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In the past, the response of stabilizing piles subjected to lateral soil movement or lateral force loading has
been analysed assuming that the piles are embedded in horizontal semi-infinite soil grounds. In this
study, a limit equilibrium method analysing the lateral force (soil–pile pressure per unit thickness) on
stabilizing piles embedded in semi-infinite slopes is presented. In addition, the soil arching effects
between two neighbouring stabilizing piles are analysed, and the lateral active stress in the rear of the
piles is obtained. Furthermore, the squeezing effect between two piles proposed by Ito and Matsui is
combined with the lateral active stress in the slope to evaluate the distribution of the soil–pile pressure
per unit length of the stabilizing piles in sandy slopes. A numerical simulation using FLAC3D is used to
evaluate the proposed approach. The simulation shows that the proposed model could reasonably predict
the shape of the distribution of the soil–pile pressure acting on the stabilizing piles, while some discrep-
ancy exists between the numerical results and predicted values. Furthermore, the prediction of the pro-
posed model is also evaluated through comparison to the experimental data from the published
literature. Parametric analysis is carried out to investigate the influence of the slope angle on the distri-
bution of the soil–pile pressure. The shape of the distribution of the soil–pile pressure acting on the piles
is shown to vary with the angle of the slope, while the magnitude of the soil–pile pressure remains in the
same order.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In the past several decades, installing rows of drilled shafts for
slope stabilization has proved to be a reliable and effective tech-
nique to prevent excessive slope movement [14,7,19,20,10]. Piles
are installed through the unstable soil layer and embedded into
the stable layer below the sliding surface. The slope is stabilized
by piles, which are able to transfer part of the force from the failing
mass to the stable soil layer. For passive piles, the soil–pile pres-
sure applied on the piles by the unstable layer is dependent on
the soil movement, which is in turn affected by the presence of
the piles [28].

Evaluating soil–pile pressure acting on stabilizing piles is of
great significance for the study of slope stabilization. In previous
research, a horizontal semi-infinite soil ground was typically used
for the theoretical analysis of the soil–pile pressure on piles
[14,24,26]. Satisfactory results have been predicted by these meth-
ods. In subsequent research [15,16,12,5,29,18,13], these methods
have been adopted and developed. The interaction between piles
is governed by the so-called arching effect. Durrani et al. [8] sug-
gested that the Rankine passive and active pressure coefficients
should be employed to estimate the maximum spacing resulting
in arching between piles. Viggiani [26] suggested designing slope
stabilizing piles using the limit equilibrium method. With such
an approach, the stabilizing contribution given by a single pile
depends on the pile characteristics (diameter, length, and ultimate
bending moment), the soil strength and slide thickness [20].

Poulos [24] presented an analysis method in which a simplified
form of the boundary element method (Poulos 1973) was
employed to study the response of a row of passive piles incorpo-
rated in limit equilibrium solutions of slope stability. This method
revealed the existence of three modes of failure: (i) ‘‘flow mode’’,
(ii) ‘‘short-pile mode’’, and (iii) ‘‘intermediate mode’’. This finding
contributed to the practical design of stabilizing piles. Poulos
[24] highlighted that the flow mode created the least damage
effect of soil movement on the pile; if the piles required protection,
efforts should be made to promote this mode of behaviour.

Norris [22] developed a strain wedge (SW) model to predict the
response of a flexible pile under lateral loading. Generally speak-
ing, the SW model allows the assessment of the nonlinear p–y

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compgeo.2015.05.006&domain=pdf
http://dx.doi.org/10.1016/j.compgeo.2015.05.006
mailto:hankzzz@163.com
http://dx.doi.org/10.1016/j.compgeo.2015.05.006
http://www.sciencedirect.com/science/journal/0266352X
http://www.elsevier.com/locate/compgeo


Soil-pile pressure, p(z)

Potential sliding surface

Unstable soil layer

Stable soil layer
Stabilizing pile

Slope surface

Fig. 2. Stabilizing pile embedded into a semi-infinite slope (adopted from Ashour
and Ardalan [4]).

Fig. 3. Soil arching adjacent to the stabilizing piles in a slope: (a) plan view of the
soil arching zone; (b) cross section of the soil arching zone in the slope.
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curve response of a laterally loaded pile based on the envisioned
relationship between the three-dimensional response of a flexible
pile in the soil to its one-dimensional beam on elastic foundation
parameters [1]. The SW model has been improved and modified
to accommodate a laterally loaded pile embedded in multiple soil
layers [1,2]. Undoubtedly, great improvements have been made on
the SW model to predict the response of flexible piles under lateral
loading [2,3]. In the SW model, the ‘‘flow mode’’ mechanism [24]
mentioned previously was adopted in Ashour and Ardalan’s
research [4]. Such a slope-pile displacement mechanism is also
adopted in the model presented here.

In this paper, the authors propose a simple method for estimat-
ing the ultimate soil–pile pressure per unit length of the pile,
which is induced by flowing soil, assuming that the soil displace-
ment is larger than the pile deflection (Fig. 1). The theory of plastic
deformation [14] is modified, and the soil arching effects between
two neighbouring piles are considered, which leads to the nonlin-
ear distribution of the soil–pile pressure per unit length of piles.
Furthermore, the theoretical analysis of the effect of the slope
angle on the soil–pile pressure distribution in sandy slopes is car-
ried out.

In this study, the soil–pile pressure per unit length of the stabi-
lizing pile is analysed in a semi-infinite sandy slope, as shown in
Fig. 2. The general analysis of the soil–pile pressure acting on the
piles involves three main steps: (1) analysing the soil arching zone
adjacent to the piles in the slope; (2) analysing the active lateral
stress in the soil arching zone between two neighbouring piles;
and (3) substituting the active lateral stress into Ito and Matsui’s
approach [14] to estimate the soil–pile pressure acting on each
pile. The piles are assumed to be flexible. In step 1, when the unsta-
ble soil layer slides along the potential sliding surface, the soil layer
deforms. Additionally, soil arching occurs adjacent to the two
neighbouring piles in the failing mass. The plan view of the soil
arching zone between two neighbouring piles is shown by the
hatched area in Fig. 3(a). A typical cross section UU0 is shown in
Fig. 3(b). The area of the soil arching zone is dependent on the
slope angle and the properties of the soil, which are discussed later
in this paper. In step 2, to simplify the analysis of the active stress
on the plane AA0 (referring to Fig. 4), an assumption is made that
when the active stress on the plane AA0 is analysed, the area
between the parallel lines AG and AG0 is considered to be the soil
arching area. This soil arching area is shown as the shadowed por-
tion in Fig. 4, where rh is the active soil stress induced by the soil
arching effects, D1 is the centre-to-centre interval between two
neighbouring piles, and D2 is the clear interval between piles. In
addition, the limit equilibrium condition of the differential element
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Fig. 1. Soil–pile displacement as employed in the model presented here (Ashour
and Ardalan’s research [4]).
in the soil arching zone is analysed to obtain the active stress. In
step 3, the approach proposed by Ito and Matsui [14] is adopted,
and the squeezing effects between the piles are evaluated. This
procedure yields the soil–pile pressure per unit length of the pile.

For the purpose of verifying the proposed model, a numerical
simulation was performed. The shear strength reduction method
(SRM) is used in the code of FLAC3D. SRM has been used in the sta-
bility analysis of slopes without piles by many previous research-
ers [30,25,9,28]. This method is extended to analyse the safety
factor of a slope stabilized with piles. In the studies by Martin
and Chen [21], Won et al. [29], Wei and Cheng [28], and Lirer
[20], FLAC3D is used to analyse the response of the stabilizing piles
or the safety factor of the reinforced slope with piles. FLAC3D is a
widely used tool for estimating the response of the stabilizing
piles. In this study, the authors use the three-dimensional finite
difference code FLAC3D by SRM to analyse the soil–pile pressure
acting on stabilizing piles during slope slides. The numerical simu-
lation results are compared to the prediction obtained from the
proposed model. Furthermore, the laboratory experiments carried
out by Chen et al. [6] and Guo and Ghee [11] are introduced to
evaluate the proposed model.

Finally, the validated model is used to evaluate the effect of
slope angle on the distribution of the soil–pile pressure per unit

 



Fig. 4. Plastic deformation of soil between neighbouring piles (adopted from Ito
and Matsui [14]).
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thickness on the stabilizing piles. The main finding of this paper is
that the distribution shape of the soil–pile pressure varies with the
slope angle, while the magnitude of the soil–pile pressure remains
in the same order.

2. The soil arching zone

In a semi-infinite inclined soil mass, the soil arching that occurs
adjacent to stabilizing piles has been studied by Wang and Yen
[27]. However, the area of the soil arching zone was not specified.
Paik and Salgado [23] assumed that the slip plane behind a retain-
ing wall had an angle of 45� + u/2 and that the area between the
slip plane and the wall was the soil arching zone. In this study,
the soil arching zone is analysed using geometry. It is assumed that
when the unstable soil layer slides along the potential sliding sur-
face, the soil layer deforms, and a slip plane occurs behind the
piles, which is inclined at an angle h with respect to the slope sur-
face (Fig. 5). The area ABC in Fig. 5 is the soil arching zone. The
geometry in the soil arching zone is analysed and shown in
Appendix A. The angle between the slip plane and the horizontal
is expressed as follows:

h ¼ 1
2

u� bþ arccos
sin b
sin u

� �
ð1Þ
Slope surface

Fig. 5. Profile of the soil arching zone and the geometric relationships in the zone.
h1 ¼
1
2

uþ bþ arccos
sin b
sin u

� �
ð2Þ

where u is the internal friction angle of the soil, b is the inclined
angle of the slope surface, and h1 is the angle between the slip plane
and the horizontal.

3. Theoretical analysis

3.1. Rotation of the major and minor stresses in the soil arching zone

In the study of retaining walls, soil arching is assumed to occur
in a circular arc. Paik and Salgado [23] have evaluated the active
soil stress based on the soil arching theory. In this paper, the
approach proposed by Paik and Salgado [23] is adopted and
extended to analyse an inclined soil mass. The rotation of the prin-
cipal stress on the line AB (Fig. 5) is described in Fig. 6(a) and (b). In
the rear of line AB, the trajectory of the minor principal stress on
the differential element is represented by dotted lines assumed
as an arc, while the major principal stress is the normal to the
arc. The active earth pressure acting on line AB includes two com-
ponents: the active lateral stress rh and the shear stress s.

As shown in Fig. 6(a), on the left side of the differential element,
the force equilibrium in the triangular element at point E is consid-
ered. The lateral stress is calculated as follows:

rh ¼ r1 cos2 hþ r3 sin2 h ð3Þ

Similarly, at an arbitrary point D on the arc, whose original
location is point F, the lateral force is given by

rah ¼ r1 cos2 wþ r3 sin2 w ð4Þ

where w is the angle between the normal of the arc at point D and
the horizontal, and rah is the lateral stress at point D. Considering
when the soil is in an active condition, substituting r3/r1 = 1/N into
Eq. (4) yields

rah ¼ cos2 wþ 1
N

sin2 w

� �
r1 ð5Þ

where N = tan2(45� + u/2).
In Fig. 7(a), the vertical stress rv, which is applied on the surface

of the differential element, includes two components: one perpen-
dicular to the line EP, r0v , and one parallel to the line EP, rf. The
ratio of rv to r0v is as follows:

rv=r0v ¼
1

cos b
ð6Þ

Because rah � r3 = r1 � rv, substituting for rah yields

r0v
r1
¼ cos b sin2 wþ 1

N
cos2 w

� �
ð7Þ

Because the angle w (Fig. 6(a)) is not a constant, an average
stress �r0v is introduced to replace r0v at every point. This average
stress is given by

�r0v ¼
V 0

S
ð8Þ

where V 0 is a component of the total stress applied on the differen-
tial element, which is perpendicular to EP, and S is the width of the
differential element (referring to Fig. 6(b)). Considering the geome-
try depicted in Fig. 6(b), S is calculated by

S ¼ cosðhw þ nÞ
cosðbþ nÞ R ð9Þ

where n is the angle between the normal line OQ and the vertical
and R is the radius of the circle.

 

 



Fig. 6. Stress on the differential element in the soil arching zone: (a) the major and minor principal stresses; (b) schematic of the vertical total force on the differential
element (based on [23].

Fig. 7. Stress on the differential element: (a) major and minor principal stresses
applied on the right edge of the differential element; (b) two components of the
vertical stress on the differential element; (c) stress on the main part of the
differential element.
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The stress V 0 on the differential element can be calculated by

V 0 ¼
Z p=2�x

hw

dV 0 ð10Þ

where dV 0 is the differential force on the shaded element at point F,
which is perpendicular to EP (referring to Fig. 6(a)). This perpendic-
ular differential force is expressed as
dV 0 ¼ r0vdA ¼ r1 cos b sin2 wþ 1
N

cos2 w

� �
� Rdw sin w

cos b
ð11Þ

Solving Eq. (8)–(11) yields

�r0v ¼
cosðbþ nÞ

cosðhw þ nÞ cos hw 1� N � 1
3N

cos2 hw

� �
r1 ð12Þ

To simplify the analysis process, the angle x (referring to Fig. 6) is
assumed to be 0.

Comparing this result to Eq. (6), it is reasonable to express the
average vertical stress on the differential element as

�rv ¼
1

cos b
�r0v ð13Þ

Substituting Eq. (12) into Eq. (13) yields

�rv ¼
cosðbþ nÞ

cosðhw þ nÞ cos b
cos hw 1� N � 1

3N
cos2 hw

� �
r1 ð14Þ

Using Eqs. (3) and (14), a ratio Kan of the active lateral stress act-
ing on the plane AB to the average vertical stress over the differen-
tial element is derived:

Kan ¼
rh

�rv
¼ cosðhw þ nÞ cos b

cosðbþ nÞ cos hw
� 3ðN cos2 hw þ sin2 hwÞ

3N � ðN � 1Þ cos2 hw
ð15Þ
3.2. The limit equilibrium equation on the differential element

To evaluate the lateral stress on the line AB (Fig. 6(a)), a detailed
analysis of the differential element is required. On the right edge of
the differential element (Fig. 6(a)), because the direction of the
major principal stress is along the line OG, the major and minor
principal stresses are considered to be applied on surfaces GP
and GQ, respectively, of the triangular differential element GPQ,
which is shown in Fig. 7(b). In Fig. 7(b), the triangular element
GPQ is shown in an equilibrium state, which allows this triangular
element to be ignored when analysing the vertical stress for the
entire differential element. In Fig. 7(c), the minor principal stress
r3 is loaded on the line GQ, r3v, which is the vertical component
of r3 and is expressed as
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r3v ¼ r3 sin n
cos b

cosðnþ bÞ ð16Þ

where n is the angle between the normal line OQ and the vertical.
Based on the geometry between the slip surface and the major prin-
cipal plane, n is calculated by

n ¼ p
4
þu

2
� h1 ¼

1
2

p
2
� b� cos�1 sin b

sinu

� �
ð17Þ

In addition, on the left edge of the differential element, the shear
stress is

s ¼ rh tan u ¼ �rvKan tan u ð18Þ

Ignoring the stress loaded on the segment MG and considering the
clear interval between the two neighbouring piles, the summation
of all vertical forces acting on the main part of the differential ele-
ment (Fig. 7(c)) gives

d�rv � SD2 þ �rvKan tan u � D2dz� �rvKan tan b � D2dz

þ r3 sin n
cos b

cosðnþ bÞdz � D2 ¼ cS � hD2 ð19Þ

Using r3 = r1/N, Eqs. (13) and (14), the minor principal stress is

r3 ¼
Kan

N cos2 hw þ sin2 hw

�rv ð20Þ

Substituting Eq. (20) into Eq. (19) and considering that
S = (H � z)cosh1/sinh, h = cosb�dz, Eq. (19) is solved as

�rv ¼
cH cos b

1� ðKan tan u� Kan tan bþmÞ sin h
cos h1

� 1� z
H

� �ðKan tan u�Kan tan bþmÞ sin h
cos h1 � 1� z

H

� �" #
ð21Þ

where m is a function of b, given by

m ¼ Kan sin n cos b

ðN cos2 hw þ sin2 hwÞ cosðnþ bÞ
ð22Þ

where hw = p/4 + u/2. Multiplying Eq. (21) by Kan, the lateral soil
stress on the line AB (Fig. 6(a)) is estimated by

rh ¼
KancH cos b

1� ðKan tan u� Kan tan bþmÞ sin h
cos h1

� 1� z
H

� �ðKan tan u�Kan tan bþmÞ sin h
cos h1 � 1� z

H

� �" #
ð23Þ
Fig. 8. Slope model
Note that as mentioned previously, the analyses of the active
earth pressure rh are based on Paik and Salgado’s outstanding
work [23], so that Eqs. (3)–(5) are similar to their research.
However, the incline of the soil mass is considered in this paper,
which leads to different boundary conditions and different expres-
sions of the earth pressure rh. Moreover, if b = 0, Eq. (23) simplifies
to be the same as the equation proposed by Paik and Salgado [23].
This reveals that the equation in Paik and Salgado’s research [23] is
the special case of this proposed model.

3.3. The squeezing effects between two neighbouring piles

Ito and Matsui [14] have proposed a plastic deformation model
to evaluate the squeezing effects between two neighbouring piles.
In this paper, a similar concept is used; all of the assumptions for
the soils implied by Ito and Matsui [14] are also adopted. The
soil–pile pressure per unit length of the stabilizing piles in sandy
slopes is expressed as

p ¼ cHKan cos b

1� ðKan tan u� Kan tan bþmÞ sin h
cos h1

� 1� z
H

� �ðKan tanu�Kan tan bþmÞ sin h
cos h1 � 1� z

H

� �" #

� D1
D1

D2

� �N1=2 tan uþN�1

� exp
D1 � D2

D2
N tan u tan

p
8
þu

4

� �� �
� D2

( )

ð24Þ

The details of the derivation of Eq. (24) are given in the appen-
dix. In addition, the details of the formulae used to calculate the
total lateral force on a pile and the point application of the force
are also included in the appendix.

 

4. Numerical evaluation

A numerical model of the stabilized slope with piles was con-
structed in the numerical finite difference program FLAC3D.
Additionally, SRM was used to analyse the soil–pile pressure on
the piles when the slope failed. In the numerical model, the piles
were formatted by the intrinsic structure element. The slope model
is shown in Fig. 8 with a vertical to horizontal gradient of 1:3.
Three piles with a length of 9 m were installed in a row in the mid-
dle of the slope. The interval between two neighbouring piles was
D1 = 3 m and D2 = 2.6 m. The width of the model was 9 m. At the
bottom boundary of the model mesh, zero displacement was
imposed. Stress boundary conditions were imposed at both the
used in FLAC3D.
 



Table 1
Material properties adopted in the numerical model.

Sliding body Shear zone Stable layer Pile

c(kN/m3) 19 19 20 25
E(Pa) 3.8e7 2e7 7.8e7 3e10
l 0.32 0.32 0.32 0.2
c(kPa) 0 0 100 –
u(�) 32 30 30 –
w(�) 0/2 0 0 0
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uphill and downhill truncation planes. The soil was modelled using
the Mohr–Coulomb model, and the material properties are shown
in Table 1.

The model was first brought to equilibrium under gravity load-
ing. Next, a gradual reduction of the shear strength was imposed
along the shear zone. To simulate the existence of an accumulation
zone, the SRM was not imposed on the downslope final stretch of
the shear zone for a length of 10 m. This method of simulating the
resistance of the accumulation zone was proposed by Lirer [20].
Incorporating the soil properties, pile geometries and the height
of the sliding soil above the shear zone, the soil–pile pressure act-
ing on the piles was calculated by Eq. (24), and the results are
shown in Fig. 9(a). For comparison, a prediction using Ito and
Fig. 9. Comparison between the numerical results and predictions: (a) slope angle
of 18.4�; (b) slope angle of 11�.
Matsui’s approach [14] and the results from FLAC3D are included
in Fig. 9(a) as well.

A well-instrumented field trial was carried out by Lirer [20] to
study the influence of the row of piles on the local and overall
mudslide displacement field, as well as to quantify the shear forces
and bending moments within the piles. The experimental findings
have been back analysed by numerical simulation [20]. In this
study, in addition to the numerical model mentioned above, both
the observed data of the field trial and the numerical result
obtained by Lirer [20] were used to validate the proposed
approach. The material properties used in Lirer’s model are shown
in Table 2. The section of Lirer’s model was similar to Fig. 8, replac-
ing the dimensions with 300 m in length, 25 m in height, and 8 m
in width. In addition, the slope angle was 11� in Lirer’s research.
For more details of the field experiment and Lirer’s numerical
model, see the source reference. The comparison is shown in
Fig. 9(b).

Fig. 9(a) shows the comparison between the numerical simula-
tion results and the prediction of two theoretical methods with a
slope angle of 18.4�. Fig. 9(b) shows the observed data, the numer-
ical results and the theoretical methods estimations with a slope
angle of 11�. Both figures reveal that the distribution of the soil–
pile pressure computed by the proposed model is nonlinear, while
the prediction from Ito and Matsui’s approach appears to be linear;
however, the orders of magnitude of the two theoretical methods’
results are in line with each other. In Fig. 9(b), the observed data
shows that in the upper part of the sliding soil, within approxi-
mately 1 m depth, the soil–pile pressure is negative. Such a distri-
bution of the soil–pile pressure on top of the pile is thought to have
been obtained as a result of influences of the pile deformation and
the non-uniform movements of the sliding soils. However, the pre-
diction of the soil–pile pressure on the top of the pile is positive
because the flow mode [24] is considered in this proposed model,
where the soil displacement is assumed to be larger than the pile
deflection and the soil movement is uniform. Ignoring the negative
force on the top of the piles, the distribution of the soil–pile pres-
sure on the piles predicted by the proposed approach shows the
same trends as the numerical results and the observed data.
Particularly in the lower part of the sliding soil, the numerical
results and the prediction of the proposed method show that the
soil–pile pressure decreases after the first increase, while Ito and
Matsui’s approach shows linear increases of the soil–pile pressure.
Fig. 9 reveals that the shape of the distribution of the soil–pile
pressure estimated by the proposed model is similar to that of
the numerical and observed results, while the values are overesti-
mated. For instance, in Fig. 9(a), the maximum value provided by
the numerical analysis is 3.64 t/m (z = 3.6 m), compared to 6.39
t/m (z = 3.5 m) and 7.6 t/m (z = 4 m) predicted by the proposed
model and Ito and Matsui’s approach, respectively. In addition,
the order of magnitude of the predicted values agrees with that
of the numerical and observed results. As presented in Fig. 9, the
proposed model allows the assessment of the soil–pile pressure
based on soil and pile properties assuming that the soil movement
is larger than the pile deflection. However, the limited accuracy of
the prediction implies that the proposed model needs to be
improved in the future.

 

Table 2
Material properties adopted in Lirer’s model.

Sliding body Shear zone Stable layer Pile

c(kN/m3) 19 19 19 –
E(Pa) 2e7 1e7 5e7 2e11
l 0.34 0.34 0.34 0.25
c(kPa) 0 0 1000 14e4
u(�) 28 25 30 –
w(�) 0 0 0 0 



Fig. 10. The stress contours (rxx) around the piles.

Fig. 11. Comparison of the prediction and the experimental values based on the
research of Chen et al. [6].
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A simulation with the piles formatted by a number of zones is
carried out. The piles with a diameter of 0.6 m and a
centre-to-centre interval of 2 m were installed in the slope. The
stress contour around the stabilizing piles is plotted in Fig. 10.
The passive soil wedge behind each pile and the arching zone
between neighbouring wedges are apparent. The shape of the soil
arching zone in the stress contours from the plane view appears to
be sector. However, as mentioned previously, the soil arching zone
in the plane is assumed to be a rectangle for the purpose of simpli-
fying the analysis of the active stress.
5. Published experimental studies

Chen et al. [6] have reported on the model tests of pile groups
subjected to lateral soil movement. The experimental setup is
briefly described below and more details can be found in Polous
[24]. The main part of the apparatus consisted of a testing vessel
made from a steel sheet and having internal dimensions of
450 mm wide by 565 mm long and 700 mm high. Two vertical
steel plates, consisting of two parts hinged at mid-height, were
placed across the width inside the box. With a loading system
attached to the steel vessel, the upper part of each steel plate could
be rotated simultaneously around its hinge and consequently
cause the upper part of the sand to move [6]. The model piles were
made from aluminium tubes and were 1 m in length and 25 mm in
diameter with a 1.2 mm wall thickness. On the instrumented piles,
ten full bridge circuit strain gauges were placed at 100 mm inter-
vals inside each pile for measuring the bending moments in the
pile. Based on the measured bending moments M(z), the shear
forces T(z) and the soil–pile pressure per unit thickness p(z) can
be computed by successive derivations as follows:

TðzÞ ¼ dMðzÞ
dz

ð25Þ
pðzÞ ¼ d2MðzÞ
d2z

ð26Þ

The dry sand used in the model test was calcareous sand taken
from Bass Strait, Australia [6]. The piles were installed into the
sand bed in a row. The properties of the sand and the pile spacing
are shown in Fig. 11. The soil–pile pressure per unit length of the
pile is calculated based on Eq. (26), which implies that the depth
of the real failure surface around the piles is approximately
0.3 m. The comparison of the predicted and the experimental val-
ues is shown in Fig. 11.

In Fig. 11, the prediction using the proposed approach shows a
similar trend of soil–pile pressure distribution as the experimental
data. The maximum soil–pile pressure obtained by the experiment
is 0.094 t/m at a depth of 0.2 m. Meanwhile, the calculated maxi-
mum soil–pile pressure is at the same depth and is 0.043 t/m.
Fig. 11 shows that the maximum value from the experiment is
approximately two times larger than that of the prediction. The
sand in the test was subjected to a triangular profile of horizontal
movement with depth, while the proposed model is based on a
mode of the uniform soil movement. However, compared to Ito
and Matsui’s approach, the proposed model provides a relatively
similar distribution shape of the soil–pile pressure as the experi-
mental data, although some value discrepancy does exist.

Guo and Ghee [11] conducted the experiment on group effects
of piles due to lateral soil movement. The apparatus consisted of
a shear box and a loading system that allow different soil move-
ment profiles and vertical loading to be applied simultaneously.
The experimental setup is briefly introduced here.

The shear box has internal dimensions of 1 m by 1 m and is
0.8 m in height. The upper moveable part of the box consisted of
the desired number of 25 mm thick square laminar aluminium
frames to achieve a thickness of Lm (<400 mm). They were moved
together by a rectangular loading block to generate uniform lateral
soil movement. The lower fixed section of the box was a timber box
400 mm in height with a number of laminar aluminium frames to
achieve a stable sand layer of thickness Ls (P400 mm). For details
of the apparatus and tests, see the source reference.

The sand used in the test was an oven-dried medium-grained
quartz, Queensland sand. The model piles used in the tests were
made of aluminium tube, 1200 mm in length and 32 mm in outer
diameter with a 1.5 mm wall thickness [11]. Two piles were
installed into the fixed timber box. The centre-to-centre ‘‘joining’’
line of the piles was perpendicular to the direction of the soil
movement. The properties of the sand and the pile spacing are
shown in Fig. 12.

Fig. 12 compares the predicted and the experimental values.
Above the failure surface, the soil–pile pressure per unit length
of the pile predicted by the proposed approach shows the same
distribution as the experimental values. In the upper half of the

 



Fig. 12. Comparison of the prediction and the experimental values based on the
research of Guo and Ghee [11].

Fig. 13. Distribution of the soil–pile pressure along the piles with respect to
different slope angles.

160 Y. He et al. / Computers and Geotechnics 69 (2015) 153–165  

 

moveable soil, the predicted soil–pile pressure increases linearly
until the increment slows down at the depth of 0.2–0.3 m. The
maximum soil–pile pressure obtained by the experiment is
approximately 0.103 t/m at a depth of 0.26 m, while the predicted
maximum value is 0.147 t/m at 0.28 m. Fig. 12 indicates that the
order of magnitudes of the soil–pile pressure from the prediction
and the experiment are in line with each other.
6. Parametric study

A parametric analysis is implemented based on the proposed
analytical model to investigate the influence of the slope angle
and the internal friction angle on the distribution of the soil–pile
pressure per unit length of the piles. Because the proposed model
aims to predict the distribution of the soil–pile pressure on stabi-
lizing piles embedded in a semi-infinite slope, which differs from
the models designed for horizontal soil grounds, the angle of the
semi-infinite slope is considered to be one of the governing factors.
In addition, because the internal friction angle of soils is a primary
mechanical property, its effect on the soil–pile pressure distribu-
tion of the piles also needs to be analysed.

In the following discussion, the soil–pile pressure distribution,
the soil–pile pressure on different pile depths, the total lateral
force and the point application of the force with respect to different
slope angles and different internal friction angles are analysed.
Additionally, for comparison, the corresponding values from Ito
and Matsui’s approach are also calculated.
Fig. 14. Soil–pile pressure at different depths of the pile with respect to different
internal friction angles: (a) b = 10�; (b) b = 0�.

 

6.1. The influence of slope angle b

Fig. 13 shows the distribution of the soil–pile pressure along the
stabilizing piles when the sliding soil layer is 4 m thick. The soil
properties and geometric parameters are also shown in Fig. 13.
The soil–pile pressure on the pile has a nonlinear distribution at
every slope angle b. Additionally, with a slope angle b varying from
0� to 30�, the order of magnitude of the soil–pile pressure does not
change. The maximum soil–pile pressure and the height of the cen-
troid of the soil–pile pressure increases while the slope angle b
increases from 0� to 25�. However, when b varies from 25� to
30�, the maximum soil–pile pressure decreases. Furthermore,
Fig. 13 implies that if the magnitude of the soil–pile pressure on
a pile is the only factor considered, ignoring the change of the point
application of the force with slope angle, it is reasonable to use a
horizontal soil model (b = 0�) as a simplified way to estimate the
response of stabilizing piles in slopes (b – 0�).

Fig. 14 shows the soil–pile pressure at different pile depths with
respect to different internal friction angles. The calculated soil–pile



Fig. 16. Change in the height of the resultant lateral force.
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pressure denoted by the solid line remains the same while the
slope angle varies from 10� to 0�. Moreover, the soil–pile pressures
at different depths are almost parallel to each other, which is con-
sistent with the linear distribution of the soil–pile pressure on a
pile above the failure surface based on Ito and Matsui’s approach.
Conversely, the dotted lines intersect with each other, which
reveals the nonlinear distribution of the soil–pile pressure along
the pile. For instance, in Fig. 14(b), when the depth z is equal to
1.5 m and 2.5 m, the soil–pile pressures are nearly parallel to each
other, which indicates that on the top of the pile, the soil–pile pres-
sure increases linearly. However, when z is 3.95 m (close to the
failure surface), the soil–pile pressure is less than that at
z = 2.5 m and 3.5 m, which indicates a sharp decrease near the fail-
ure surface.

In Fig. 13, the area enclosed by the nonlinear distribution of the
soil–pile pressure and the vertical coordinate axis represents the
total force acting on the pile, which can be obtained by Eq.
(A.20). The prediction of the total force as the slope changes is
shown in Fig. 15. According to the proposed model, the total force
decreases after the first increase when the slope angle varies from
0� to 30�. As the slope angle increases, the total force increases
because of the increase of the component of the gravity along
the direction of sliding. However, when the slope angle is approx-
imately equal to the internal friction angle, the total force
decreases because of the decrease in slope stability.

The height of the resultant lateral force versus the slope angle is
displayed in Fig. 16. The height of the resultant lateral force pre-
dicted by Ito and Matsui’s approach remains constant at 0.33H,
even if the slope angle varies from 0� to 30�. However, the height
of the resultant lateral force is a function of the slope angle and
the internal friction angle based on the proposed model (Eq.
(A.22)). For instance, when u = 45�, the height of the resultant lat-
eral force varies from 0.423H to 0.351H when the slope angle
changes from 0� to 30�. The height of the resultant lateral force
appears to be affected by the soil arching that occurs between
two neighbouring piles.
Fig. 17. Effect of the internal friction angle on the soil–pile pressure acting on a pile.

6.2. The influence of the internal friction angle u

The soil–pile pressure acting on a pile with respect to different
internal friction angles is shown in Fig. 15, and the soil properties
and geometric parameters are shown in Fig. 17. The distribution
shapes of the soil–pile pressure are similar to each other when
the internal friction angle varies from 25� to 40�. Additionally,
the maximum soil–pile pressure appears in the range of 0.7H
Fig. 15. Effect of the slope angle on the total force on a pile.
(2.8 m) to 0.9H (3.6 m). The maximum soil–pile pressure for
u = 40� is nearly twice as large as that for u = 25�. Additionally,
the soil–pile pressure on the pile increases when the internal fric-
tion angle increases. Compared to Fig. 13, Fig. 17 shows that the
internal friction angle has a greater effect on the magnitude of
the soil–pile pressure on the pile than the slope angle does.

Fig. 18 displays the effect of the internal friction angle on the
total force on the pile. The trends of the total force on the pile from
both Ito and Matsui’s approach and the proposed model are simi-
lar: when the internal friction angle increases, the total force
increases. Additionally, when u = 24�, the dotted line reveals that
the closer that the slope angle approximates the internal friction
angle, the smaller the total force estimates. Furthermore, when u
is much larger than b, such as when u = 44�, the total force appears
to approach to the same value among the three different slope
angles.

Fig. 19 shows the effect of the internal friction angle on the
height of the resultant lateral force. The height of the resultant lat-
eral force remains constant (0.33H) according to Ito and Matsui’s
approach. However, based on the proposed model, for instance
when b = 10�, the height of the resultant lateral force varies from
0.375H to 0.395H as the internal friction angle increases from
24� to 44�. This difference occurs because in Ito and Matsui’s
approach, Rankine theory is used to estimate the lateral active
stress, which leads to the constant height of the resultant lateral

 



Fig. 18. Effect of the internal friction angle on the total force on a pile.

Fig. 19. Effect of the internal friction angle on the height of the resultant lateral
force.

Fig. 20. Soil–pile pressure at different pile depths with respect to different slope
angles.
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force. Conversely, when the effects of soil arching are considered,
the proposed model displays a height that changes with respect
to different internal friction angles.

Fig. 20 displays the soil–pile pressure at different pile depths
with respect to different slope angles. The internal friction angle
u is 45�. Fig. 20 shows the same trends of the distribution of the
soil–pile pressure as Fig. 14. Moreover, along the upper half of
the pile, the soil–pile pressures calculated by Ito and Matsui’s
approach are always less than that calculated using the proposed
method. Along the lower half of the pile, changeover of the soil–
pile pressure occurs.

 

7. Discussion

This work attempts to develop a simple method to analyse the
soil–pile pressure per unit length of the pile. The model is based on
the theory of plastic deformation and is modified by considering
both the inclination of the sliding ground and the soil arching
effects along the depth of the sliding soil between two neighbour-
ing piles. Comparisons have been made previously between the
predicted results and the data from literature, as well as the results
from Ito and Matsui [14]. The proposed model performs better
than that of Ito and Matsui when predicting the soil–pile pressure
per unit length of the pile in the slope. However, the prediction
using the proposed method shows limited accuracy. Fig. 9,
Fig. 11 and Fig. 12 still show some differences between the predic-
tions and the numerical and experimental results. The assumption
of neglecting the deformation of the piles during the movement of
the soil is thought to result in the limited prediction. Furthermore,
because the ‘‘squeezing effects’’ between two neighbouring piles
are adopted from the theory of plastic deformation, the limitation
of this theory is inherited as well [24,17]. The comparison men-
tioned above indicates that the proposed model is able to describe
the distribution of the soil–pile pressure varying with the slope
angle and that the trends of the soil–pile pressure are consistent
with the literature data, but some differences in the values exist.
To improve the prediction results, the model needs further modifi-
cation in the future.
8. Conclusion

In this paper, the interaction between stabilizing piles and gran-
ular soil is analysed in a semi-infinite inclined sandy slope. A new
theoretical model is proposed to evaluate the soil–pile pressure on
stabilizing piles in a sandy slope based on the assumption that the
soil displacement exceeds the pile deflection. In the proposed
model, the soil arching zone is analysed using stress geometry.
The soil arching effects are then considered to estimate the lateral
active stress between two piles. Furthermore, the squeezing effects
[14] between two neighbouring piles due to the deformation of the
surrounding soils are adopted. To evaluate the proposed model,
numerical simulations are implemented by FLAC3D. Comparing
the predicted results from the proposed model, Ito and Matsui’s
approach and the simulations results reveals that Ito and
Matsui’s approach provides a linear solution for estimating the
soil–pile pressure, while a nonlinear solution is obtained from
the proposed model, which shows better agreement with the sim-
ulation results. In addition, the limited accuracy of the proposed
model is also evaluated through comparison to the experimental
data from the published literature.

A parametric analysis is also carried out on the slope angle and
the internal friction angle. Both the slope angle and internal fric-
tion angle affect the distribution of the soil–pile pressure per unit
length of the pile; the shape of the distribution of the soil–pile
pressure is mainly affected by the slope angle, whereas the internal
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friction angle has a greater effect on the magnitude of the soil–pile
pressure on the pile than the slope angle. Additionally, the height
of the resultant lateral force varies with the slope angle and the
internal friction angle in the proposed model, whereas it remains
constant in Ito and Matsui’s approach.
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Appendix A. Analysis of the geometric relationship in the soil
arching zone

When the soil stress on the line AB (Fig. 5) is active, the differ-
ential element (Fig. A1) and the corresponding Mohr’s circle
(Fig. A2) are used to determine the geometric relationship between
the stresses. The process of solving the angle h is as follows.

(a) In a rectangular coordinate system, because the internal fric-
tion angle u was investigated in advance, the strength
envelope is determined as the line OP shown in Fig. A2.

(b) The two lines OL and OL0 are drawn above and below the r
axis; the angle between each line and the r axis is b.

(c) On the line OL, we set OA = rz = czcosb. Point A in Fig. A2
represents the stress acting on the surface (Fig. A1(b)),
including the normal stress and the shear stress.

(d) In the negative direction of the r axis, an arbitrary point D0 is
set. A circle can then be drawn with centre D0 and with tan-
gency point B0 on the line OP0. The circle D0 and the line OE
intersect at point A0 .
Fig. A1. The stress state: (a) the stress state of a differential element in a semi-finite
slope; (b) the generic element.

Fig. A2. The geometric relationship in the soil arching zone illustrated by Mohr’s
circle.
(e) Parallel to A0D0, a line AD is drawn with the point D located
on the r axis. Taking AD as the radius and point E as the cen-
tre, a circle is drawn. This produces the circle D, which is tan-
gential to the line OP at point B.

(f) The angle between AD and BD is equal to 2h.

According to the geometric relationships in Fig. A2, it is obvious
that

CD ¼ OD sin b ðA:1Þ

AD ¼ BD ¼ OD sinu ðA:2Þ

cos\ADC ¼ CD
AD
¼ OD sin b

OD sin u
¼ sin b

sin u
ðA:3Þ

\ADC ¼ arccos
sin b
sinu

ðA:4Þ

h ¼ 1
2

u� bþ arccos
sin b
sinu

� �
ðA:5Þ

h1 ¼
1
2

uþ bþ arccos
sin b
sin u

� �
ðA:6Þ

 

Appendix B. The squeezing effects between two neighbouring
piles (Derivation of Eq. (24))

The squeezing effects have been proven by Ito and Matsui [14]
and are summarized as follows.

First, all of the assumptions that they made are adopted in this
paper. In the zone EBB0E0 (Fig. 4), the equilibrium of the forces in
the x direction on a differential element is considered (as shown
in Fig. A3):

2dx ra tan
p
4
þu

2

� �
þ ra tan uþ c

h i
� Ddrx � rxdD ¼ 0 ðA:7Þ

The normal stress ra on the surface EBB0E0 (Fig. 4) is assumed to
be equal to the principal stress rx. The Mohr–Coulomb’s yield cri-
terion is expressed as:

ra ¼ rxN þ 2cN1=2 ðA:8Þ

in which N = tan2(p/4 + u/2). The geometrical condition gives:
Fig. A3. Differential element (EBB0E0) between two neighbouring piles [14].
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dx ¼ dðD=2Þ
tanðp=4þu=2Þ ðA:9Þ

Substituting Eqs. (A.8) and (A.9) into Eq. (A.7) and then integrating
gives

rx ¼
ðC1DÞðN

1=2 tan uþN�1Þ � cð2 tan uþ 2N1=2 þ N�1=2Þ
N1=2 tan uþ N � 1

ðA:10Þ

where C1 is an integration constant.
Then, in the zone AEE0A0 (Fig. 4), the equilibrium of the forces on

a small soil element in the x direction is also considered, as shown
in Fig. A4.

D2drx ¼ 2ðra tan uþ cÞdx ðA:11Þ

Substituting Eq. (A.8) into Eq. (A.11) and integrating gives

rx ¼
C2 exp 2N tan u

D2
x

� �
� cð2N1=2 tan uþ 1Þ

N tan u
ðA:12Þ

where C2 is an integration constant.
For sandy soil, the active earth pressure acts on the plane AA0

(Fig. 4) and is obtained by Eq. (23), namely:

½rx�x¼0 ¼ rh ¼
cHKan

1� Kan tan u tan b
ð1� z

H
Þ

Kan tan u tan b

� 1� z
H

� �� �
ðA:13Þ

Eq. (A.13) is considered to be the boundary condition of Eq. (A.12);
then,

C2 ¼ rhN tan u ðA:14Þ

Substituting Eq. (A.14) into Eq. (A.12) yields

½rx�x¼D1�D2
2 tan p

8þ
u
4ð Þ ¼ ðrhN tan uÞ exp

D1 � D2

D2
� N tan u tan

p
8
þu

4

� �� �
ðA:15Þ

The constant C1 in Eq. (A.10) is obtained by considering Eq. (A.15) to
be the boundary condition. Then,

ðC1D2ÞðN
1=2 tanuþN�1Þ ¼ ðN

1=2 tan uþ N � 1Þ
N tan u

� rhN tan u � exp
D1 � D2

D2
N tan u tan

p
8
þu

4

� �� �� �
ðA:16Þ

Eqs. (A.10) and (A.16) are used to obtain the solution of the lat-
eral force PBB’ acting on the plane BB0 (Fig. 4) per unit thickness of
layer in the x direction, which is shown as follows:
Fig. A4. Differential element (AEE0A0) between two neighbouring piles [14].
pBB0 ¼ D1
D1

D2

� �ðN1=2 tan uþN�1Þ

rh � exp
D1 � D2

D2
N tan u tan

p
8
þu

4

� �� �� �
ðA:17Þ

Finally, subtracting the active lateral force acting on the plane
AA0 from PBB’, the soil–pile pressure per unit length of a pile in
the x direction is obtained:

p ¼ cHKan cos b

1� ðKan tan u� Kan tan bþmÞ sin h
cos h1

� 1� z
H

� �ðKan tan u�Kan tan bþmÞ sin h
cos h1 � 1� z

H

� �" #

� D1
D1

D2

� �N1=2 tan uþN�1

� exp
D1 � D2

D2
N tan u tan

p
8
þu

4

� �� �
� D2

( )

ðA:18Þ

Eq. (A.18) is the solution for the soil–pile pressure per unit length of
a pile.

 

Appendix C. Total lateral force and the point application of the
force

The total lateral force pt on a pile can be obtained by integrating
Eq. (24) with respect to z:

pt ¼
Z H

0
pdz ðA:19Þ

Substitution of Eq. (24) into the above equation yields

pt ¼
cH2Kan cos b

2 ðKan tan u� Kan tan bþmÞ sin h
cos h1
þ 1

h i

� D1
D1

D2

� �N1=2 tan uþN�1

� exp
D1 � D2

D2
N tan u tan

p
8
þu

4

� �� �
� D2

( )

ðA:20Þ

The height of the point application of the force is obtained by
dividing the moment of the soil–pile pressure about the failure sur-
face by the total lateral force on a pile. The moment M of the soil–
pile pressure about the failure surface is obtained as follow:

M ¼
Z H

0
pðH � zÞdz ðA:21Þ

Dividing Eq. (A.21) by Eq. (A.20) yields the height of the point appli-
cation of the force, hp:

hp ¼
R H

0 pðH � zÞdz
pt

¼
2½ðKan tan u� Kan tan bþmÞ sin h

cos h1
þ 1�

3½ðKan tan u� Kan tan bþmÞ sin h
cos h1
þ 2�

ðA:22Þ
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