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Abstract Software Defined Radio (SDR) is the technology which has given researchers the oppor-

tunity and flexibility of integration and intercommunication of existing and future networks

together. The radio spectrum is the most vital resource for a mobile operator in today’s world of

modern wireless communications. After analyzing the spectrum allocation map one can conclude

that the most of the prime spectrums falling under the licensed bands have already been allocated

for licensed users for exclusive use. There are very few unlicensed bands for the unlicensed users.

SDR offers a perfect solution to this problem of spectrum scarcity being experienced in wireless

communication systems. The demand for reliable, high data rate transmission has increased signif-

icantly these days, which leads the way to adoption, of different digital modulation techniques.

The aim of this paper was to analyze Frequency Shift Keying (FSK) Transceiver built using Lab-

oratory Virtual Instrumentation Engineering Workbench (LabVIEW) and to measure the reduction

in data errors in the presence of Forward Error Correction (FEC) channel coding algorithms

namely the Convolution and the Turbo Codes. Through this design a graphical representation of

Bit Error Rate (BER) vs Eb/N0 where (Eb) is Energy per bit and (N0) is Spectral noise density

has been given in the presence of Additive White Gaussian Noise (AWGN) introduced in the chan-

nel. FSK is widely used for data transmission over band pass channels; hence, we have chosen FSK

for the implementation of SDR. The SDR transceiver module designed has been fully implemented

and has the ability to navigate over a wide range of frequencies with programmable channel

bandwidth and modulation characteristics. We are able to build an interactive FSK based SDR
ng using
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1. Introduction

SDR systems are the ones which can adapt to the future-proof
solution and it covers both existing and emerging standards.

An SDR has to possess elements of reconfigurability, intelli-
gence and software programmable hardware. As the function-
ality is defined in software, a new technology can be easily
implemented in a software radio by means of a software

upgrade. Channel equalization is an important subsystem in
the Software Defined Radio (SDR) receiver [15]. For many
years modulation techniques have been extensively used for

various wireless applications, but the modern communication
system requires data transmitted at a higher rate, larger
bandwidth [16].

This paper discusses an SDR system built using LabVIEW
for FSK Transceiver. SDR provides an alternative to systems
such as the third generation (3G) and the fourth generation

(4G) systems. There are two frequency bands where the Soft-
ware Defined Radio might operate in the near future, i.e.
54–862 MHz Very High Frequency (VHF) and Ultra High
Frequency (UHF) TV bands and 3–10 GHz Ultra-wideband

(UWB) radios [19,6]. A Software Defined Radio comprises
of a programmable communication system where functional
changes can be made by merely updating the software. SDR

can be reconfigured and can talk and listen to multiple chan-
nels at the same time. The transmitter of an SDR system con-
verts digital signals to analog waveforms. The analog

waveforms generated are then transmitted to the receiver.
The received analog waveforms are then down converted, sam-
pled, and demodulated using software on a reconfigurable
baseband processor. Normally, high performance digital signal

processors are used to serve as the baseband processor. SDR
systems can be used in ubiquitous network environments
because of its flexibility and programmability. The use of dig-

ital signals reduces hardware, noise and interference problems
as compared to the analog signal in transmission, which is one
of the main advantages of digital transmission.

In this paper, the software simulator of the FSK Transceiver
has been designed using LabVIEW [7,14,13]. FSK is chosen to
be the modulation scheme of the designed Software Defined

Radio system due to its easy implementation and widespread
usage of legacy communications equipment, and FSK modula-
tion techniques are considered to be very common technology
for transmission and reception in current and future wireless

communication, especially in the VHF and UHF frequency
bands giving excellent BER vs SNR ratio with high data rates.
A fully implemented SDRhas the ability to navigate over a wide

range of frequencies with programmable channel bandwidth
and modulation characteristics [5,20,9]. The role of modulation
techniques in an SDR is very crucial since modulation tech-

niques define the core part of any wireless technology. They
can be reconfigured and can talk and listen to multiple channels
at the same. The role ofmodulation techniques in an SDR is very

crucial since modulation techniques define the core part of any
N et al., Design of a hybrid reconfigur
atics J (2015), http://dx.doi.org/10.1016
wireless technology. SDR’s inherent flexibility must, however,
be planned for in advance via hardware and software consider-
ations, ultimately resulting in increased code portability,
improved communications system life cycles, and reduced costs

[1,18,10]. The elementary concept of the SDR is that the radio
can be totally configured or defined by the software so that a
common platform can be used across a number of areas and

the software used to change the configuration of the radio for
the function required at a given time. There is also the beingness
that it can be re-configured as upgrades to standards arrive, or if

it is required tomanage other role, or if the ambit of its process is
denatured. SDR can be reconfigured and can peach and hear to
duplex channels at the identical time. The personation of mod-
ulation techniques in an SDR is very important since modula-

tion techniques define the core for any wireless systems [11,8,3].
The main interest in any communication group is the sure

sending of signals of information from a transmitter to a recei-

ver. The signals are transmitted via a guide who corrupts the
signal. It is needful that the distorting effects of the channel
and noise are minimized and that the information transmitted

through the channel at any given time is maximized. The chan-
nel is subject to various types of dissonance, twisting, and inter-
ference [2]. Also, some communication systems have limitations

on Transmitter power. All of this may lead to various types of
errors. Consequently, we may need some form of error control
encoding in order to recover the information reliably [22].
2. Related work

To ensure reliable communication forward error-correcting
(FEC) codes are the main part of a communication system.

FEC is a technique in which we add redundant bits to the trans-
mitted data to help the receiver correct errors. There are two
types of FEC codes: the convolutional codes and block codes.

When we use Block codes they are defined by n and k, where
n describes the total number of coded bits and k gives the num-
ber of input bits. In convolutional codes the coding is applied to

the entire data stream as one code word [4]. In the year 1948,
Shannon showed that arbitrarily reliable communication is
only possible till the signal transmission rate does not exceed

a certain limit which was termed as channel capacity. After this
different algebraic codes such as Golay codes, Bose–Chaud
huri–Hocquenghem (BCH) codes [1], and Reed–Solomon
(RS) codes were created and used for error correction. The next

series of codes originally referred as recurrent codes or Convo-
lutional codes were given which helped further to improve the
error control coding. The convolutional codes have efficient

encoding and decoding algorithms and high performance over
AWGN channels. Later on concatenated coding schemes were
also given. Also some weak points were there of convolutional

codes during bursty transmissions which were later on reduced
using Reed–Solomon codes (RS codes) [17] by serially concate-
nating a convolutional code with an RS code. Development of
able Software Defined Radio transceiver based on frequency shift keying using
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Design of a Software Defined Radio transceiver 3
turbo codes is the most recent discovery in the coding theory.
Turbo codes show performance of near to Shannon limit with
iterative decoding algorithms. Many iterative decoding

algorithms came into existence such as Gallagher’s low parity
density check (LDPC) codes [21]. Though these Turbo codes
exhibit excellent bit error performance but there are some prob-

lems associated with them such as these codes generate a certain
number of low weight code words which results in exhibition of
an error ‘‘floor” in the BER curve at high SNR. Also the com-

plexity of the soft-input, soft-output (SISO) decoder is such
that low cost decoders are unavailable for many commercial
applications. For these reasons, many applications still deploy
RS codes because of its efficient decoder implementation [17]

and excellent error correction capabilities.
The organization of this paper is as follows: Section 1 gives

the Introduction about the SDR, Section 2 describes the

Related work, Section 3 describes FSK Transceiver design,
Section 4 presents the FSK Transceiver parameters, Section 5
describes the simulation of FSK Transceiver, in Section 6 we

discuss the results achieved in detail and finally Section 7
explains the drawn Conclusions.

3. Frequency shift keying transceiver

In this paper, we have examined the digital modulation scheme
Frequency Shift Keying (FSK) has dynamic characteristics of

the carrier signal with respect to time and this alteration results
in a sine gesticulate in a divergent phase, amplitude or fre-
quency. This results in, contrasting ‘‘states” of the sine curve
are referred to as symbols which represent few digital bit orna-

mentation. The general Block Diagram of a generic Digital
Transceiver is shown in Fig. 1.

The building blocks of the FSK Transceiver system are sta-

ted in this section. This system has two parts: transmitter and
receiver. The VI hierarchy for an FSK Transceiver with
Multiple Encode and Decode techniques is shown in Fig. 2.

3.1. Message source

During the transmission pseudo noise (PN) bit sequences are

generated as message signal. The selected pattern is repeated
until the user-specified number of total bits is generated. PN
sequence order specifies the order of the PN bit sequence to
be generated. Valid values are 5–31, inclusive. If the PN

sequence order is N, the output data are periodic with period
T = 2N � 1. Pseudorandom or pseudo noise (PN) sequences,
though deterministic in nature, satisfy many properties (auto-

correlation, cross correlation, and so on) of random numbers.
A m-sequence generates a periodic sequence of length
Rx 
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Figure 1 Block Diagram of a generic Digital Transceiver.
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L = 2m � 1 bits and is generated by Linear Feedback Shift
Registers (LFSR) as shown in Eq. (i):

h ðKÞ ¼ 1þ K2 þ K5 ðiÞ
where K denotes delay and the summations represent modulo
2 additions. The frame marker bits are inserted in front of the

generated PN sequences as shown in Fig. 3.

3.2. Source encoder

This instance maps, bits to complex valued symbols for FSK
modulation scheme and frequency deviations for FSK. Input
byte stream specifies the incoming bit stream to be mapped
to FSK symbols. Symbol map specifies an ordered array that

maps each symbol value to its desired deviation frequency.
The number of FSK levels in the array must be 2N, where N
is the number of bits per symbol. To specify a prebuilt map,

unbundle the symbol map element from the system parameters
cluster generated by the FSK (M) or FSK (Map) instance.
When the input bit stream is not comprised of an integer num-

ber of symbols, the carryover bits are buffered. When reset? Is
set to TRUE (default), this buffer is cleared at each call. When
reset? Is set to FALSE, the carryover bits are added to the

beginning of the input bit stream at the next call to this VI.
This option is useful when the current block of data is contigu-
ous with the preceding block of data.

3.3. Pulse shaped filter

The polymorphic instance uses Pulse shaping samples per sym-
bol which specifies the number of desired samples per symbol

for the pulse-shaping filter. If the pulse-shaping filter is used
for demodulation, this parameter value must match the sam-
ples per symbol element of the system parameters cluster

passed to the demodulation VI. Specify an even number
greater than 2. Matched samples per symbol, specify the num-
ber of desired samples per symbol for the demodulation

matched filter. This parameter value must match the samples
per symbol element of the system parameters cluster passed
to the digital demodulation VI. Specify an even number
greater than 2. Pulse shaping filter coefficients return an

ordered array of filter coefficients corresponding to the desired
filter response to the pulse-shaping filter used in modulation.
The calculated filter coefficients are used during modulation

to reduce the bandwidth of the transmitted signal and during
demodulation to reduce inter symbol interference. The pulse-
shaping filter can be used either in transmission or for demod-

ulation of FSK modulated signals. The matched filter is only
used for demodulation. The VI calculates the impulse response
of the filter using the following formulas:

Raised Cosine Filter is given by

hðtÞ ¼ sinc
t

T

� � cos pbt
T

� �

1� 4b2t2

T2

ðiiÞ

 

 

3.4. Channel encoder (line)

This polymorphic instance generates an encoded bit stream
based on a specified generator matrix. Input byte stream spec-
ifies the bit sequence representing the data word to encode.
able Software Defined Radio transceiver based on frequency shift keying using
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Figure 2 VI hierarchy of FSK Transceiver.

Figure 3 Message source VI.
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Generator matrix (n � k) specifies the generator connection
polynomial matrix used for setting the convolutional feedfor-
ward encoder connections in octal format. The Convolutional
Encoder is modeled as a linear feedforward shift register
Please cite this article in press as: Marriwala N et al., Design of a hybrid reconfigur
multiple encoding schemes. Egyptian Informatics J (2015), http://dx.doi.org/10.1016
arrangement consisting of k rows with K � 1 shift registers
per row, where k denotes the data word length and K denotes
the constraint length. If aij {0 6 i 6 n � 1, 0 6 j 6 k � 1}
denotes a particular element in the generator matrix, the row
able Software Defined Radio transceiver based on frequency shift keying using
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Design of a Software Defined Radio transceiver 5
index i corresponds to the Convolutional Encoder output yi
that is affected by this element, while the column index j cor-
responds to the jth row in the k row shift register arrangement.

Zeros are padded at the end of the corresponding code gener-
ator sequences such that their total length is a multiple of three
digits. Fig. 4 depicts the rate 2/3 Convolutional Encoder corre-

sponding to the previously mentioned generator matrix, with a
constraint length equal to 4. In Fig. 4, D represents a shift reg-
ister or memory element.

Here, y j
i ; 0 6 j 6 n� 1 denotes the jth output of the

Convolutional Encoder, in the ith encoding instance.

y j
i ¼

X1
k¼0

h j
k xi�k ðiiiÞ

where x is an input sequence, yj is a sequence from output j and

hj is an impulse response for output j. Convolution Encoder VI
is shown in Fig. 5.

In this design we have used the Turbo Encoder for the sec-

ond Encoding technique as shown in Fig. 6 which works by
using two Convolutional Encoders. One encoder receives the
data to be sent and the other receives an interleaved version
of the data to be sent. The Convolutional Encoders are identi-

cal and are rated 1. Each has 3 linear shift registers with a feed-
back loop. The original data, the output from encoder 1, and
the output from encoder 2 are then interleaved together before

being transmitted.

3.5. FSK modulator

The FSK modulator accepts a M-ary value that specifies a pre-
defined symbol map with the number of distinct symbol map
values to use as symbols. The FSK instance calculates param-

eters for use within the modulator. The system parameters
cluster from this VI wire to the corresponding parameter of
the appropriate modulation VI. M-FSK specifies the M-ary
number, which is the number of distinct frequency deviations

to use as symbols. This value must be a positive power of 2.
FSK deviation specifies the maximum FSK frequency devia-
tion. At baseband frequencies, deviations for individual sym-

bols are evenly spaced in the interval [–fd, fd], where fd
represents the frequency deviation. With discontinuous
phase-FSK, modulation consists of selecting the appropriate

sinusoid based on the input data. Thus, when switching
between symbols, there is a discontinuity in the FSK signal
phase. This VI maintains the phase of each independent sinu-

soid versus time. In this way, the FSK modulator acts like a
hardware-based (multiple switched tone generators) FSK
modulator as shown in Fig. 7. Bits per symbol return the num-
ber of bits represented by each symbol. This value is equal

to Log2 (M), where M is the order of the modulation. FSK
modulator receives a sequence of data bits, performs FSK
Figure 4 Convolutional Encoder.
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modulation, and returns the modulated complex baseband
waveform in the output complex waveform parameter. For
FSK systems with more than 1 bit per symbol, such as 4-

FSK, the symbols are converted to bits in least significant bit
(LSB) first order. One frequency is designated as the ‘‘mark”
(1) frequency and the other as the ‘‘space” (0) frequency.

3.6. Time varying channel

We add time-varying channel to observe the adaptability of the

system. The VI used for this purpose returns a signal–plus–
noise waveform with a user-specified Eb/N0, where Eb repre-
sents the energy per bit, and N0 represents the Spectral noise

density. This VI generates zero-mean complex additive white
Gaussian noise (AWGN) with a uniform power spectral den-
sity and adds it to the complex baseband modulated wave-
form. Input, complex waveform specifies the modulated

complex baseband waveform data. The input bits per symbol
specify the number of bits per symbol in the modulation for-
mat underlying the input complex waveform. Eb/N0 specifies

the desired Eb/N0 of the output complex waveform in dB. Out-
put, complex waveform returns the signal–plus–noise complex
baseband waveform data. The channel is Gaussian in nature

because its probability density function can be accurately mod-
eled to behave like a Gaussian distribution and it is called
white as it has a constant power spectral density. The charac-
teristic of the channel has varied with time by swinging the fil-

ter passband from 100 to 900 Hz. Fig. 8 shows the time varying
channel with the AWGN noise source. For true AWGN, the I
and Q components of the additive noise must be interrelated.

 

 

3.7. FSK demodulator

The process of recovering the original message from the mod-

ulated waveform is accomplished by the FSK demodulator.
The VI used for demodulation demodulates an FSK-
modulated complex baseband waveform and returns the

time-aligned demodulated waveform, the demodulated infor-
mation bit stream, and measurement results obtained during
demodulation. This VI attempts to remove the carrier and
phase offset by locking to the carrier signal. Samples per sym-

bol specify an even, positive number of samples dedicated to
each symbol. Multiply this value by the symbol rate to deter-
mine the sample rate. Matched filter coefficients specify an

ordered array containing the desired matched filter coeffi-
cients. Frequency offset returns the measured carrier frequency
offset, in hertz (Hz). Frequency drift returns the measured car-

rier frequency drift, in hertz (Hz). Viterbi decoding is an opti-
mization (in a maximum-likelihood sense) algorithm for
decoding of a Convolutional code as this simplifies the decod-

ing operation [5,7]. The decoder is a Viterbi decoder which
then solves for the global optimum bit sequence. The algo-
rithm updates a path cost as it steps through each stage of
the possible output sequences. At each state, it also calculates

the likelihood of entering each possible new state based on the
cost of the previous state. The algorithm then needs two addi-
tional zero bits after every sequence in order to force the enco-

der back into the zero state and to assume that the encoder
ends at the all zero state. These two tail bits represent a frac-
tional loss rate between the coded and un-coded bit sequences.

The Viterbi Decoder VI is shown in Fig. 9. Fig. 10 shows the
able Software Defined Radio transceiver based on frequency shift keying using
/j.eij.2015.08.004
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Figure 5 Convolution Encoder VI.

Figure 6 Turbo Encoder VI.
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Turbo Decoder VI used in this design. It Works by using a set

of Maximum A posteriori Probability (MAP) decoders. When
the data are received, it is deinterleaved back into the three
streams which were sent from the transmitter:

1. Original Data.
2. Output from Convolutional Encoder 1.

3. Output from Convolutional Encoder 2.
Please cite this article in press as: Marriwala N et al., Design of a hybrid reconfigur
multiple encoding schemes. Egyptian Informatics J (2015), http://dx.doi.org/10.1016
The firstMAPDecoder takes as an input stream1 and stream

2 and also the output fromMAP Decoder 2 (initialized to zeros
for the first iteration) [12,8]. The secondMAP Decoder takes in
an interleaved adaptation of stream 2 (the aforementioned

interleaver used to interleave the original data before it was sent
to the Convolutional Encoder), and the output from the original
MAP Decoder. The two MAP Decoders then work together to
converge on a solution: the most likely original bit sequence.
able Software Defined Radio transceiver based on frequency shift keying using
/j.eij.2015.08.004

 

http://dx.doi.org/10.1016/j.eij.2015.08.004


Figure 7 FSK modulator VI.

Figure 8 AWGN and IQ impairments.
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3.8. Acquire symbol timing – frame synchronization mode

The next step is to locate the first occurrence of the ideal

symbol timing instant in the matched filter input complex
waveform. It then applies phase-continuous re-sampling to
align the first sample of the input complex waveform to the
ideal symbol timing instant. The returned waveform is

symbol-time aligned such that its first sample corresponds to
the optimal (ideal) symbol instant. In VI shown in Fig. 11
the input samples are passed through Complex Queue PtByPt

VI, which creates a data queue of complex numbers to obtain a
beginning of a frame. This VI decimates the input complex
waveform and returns the decimated output complex wave-

form. This VI is used to decimate the matched filtered wave-
form at the output to recover the symbols corresponding to
the ideal symbol timing location.

4. FSK transceiver parameters

4.1. Transmitter filters

Transmitter filter defines the type of band-limiting filter
employed at the transmitter for pulse shaping the symbols
Please cite this article in press as: Marriwala N et al., Design of a hybrid reconfigur
multiple encoding schemes. Egyptian Informatics J (2015), http://dx.doi.org/10.1016
output by the modulator. In this design the user has the option

to choose any of the varieties of the filters from the given filters
Raised Cosine (Nyquist), Square-root Raised Cosine, Gaussian
Filters as shown in Table 1. Thus this design makes it a unique

SDR where the user has the option to select the required filter
and see that which filter gives the minimum BER.

i. Raised Cosine Filter: A Raised Cosine Filter is one of the

most common pulse-shaping filters in communication
systems. The Raised Cosine Filter is used to minimize
inter symbol interference (ISI).

ii. Root Raised Cosine Filter: The Root Raised Cosine
Filter is used to produce a frequency response with
unity gain at low frequencies.

5. Lab-VIEW simulation of FSK Transceiver

In this sectionwe describe the simulation results ofM-FSKFSK
Transceiver system.BERvsEb/N0 (dB) for 2, 4, 8, 16, 32, 64, 128,
256 bits FSK has been given in Figs. 12 and 13. Output Results
for Convolution Coding and Turbo Coding have been illus-

trated with the FSK parameters for Simulation as shown in
Table 1. By taking a look at the output resultswe can very clearly
say that Turbo Coding gives a much improved and better mini-

mization of the data errors than the Convolution Coding. With
the help of this design we can also show that how fast and effec-
tively we can build a FSK Transceiver for SDR.

5.1. Bit Error Rate (BER)

The Bit Error Rate (BER) is the number of bit errors divided

by the total number of transferring bits during a considered
able Software Defined Radio transceiver based on frequency shift keying using
/j.eij.2015.08.004
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Figure 9 Viterbi Decoder VI.

Figure 10 Turbo Decoder VI.
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Figure 11 Symbol timing VI.

Table 1 Simulation parameters.

Sl.

no.

Reconfigurable parameters

for the user

Values taken by the user

1 PN sequence order 15 or any value

2 Eb/N0 80 dB or any value

3 Message symbol 1000 or any value

4 Transmission B.W (BT) 0.5 or any value

5 Symbol phase continuity Continuous

6 FSK frequency deviation

(Hz)

25KHz or any value

7 Filter used Cosine Filter, Root Raised

Cosine Filter

8 Symbol rate 100.00 kHz or any value

9 Eb/N0 sample 5 or any value

10 Sample per symbol 16 or any value

11 Modulation index 0.5 or any value

12 BER vs Eb/N0 (without

filter)

None

Figure 12 BER vs Eb/N0 (dB) (2, 4, 8, 16, 32, 64, 128, 256 bits

FSK) Output Results for Convolution Coding.
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time interval. BER is a unitless performance measured which is

often expressed as a percentage (%). A pseudo-random, data
sequence (15) is used for the analysis in this design. The
BER parameter represents the current operating BER of a

specific modulation type and in this design the modulation
scheme selected is M-FSK. This value depends on various
channel characteristics, including the transmit power and noise

level.

6. Discussion and simulation

In this section we discuss the simulation results of the FSK
Transceiver VI for noisy channels. From the results it becomes
clear that the wireless system designed based on FSK tech-
nique provides high data rate and SNR. This can be very
Please cite this article in press as: Marriwala N et al., Design of a hybrid reconfigur
multiple encoding schemes. Egyptian Informatics J (2015), http://dx.doi.org/10.1016
clearly seen in terms of the BER Eb/N0 output graph. We

can also see very clearly with these results that data errors
can be minimized using coding techniques, which in turn
improves the Signal to Noise Ratio (SNR); further, we can

also say looking at the results that Turbo Coding gives a much
improved and better minimization of the data errors than the
Convolution and Viterbi Codes. The performance of M-level
FSK systems (2, 4, 8, 16, 32, 64, 128, 256) for additive white

Gaussian noise channel has been evaluated and compared on
the basis of the simulations in Lab-VIEW as shown in Figs. 12
and 13. In this paper we have shown that how fast and effec-

tively we can build an FSK Transceiver for Software Defined
Radio. We have used the Graphical programming language
Lab-VIEW for building an FSK Transceiver system which

consists of a message source, a pulse shape filter, a modulator
on the Transmitter section and demodulator, a frame synchro-
nizer, a phase continuity and frequency deviation on the Recei-
ver section. The only limitation that we can see for the design is
able Software Defined Radio transceiver based on frequency shift keying using
/j.eij.2015.08.004
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Figure 13 BER vs Eb/N0 (dB) (2, 4, 8, 16, 32, 64, 128, 256 bits

FSK) Output Results for Turbo Coding.

10 N. Marriwala et al.
that we need a machine with high processing speed for transfer
and analysis of larger data, because we can add more coding
and encoding techniques to the same design for better security

of the transmitted data but if we will try to process it using the
existing computers it takes a lot of time for the analysis of the
data bits. Hence the computing capabilities of the processing

machines have to be enhanced.

7. Conclusion

With the help of LabVIEW an interactive Software Defined
Radio system has been built in a shorter time as compared
to other text-based programming languages. With the help of

this design we are able to see and prove that data errors can
be minimized using coding techniques, which in turn improves
the Signal to Noise Ratio (SNR). Also we can say by looking
at the results that Turbo Coding gives a much improved and

better minimization of the data errors than the Convolution
Coding. In the end, we can say that the signal can be recovered
with very less probability of error in Turbo Coding than in

Convolution Coding with the increase in the M (number of
levels) at the destination.
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FFT and FEC decoding. Microprocess Microsyst 2011;35

(8):708–15. http://dx.doi.org/10.1016/j.micpro.2011.08.007.

[18] Nicollet E, Demeure C. Software defined radio architecture for

cellular networks base stations: the SUNBEAM project. Ann

Telecommun J 2002:626–52.

[19] Wipro Technologies Innovative Solutions. Quality leadership

‘‘Software-Defined Radio, White Paper: A Technology Over-

view”, August 2002.

[20] Wohaishi M Al. Analysis of M state digitally modulated signals in

communication systems based on SDR concept. In: The 6th IEEE

international conference on intelligent data acquisition and

advanced computing systems: technology and applications, vol.

1(September); 2011. p. 171–5.

[21] Zhao J, Zhao M, Yang H, Chen J, Chen X, Wang J. High

performance LDPC decoder on CELL BE for WiMAX system.

In: 2011. p. 278–81. http://dx.doi.org/10.1109/CMC.2011.117.

[22] Zhu Z, Waqar AslamM, Nandi AK. Genetic algorithm optimized

distribution sampling test for M-QAM modulation classification.

Signal Process 2014;94:264–77. http://dx.doi.org/10.1016/j.sigpro.

2013.05.024.

 

 

able Software Defined Radio transceiver based on frequency shift keying using
/j.eij.2015.08.004

 

http://dx.doi.org/10.1109/25.69994
http://dx.doi.org/10.1109/25.69994
http://dx.doi.org/10.1007/s11265-014-0968-
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0015
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0015
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0015
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0015
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0020
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0020
http://dx.doi.org/10.1016/S0019-9958(74)90870-5
http://dx.doi.org/10.1016/S0019-9958(74)90870-5
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0030
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0030
http://dx.doi.org/10.1155/WCN.2005.275
http://dx.doi.org/10.1007/s11277-015-2281-x
http://www.i-o-t.ch/fileadmin/Dateien/PDF/NewsEvents/emw2008_paper_Knauth.pdf
http://www.i-o-t.ch/fileadmin/Dateien/PDF/NewsEvents/emw2008_paper_Knauth.pdf
http://dx.doi.org/10.11648/j.jeee.20140204.11
http://dx.doi.org/10.1007/s11277-013-1191-z
http://dx.doi.org/10.1007/s11277-013-1191-z
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0065
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0065
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0065
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0070
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0070
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0070
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0075
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0075
http://dx.doi.org/10.1109/62.210638
http://dx.doi.org/10.1109/62.210638
http://dx.doi.org/10.1016/j.micpro.2011.08.007
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0090
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0090
http://refhub.elsevier.com/S1110-8665(15)00046-8/h0090
http://dx.doi.org/10.1109/CMC.2011.117
http://dx.doi.org/10.1016/j.sigpro.2013.05.024
http://dx.doi.org/10.1016/j.sigpro.2013.05.024
http://dx.doi.org/10.1016/j.eij.2015.08.004

	Design of a hybrid reconfigurable Software Defined Radio transceiver based on frequency shift keying using multiple encoding schemes
	1 Introduction
	2 Related work
	3 Frequency shift keying transceiver
	3.1 Message source
	3.2 Source encoder
	3.3 Pulse shaped filter
	3.4 Channel encoder \(line\)
	3.5 FSK modulator
	3.6 Time varying channel
	3.7 FSK demodulator
	3.8 Acquire symbol timing &ndash; frame synchronization mode

	4 FSK transceiver parameters
	4.1 Transmitter filters

	5 Lab-VIEW simulation of FSK Transceiver
	5.1 Bit Error Rate \(BER\)

	6 Discussion and simulation
	7 Conclusion
	References


