m∗
is the conduction-band effective mass, and V0 is the profile of the conduction-band potential in the
quantum wells. WL, WR and WB represent the width of the left well, the width of the right well and
the width of the barrier, respectively. By solving the Schrödinger equationHψn,k(r) = en,kψn,k(r), the
eigenfunctions ψn,k(r) and the eigenenergies en,k are given by

ψn,k(r) = ϕn(z)uc(r)eik‖·r‖ , (3)

and

en,k = En +
h̄2

2m∗
|k‖|2. (4)
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Here, k‖ and r‖ are thewave vector and coordinate in the x–y plane and uc(r) is the periodic part of the
Bloch function in the conduction band at k = 0. ϕn(z) and En are the solution of the one-dimensional
schrödinger equation

Hzϕn(z) = Enϕn(z). (5)

where Hz is the z component of the whole Hamiltonian H , and it is given by

Hz = −
h̄2

2m∗
d2

dz2
+ V (z). (6)

Solving this equation, the bound states can be given as follows,

ϕn(z) =


A exp{kz}
B1 cos{k′z} + B2 sin{k′z}
C1 exp{−kz} + C2 exp{kz}
D1 cos{k′z} + D2 sin{k′z}
G exp{−kz}

(7)

with the wave vectors given by k =
√
2m∗(V − E)/h̄ and k′ =

√
2m∗E/h̄, where En is the

corresponding energy level, A, B1, B2, C1, C2,D1,D2 and G are the normalized coefficients of the wave
function. All those normalized coefficients and the eigenenergy En can be numerically solved by the
standard boundary condition of the electronic bound state.
Now, we will present a formalism for the nonlinear THG in ACQWs. Let us consider an

electromagnetic field with frequency ω which is incident with a polarization vector normal to the
quantumwells. The system is excited by an electromagnetic field E(t) = Ẽe−iωt+ Ẽeiωt . Let us denote
ρ as the one-electron density matrix for this regime. Then the evolution of the density matrix ρ obeys
the following:

∂ρij

∂t
=
1
ih̄
[H0 − qzE(z), ρ]ij − Γij(ρ − ρ

(0))ij. (8)

where H0 is the Hamiltonian for this systemwithout the incident field E(t), q is the electronic charge,
ρ(0) is the unperturbed densitymatrix and Γij is the relaxation rate. Eq. (8) is solved by using the usual
iterative method [3,19]:

ρ(t) =
∑
n

ρ(n)(t). (9)

with

∂ρ
(n+1)
ij

∂(t)
=
1
ih̄

{[
H0, ρ(n+1)

]
ij − ih̄Γijρ

(n+1)
ij

}
−
1
ih̄

[
qz, ρ(n)

]
ij E(t). (10)

The electronic polarization of the square quantum wells can be expanded as Eq. (9). We will restrict
ourselves to considering the first third orders, i.e.

P(t) = ε0
(
χ (1)ω Ẽe

iωt
+ χ

(2)
2ω Ẽ

2e2iωt
)
+ c.c.+ ε0χ

(3)
3ω Ẽ

3e3iωt . (11)

where χ (1)ω , χ
(2)
2ω and χ

(3)
(3ω) denote the linear, second-harmonic generation, and third-harmonic

generation, respectively. ε0 is the vacuum permittivity. The electronic polarization of the nth order
is given by

P (n)(t) =
1
S
Tr(ρ(n)qz). (12)

where S is the area of interaction.
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In this paper, we lay emphasis on the calculation of the THG. By using the same compact density
matrix approach and the iterative procedure as Ref. [18], we have calculated of the expression of χ (3)(3ω)
for this model:

χ
(3)
3ω =

NM01M12M23M30
ε0 h̄3

[
1

(3ω − ω21 − iΓ21)(2ω − ω20 − iΓ20)(ω − ω23 − iΓ23)

+
1

(3ω − ω21 − iΓ21)(2ω − ω20 − iΓ20)(ω − ω30 − iΓ30)

+
1

(3ω − ω23 − iΓ23)(2ω − ω20 − iΓ20)(ω − ω10 − iΓ10)

+
1

(3ω − ω30 − iΓ30)(2ω − ω20 − iΓ20)(ω − ω21 − iΓ21)

+
1

(3ω − ω30 − iΓ30)(2ω − ω31 − iΓ31)(ω − ω21 − iΓ21)

+
1

(3ω − ω01 − iΓ01)(2ω − ω31 − iΓ31)(ω − ω32 − iΓ32)

+
1

(3ω − ω21 − iΓ21)(2ω − ω31 − iΓ31)(ω − ω30 − iΓ30)

+
1

(3ω − ω21 − iΓ21)(2ω − ω31 − iΓ31)(ω − ω01 − iΓ01)

]
, (13)

where N is the density of electrons in the quantum wells. ε0 is the vacuum permittivity. ωij =
(Ei − Ej)/h̄.Mij = e|〈ϕj|r|ϕi〉| (i, j = 0, 1, 2, 3) is the off-diagonal matrix element.

3. Results and discussions

In this section, the third-harmonic generations are calculated numerically for the typical
GaAs/AlxGa1−xAs ACQWs. The parameters chosen in this work are [18,21,29]: m∗ = 0.067m0 (m0
is the free-electron mass), V = 228 meV (corresponding to Al concentration x = 0.3), ρs =
5× 1024 m−3, h̄Γ30 = h̄Γ /3 (meV), h̄Γ10 = h̄Γ21 = h̄Γ32 = h̄Γ (meV), h̄Γ20 = h̄Γ31 = h̄Γ /2 (meV),
∆ = WL −WR.
In Fig. 2, we plot the third-harmonic generation |χ (3)3ω | as a function of the photon energy h̄ω for five

different values of∆withWL+WR = 16 nm,WB = 4 nm. From this figure, it can be seen that, firstly,
the THG susceptibilities are not a monotonic function of ∆. The strength of the THG susceptibility in
the ACQWs can reach a magnitude of 10−12, which is 1–2 orders higher than that in a single quantum
well. Secondly, there is not only one peak position at different photon energy. The lower peak ismainly
due to two-photon resonance enhancement. The higher peak originates from three-photon resonance
enhancement. Finally, with increasing ∆, the peak of |χ (3)3ω | has a blue-shift. This behavior can be
attributed to the fact that the separation between the neighboring energy levels becomes wider as
∆ is increasing. So the peak of |χ (3)3ω | appears in the high-energy direction.
To understand the above phenomena more clearly, we plot the Fig. 3. Fig. 3 shows the third-

harmonic generation |χ (3)3ω | versus the parameter ∆ for five different values of the photon energy
h̄ω, h̄ω = 0.0532, 0.0552, 0.0602, 0.0646, 0.0751 eV, while WB = 4 nm. It can be seen that with
an increase of∆, the peak of the |χ (3)3ω | increases initially, and at∆ = 14 nm, it reaches the maximum
8.9×10−11(m/V)2, at this point, the asymmetric degree of ACQWs reach amaximum.We analyze this
figure, andwe can obtain that the asymmetric degree of ACQWs become strongerwith∆ increasing at
the beginning, then becomes weaker, subsequently, it increases with∆ increasing, at∆ = 14 nm, the
asymmetric degree reaches a maximum, then the asymmetric degree decreases smoothly. All these
phenomena agree well with above results discussed in Fig. 2.
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Fig. 2. The THG |χ (3)3ω | as a function of the incident photon energy h̄ω for five different values of∆,∆ = WL −WR = 12, 12.4,
13.2, 14, 14.4 nm,WL +WR = 16 nm,WB = 4 nm.

Fig. 3. The THG |χ (3)3ω | as a function of the ∆ for five different values of incident photon energy h̄ω, h̄ω = 0.0532, 0.05523,
0.06011, 0.06466, 0.07514, whileWB = 4 nm.

In Fig. 4, we plot the THG |χ (3)3ω | as a function of the incident photon energy h̄ω for five different
values of the width of barrierWB,WB = 3, 5, 6, 8, 10, with ∆ = 14 nm. It can be seen that the THG
susceptibilities are also not a monotonic function ofWB. The resonant peaks rise at first and become
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Fig. 4. The THG |χ (3)3ω | as a function of photon energy h̄ω for five different values of the width of barrierWB ,WB = 3 nm, 5, 6,
8, 10 nm, while∆ = 14 nm.

sharpen, then falls as the incident photon energy h̄ω is increasing. The peak can reach a magnitude of
10−10(m/V)2. Another important feature is that it can have two peaks whileWB = 3 nm. The higher
peak near h̄ω = 0.06321 eV originates from the three-photon resonance enhancement, and the lower
peaknearing h̄ω = 0.06505 eV ismainly due to two-photon resonance enhancement.We also observe
the peak of the THG has a red shift with increasingWB. This behavior can be attributed to the fact that
the separation between the neighboring energy levels becomes narrower withWB increasing. So the
peak of |χ (3)3ω | appears in the low-energy direction.
To illustrate the dependency relationship of |χ (3)3ω | onWBmore clearly,we have plotted Fig. 5,which

presents the THG |χ (3)3ω | as a function ofWB for four different values of the incident photon energy h̄ω,
h̄ω = 0.06387, 0.06413, 0.06433, 0.06505 eV, while ∆ = 14 nm. It can be seen from the figure that,
with an increase ofWB, the |χ

(3)
3ω | increases initially, it reaches the largest value, then it decreases. All

these phenomena agree well with above results discussed in Fig. 4.
Fig. 6, we plot the THG |χ (3)3ω | as a function of the photon energy h̄ω for four different values of

relaxation rates h̄Γ = 0.5, 0.7, 0.9, 1.1 meV. The figure reveals that the relaxation rate has a great
influence on the THG |χ (3)3ω |. It can be seen that the peak value will decrease as the relaxation rate
increasing. We also observe that each curve has one peak at h̄ω = 0.06407 eV. It is due to three-
photon resonance enhancement. The relaxation rate is not only related to the ACQWs material, but
also to factors, such as temperature, boundary conditions, electron–electron and electron–phonon
interactions.

4. Conclusion

We present a simple and straightforward method of the THG for a asymmetrical couple quantum
well. Numerical calculations are performed for the typical GaAs/AlxGa1−xAs coupled quantum wells,
and the calculations mainly focus on the dependence of the THG |χ (3)3ω | on the parameter ∆ and the
barrier, the incident photon energy and the relaxation rate of the ACQW system. Our results show
that the theoretical value of |χ (3)3ω | can reach a magnitude of 10

−12(m/V)2 in this ACQW system.
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Fig. 5. The THG |χ (3)3ω | as a function of the barrierWB for four different values of the incident photon energy h̄ω, h̄ω = 0.06387,
0.06413, 0.06433, 0.06505 eV, while∆ = 14 nm.

Fig. 6. The THG |χ (3)3ω | as a function of the photon energy h̄ω for four different relaxation rates h̄Γ = 0.5, 0.7, 0.9, 1.1 meV,
while∆ = 14 nm,WB = 6 nm.

We also find that THG is not a monotonic function of ∆ and WB. We can get a larger peak-value of
|χ
(3)
3ω | by choosing∆ andWB appropriately, and a relatively low doped concentration. At last, we hope
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theoretical investigations can make a great contribution to experimental studies, and may open new
opportunities for optical exploitation of the quantum-size effect in devices.
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