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a b s t r a c t

We introduce a virtual machine (VM) written in a numerically fast language like Fortran or C for evalu-
ating very large expressions.We discuss the general concept of how to perform computations in terms of a
VMand present specifically a VM that is able to compute tree-level cross sections for any number of exter-
nal legs, given the corresponding byte-code from the optimalmatrix element generator,O’Mega. Further-
more, this approach allows to formulate the parallel computation of a single phase space point in a simple
and obvious way. We analyze hereby the scaling behavior with multiple threads as well as the benefits
and drawbacks that are introducedwith this method. Our implementation of a VM can run faster than the
corresponding native, compiled code for certain processes and compilers, especially for very high multi-
plicities, and has in general runtimes in the same order ofmagnitude. By avoiding the tedious compile and
link steps, which may fail for source code files of gigabyte sizes, new processes or complex higher order
corrections that are currently out of reach could be evaluated with a VM given enough computing power.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Computations in high energy physics tend to hit the limits of what is computationally feasible. Setting demanding grid computations
aside, one encounters in perturbative calculations expressions of cross sections of enormous size. Such computations for the Large Hadron
Collider (LHC), its upgrade the High Luminosity LHC (HL-LHC) or the planned International Linear Collider (ILC) are and keep getting more
challenging as cross sections are needed for a larger number of external particles and to increasing precision to match the experimental
efforts. When facing such problems, a compromise has to be made, in order to have a maintainable and extendible solution for the
developer and at the same time fast execution of the code. The latter cannot be overrated as the same code, typically representing a
certain process, has to be evaluated billions of times with different input data for the Monte Carlo integration and/or parameter scans.

A popular approach to solve this problem is a meta-programming ansatz, i.e. to determine the expression of a cross section itself in a
higher level programming language like Mathematica, OCaml, FORM or Python while the numerical evaluation is performed in high-
performance languages like Fortran or C. Hereby, the expression is vastly reduced with Computer Algebra Systems (CASs) and tailored
algorithms on the higher level to make the execution later on as fast as possible. Examples for this are the tree-level and one-loop matrix
element generatorsMadGraph [1], FormCalc [2,3] or O’Mega [4]. A problem, however, arises when the expression becomes so large that
it is impossible to compile and link, and hence to evaluate numerically, due to the sheer size. In Fortran, which is known for its excellent
numerical performance, we typically encounter this problem for source code of gigabyte sizes irrespective of the available memory. This
problem is also being addressed by the projectHepGame [5] that is based onForm [6,7] and aims to reduce the code size before compilation
by using new concepts from game theory like Monte Carlo tree searches. Furthermore, we should mention haggies [8], written in Java,
which also generates optimized programs for efficient numerical evaluation of mathematical expressions using multivariate Horner-
schemes and common subexpression elimination (CSE) to reduce the source code size.

At this point, we should mention that it is also possible to obtain matrix elements with direct numerical implementations of the
Berends–Giele [9] or Dyson–Schwinger recursion, as implemented e.g. in Helac [10] or ALPHA [11], that do not write out the large
intermediate representation of the amplitude. Such programs are usually able to compute arbitrary multiplicities. On the other hand
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they do not offer the same flexibility when it comes to adapting to beyond the SM (BSM) theories and only very recently the first program
of this type has been extended to allow to compute amplitudes in arbitrary BSM theories at all [12].

In this paper, we show how to completely circumvent the tedious compile step of the first method by using a virtual machine (VM).
To avoid confusions, we have to define what we mean with the term VM. A VM is in our context a compiled program, an interpreter, that
is able to read instructions, in the form of byte-code, from a disk and perform an arbitrary number of operations out of a finite instruction
set. We do not refer to any sort of operating system emulation that is commonly encountered under the term VM. Also the parallel virtual
machine (PVM) [13] is a completely different idea, combining a network of multiple computers to one VM. Far closer to our VM is the VM
used in the open-source project numexpr [14]. Their VM is written in C and specializes on the fast numerical expression evaluation of very
large arrays in Python by dividing array operands in chunks that easily fit in the cache of the CPU and avoiding the creation of temporary
arrays. Though the idea is related, in our application we have comparably small arrays per instruction and can hence not benefit from this
project. Note that a VM allows the complexity of the computation to be only set by the available hardware and not limited by software
design or intermediate steps. Furthermore, we will show that a VM is easy to implement and makes parallel evaluation obvious.

An important concern is of course whether the VM can still compete with compiled code in terms of speed. The instructions have to
be translated by the VM to actual machine code, which is a potential overhead. However, in the computation of matrix elements a typi-
cal instruction will correspond to a product of scalar, spinor or vector currents which involves O(10) arithmetical operations on complex
numbers. This suggests that the overheadmight be small, which has however to be proven by a concrete implementation.Whatwe explic-
itly give up are the optimizations that the compiler can perform in the context of multiple instructions like CSE and data and instruction
prefetching. Of these, at least the CSE can be done beforehand by constructing the byte-code with the lowest number of common subex-
pressions on the higher level. In fact, we will show that a VM can even be faster than compiled code for certain processes and compilers
since the formulation in terms of a VMhas also benefits, especially for largemultiplicities, as is discussed in detail below.More importantly,
the runtime is in general in the same order of magnitude than for the compiled code and as such the VM is very usable for general purpose
applications, where the clever use of Monte Carlo (MC) techniques can easily change the number of points needed for convergences by
orders of magnitude. We want to stress that the point of this paper is not to go into details of how to obtain the highest multiplicity cross
sections or to claim that the traditional method is faster than direct numerical implementations of the recursion relations but to focus on
the idea of using a VM for the evaluation of huge algebraic expressions and to see if this is a viable option.

We will apply the concept of a VM to the tree-level Optimizing Matrix Element Generator, O’Mega, to allow the computation of higher
multiplicities of colored particles given the same hardware. This does obviously not imply that the presented computational method is
restricted to tree-level computations. When trying to obtain higher order cross-sections the same problem can arise even for less external
particles, due to the inherent complexity of the computation. We expect that VM implementations in such environments are a possible
way to go beyond what is nowadays considered as still feasible.

Apart from cross sections, we believe that the problem of evaluating huge expressions numerically is a more general one, just as
algebraic tools like FORM [6,7] or integration tools like CUBA [15] are useful beyond their original field of study. Therefore, we will tackle
this problem at first in a rather general way in Section 2, before we turn to the implementation of the O’Mega virtual machine (OVM) in
Section 3. Then we benchmark this proposal in Section 4 and conclude with a summary of our findings and a small technical outlook in
Section 5.

2. General virtual machines

We will describe in this section the necessary components to perform a computation with a VM. The byte-code plays a central role
as it embodies all nontrivial information about how to compute the object of desire. One might imagine the VM as a machine, which has
a number of registers, and is given instructions how to act on them. This picture is quite similar to a CPU, except that we are doing this
on a higher level, i.e. our registers are arrays of e.g. wave functions or momenta and the instructions can encode scalar products or more
complicated expressions. In the Appendix, we also explicitly walk the reader through the implementation of a VM for a trivial example,
namely the evaluation of a series. The accompanying code iswell suited for adaption to other problems as it has no dependency on external
libraries and still includes all of the necessary infrastructure. It also shows that the concept described in this paper can be applied to the
evaluation of any expression and is not bound to matrix elements or perturbative quantum field theory.

2.1. Byte code

For the dynamic construction of the VM, it is necessary to include a header in the byte-code, which contains the number of objects
that have to be allocated. For convenience, it is also useful to have some version numbers that document which physical or mathematical
constants should be used together with this byte-code or comments to indicate how it was produced. Optionally, one can add after the
header tables of precomputed parameters, like information about the involved helicities, color or flavor. After this the body of instructions
follows, whereby each line corresponds to a certain operation that the VM should perform on its registers.

We encode the instructions in pure numbers inside a simple ASCII fixed-line length byte-code such that it is in principle human-
readable if the meanings of the numbers are known. Hereby we do not exploit the full alphabet of the encoding and could thus create a
smaller representation of the byte-code on disk. The use of numbers is quite convenient as they already represent addresses in arrays and
no further translation step is needed. Since the initialization is, however, very fast compared to the runtime, this could be optimized with
a binary format or by using the full alphabet to represent the objects, if the size of the byte-code becomes a problem. As the byte-code size
is about a factor of ten smaller compared to the native source code, as shown in Section 4.3, this is not yet a concern for our application.
The fact that our byte-code is portable and platform independent is beneficial when calculations are performed on clusters. On the other
hand, one must decide on a data type that is used in the program to represent the byte-code. Here, the use of short integers with less bits
can reduce memory requirements a bit, but the majority of memory is used for the complex numbers for wave functions and amplitudes
anyway.

The first number of an instruction is the operation code (opcode) that specifies which operation will be performed. For illustration,
consider the example
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which could be translated into momentum(5) = momentum(4) + momentum(3), a typical operation to compute the s-channel
momentum in a 2 → 2 scattering process. Depending on the context, set by the opcode, the following numbers have different meanings
but are typically addresses, i.e. indices of objects, or specify how exactly the function should act on the operands, by what numbers the
result should be multiplied, etc.

As we have chosen a fixed line length byte-code, we should set the line length, i.e. the number of operands, of the instructions such that
the most frequent operations fit within a line, when designing the byte-code of a VM. A very long line length would be a waste of memory
and efficiency since most numbers in the instruction line would be meaningless. Complex operations that would increase the line length
significantly above the average requirement, can be split in multiple lines by using sub-instructions, which are explained in Section 2.3.

2.2. Interpreter

The interpreter is a very simple program that reads the byte-code intomemory and then loops over the instruction blockwith adecode
function, which is basically a select/case statement depending on the opcode. The instructions can be instantly translated (compared
to the execution time of the relevant instructions) to physical machine code, since the different types of operations are already compiled
and only the memory locations of the objects have to be inserted. The compilation of the VM itself is very fast and has only to be done
once which is handy for the use of many byte-codes and necessary for extreme computations as motivated above.

Two things have to be adapted in the interpreter of the VM, when one wants to tackle a new type of problem, e.g. when going from
tree-level to one-loop. At first, one has to specify, where and with which types to expect header, comments, tables and instructions.1 Fur-
thermore, the decode function needs to be able to translate any instruction line into operations on registers, i.e. all opcodes have to be im-
plemented. The functions can be arbitrarily complex and are also allowed to call external libraries, though most likely better performance
is achieved by keeping things as simple as possible. Especially, with parallelization inmind, it is desirable to have roughly the same amount
of computation time for different instructions, to ensure an even workload and hereby minimizing idle times at synchronization points.

Given this environment, the byte-code file that is given to the VM completely dictates the specific problem, or process in the cross sec-
tion context, that should be computed. Input data or external parameters are given as arguments to the function call of the VM. The calling
application has of course to make sure that these parameters match the corresponding byte-code, which can be ensured with version
numbers.

2.3. Parallelization

The generation of events for collider physics usually parallelizes trivially. Since an integral is in most cases needed, the same code is
just evaluated multiple times with different input data. The situation can change, however, for an extreme computation that already uses
all caches. Depending on the size of the caches and the scheduler, evaluating such code with multiple data at the same time, can run even
slower than the single-threaded execution. Obviously, the computation is then so large, containing numerous objects, that it is worth
trying to parallelize the execution with a single set of input data with shared memory.

Developing truly parallel code for a complicated calculation, however, is a non-trivial task since race conditions have to be kept in
mind at all times. Furthermore, physicists have to delve into the frameworks like OpenMP or MPI to find the best parallelization method
for each piece, which is time consuming and likely to introduce bugs that are hard to find. The byte-code gives us the opportunity to
write the parallel computation in an obvious fashion that is both easy to generate and to implement in the VM. The idea is to split the
byte-code into recursion levels, whereby in each level all building blocks are non-nested and may be computed in parallel. Different levels
are separated by necessary synchronization points at which threads have to wait until intermediate results are communicated and which
can be represented in the byte-code with a zero opcode. It is clear that one should aim to keep the number of synchronization points to
the inherent minimum of the computation for optimal performance.

The fact that we demand commutativity within a level implies that every virtual register is changed by at most one thread. A potential
problem would hence be that the same address might be written to successively multiple times in a computation though still being fully
disconnected to other parts. To maintain the parallel nature with respect to the other parts and at the same time the sequential nature
of such a subcomputation, we can group instructions addressing the same register to a building block. A building block consists of one
instruction and zero or more sub-instructions. Sub-instructions are conveniently represented in the byte-code with negative opcodes that
are skipped over by the main loop. Normal instructions can imply that all following sub-instructions have to be executed sequentially
before the thread computes the next instruction. This is sketched in Fig. 1.

We show now the straightforward parallelization of the byte-code evaluation in Fortran95/2003 and OpenMP.2 The vm object
contains all information relevant for the evaluation of the byte-code. Assume that the byte-code has been loaded to memory as a block of
integers
vm%instructions (line_length, N_instructions)

and that the zero opcodes have been used to construct an array of indicesvm%levels that indicatewhere the level in the instructions block
changes. InOpenMP, we can prepare the parallelizationwith aparallel region, i.e. we form a teamof threads that can potentially execute
code in parallel (line 4/12). The do loop over the levels (line 5/11) is still serial as we want to synchronize the threads at the end of each
level. In each level,we canperform thedo loop over all instructions in this level (line 7/9) in parallelwith!$omp do schedule (static)
(line 6/10), whereby the static schedule just means that the do loop is distributed evenly among all threads. Note that the end of an
!$omp do loop implies a synchronization point for all threads. Finally, in the core we have the call to the decode function (line 8) that
expects an index in the instruction block to be executed:

1 One could, in principle, also determine this dynamically by using a certain markup, if one has the desire to do so.
2 N_XXXwill always mean total number of XXX. All OpenMP directives start with !$omp and are ignored as comments if compiled without support for OpenMP.
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Fig. 1. Sketch of the parallelization scheme for byte-code of two levels. Instructions and sub-instructions are in white and gray, respectively. Certain instructions imply that
all following sub-instructions have to be executed before the next instruction is addressed. This grouping of instructions allowsmultiple sequential writes while minimizing
synchronization points.

1 subroutine iterate_instructions (vm)
2 type(vm_t), intent(inout) :: vm
3 integer :: instruction, level
4 !$omp parallel
5 do level = 1, vm%N_levels - 1
6 !$omp do schedule (static)
7 do instruction = vm%levels (level) + 1, vm%levels (level + 1)
8 call decode (vm, instruction)
9 end do
10 !$omp end do
11 end do
12 !$omp end parallel
13 end subroutine iterate_instructions

In case the opcode of this instruction is negative, it is a sub-instruction that is already part of another building block and the decode
function does nothing. Otherwise, it has a large switch case statement of all the possible actions that may be performed.

As a side note, we want to mention that the sketched parallelization should be very well suited for an implementation on a graphics
processing unit (GPU). A common problem, encounteredwhen trying to do scientific computing on a GPU, is the finite kernel size problem.
As noted e.g. in Ref. [16], a large source code cannot be processed by the CUDA compiler, which is related to the fact that the numerous
cores on a GPU are designed to execute simple operations very fast. Dividing an amplitude into smaller pieces, which are computed one by
one, introducesmore communication overhead and is no ultimate solution since the compilation can still fail for complex amplitudes [16].
The VM on the other hand is a fixed small kernel, no matter how complex the specific computation is. A potential bottleneck might be
the availability of the instruction block to all threads, but this question has to be settled by an implementation and might have a quite
hardware dependent answer.

Finally,wenote that the phase space parallelizationmentioned in the beginning of this subsection can still be applied.When considering
heterogeneous cluster or grid environments, where each node is equipped with multi-core processors, a combination of distributed
memory parallelization for the combination of different phase space points and shared memory parallelization of a single point seems
to be a quite natural and extremely potent combination.

3. O’Mega virtual machine

The concept of a VM can be easily applied to evaluate tree-level matrix elements of arbitrary multiplicity. The Optimizing Matrix
Element Generator, O’Mega [4], avoids the redundant representation of amplitudes in the form of Feynman-diagrams by using 1POWs
recursively. Just like the first two numerical codes ALPHA [11] and HELAC [10], which focused on the SM, O’Mega tames herewith the
computational growth with the number of external particles from a factorial to an exponential one but is completely general with respect
to the used Lagrangian. Other programs with a very similar approach are Comix [17], based on the color-dressed Berends–Giele recursion
formulation, first used in NJETS [18], and Recola [19], which follows more closely the Dyson–Schwinger formulation incorporating an
important generalization [20] that allows to compute one-loop amplitudes in the SM. Further C++ libraries are NJet [21], which is also
based on Berends–Giele recursion and uses generalized unitarity to evaluate one-loop amplitudes, and Camorra [22] that also allows for
Majorana fermions in the recursive computation.

The model-independence is achieved in O’Mega with the meta-programming ansatz mentioned earlier whereby the symbolic
representation is determined in OCaml. This abstract expression is then translated to valid Fortran code that is automatically compiled
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Table 1
Byte-code cheat sheet. Each instruction line consists of eight numbers having a different meaning depending on the first one, the operation code (opcode). In general, the
objects on the left hand side (lhs) are constructed from the right hand side (rhs). X, Y and Z are placeholders for the different Lorentz types of wave functions like fermions,
scalars, etc. The value for width indicates which width scheme is used while its value and the one of the mass is inferred from the PDG code. outer_ind denotes spin and
momentum index of the wave function. sym is the symmetry factor computed from the number of identical particles involved.

code coupl coeff lhs rhs1 rhs2 rhs3 rhs4

ADD_MOMENTA 0 0 p_lhs p_rhs1 p_rhs2 p_rhs3 0
LOAD_X PDG 0 wf outer _ ind 0 0 amp
PROPAGATE_Y PDG width wf p 0 0 amp
FUSE_Z coupl coeff lhs rhs1 rhs2 rhs3 rhs4
CALC_BRAKET sign 0 amp sym 0 0 0

Fig. 2. The classification of levels by the number of summands in the momenta yields an unambiguous organization of the calculation whereby each level can be calculated
in parallel. We emphasize that this illustration is only one of thousands of possible partitions, whereby each one-particle off-shell wave function (1POW) is heavily reused.

and used inWhizard [23] for event generation. AsO’Megahas been designed in amodularway, it has been rather straightforward to add an
additional output module that produces byte-code instead of Fortran code. Some additional technical details about the implementation
can be found in Ref. [24] and more completely in the documented source code [25].

The number of distinct operations that have to be performed in the computation of a cross section is related to the Feynman rules and
therefore quite limited. As such, these operations are very good candidates for the translation to byte-code. In fact, this results in only about
80 different opcodes for the complete SM, which have been implemented in the OVM. In order to support completely general Lagrangians
with arbitrary tensor structures as in [26,27], the subroutines implementing the vertices can bemapped to opcodes dynamically. They can
be classified as described in Table 1 as ADD_MOMENTA, LOAD_X, PROPAGATE_Y, FUSE_Z and CALC_BRAKET, i.e. the addition of momenta,
the construction of external wave functions, the propagation of wave functions, the fusion of wave functions according to the Feynman
rules and the computation of the final braket, which yields the amplitude with appropriate prefactors, respectively. This limited set of
instructions as well as the objects in a calculation can each be identified unambiguously with an integer. To obtain this integer in O’Mega,
we apply a map from a given set of objects, e.g. wave functions, to the numbers from 1 to N , where N is the cardinality of the set, by
using an ordering that ensures that distinct objects are not assigned the same number. To discriminate between particle flavors, there is
of course already a well-known ordering that we can use, namely the Particle Data Group (PDG) integers [28].

For the parallel execution, we identify the different levels by the number of externalmomenta awave function is connected to or equiv-
alently the number of summands in the momentum of the wave function. This is depicted in Fig. 2. Furthermore, we have to group the
FUSE_Z instructions to building blocks together with either PROPAGATE_Y or CALC_BRAKET instructions. In this sense, all FUSE_Z instruc-
tions are sub-instructions that can belong to either of these two building blocks and the OVMwill either form a 1POWφ(p+q) = φ(p)φ(q)
or the amplitude A = φ(p)φ(q) depending on the main instruction.

The OVM is initialized with a call that specifies where to find the byte-code file, what versions of the OVM and physics model are
used, as well as input arrays for masses, widths and couplings, which hold the numeric values for the different types of particles and
interactions. In the header of the byte-code file the OVM finds the number of momenta, amplitudes (due to multiple color flows and flavor
combinations) and wave functions that should be allocated. This is followed by fixed tables for spin, flavor, color flows and color ghosts,
for details concerning the color flow formulation cf. Ref. [29], as well as whether a certain flavor–color combination is allowed. Finally, the
body of instructions completes the necessary information to compute the cross section.

4. Speed benchmarks

In this section, we benchmark the OVM against the compiled code in Section 4.1, analyze the scaling behavior with multiple cores,
which indicates to which degree we are computing in parallel and how much speed up we can expect for more cores, in Section 4.2 and
end with a remark on the byte-code generation performance in Section 4.3. All processes shown here, and various others, have been
validated against the compiled versions where possible for random massless momenta, generated by Rambo [30], with the help of an
automated test suite that is run when make check is started in the build folder of O’Mega. Further tests or benchmarks can be added by
appending a single line to the two steering files. We stress that every process is computed in its respective model (QED, QCD or SM) to full
tree-level order including all interferences and we have not restricted e.g. the Drell–Yan amplitudes to only one electroweak propagator.
We use the term SM for the full electroweak theory together with QCD and a nontrivial Yukawa matrix but without higher dimensional
couplings like H → gg. For simplicity of the test and benchmark suite, we use massless momenta but are in no way restricted to massless
theories and do not use simplifications that would render the massless code faster.

To investigate the compiler dependence of the results, we use two different compilers that are commonly used in scientific projects.
These are the GNU and Intel compilers, gfortran 4.7.1 and ifort 14.0.3, respectively. We do not claim that our results are

 

 

 



B. Chokoufe Nejad et al. / Computer Physics Communications 196 (2015) 58–69 63

Fig. 3. central processing unit (CPU) times measured with the Fortran intrinsic cpu_time and normalized for each process to the compiled source code using
gfortran-O3. Dashed (solid) lines represent the OVM (compiled source code). The error bars correspond to the standard deviation of three runs.

necessarily representative for allFortran compilers or even compiler versions, but they should still give a good impression of the expected
variance in performance. For multi-threading, we use the OpenMP library of the compilers as we are only interested in shared memory
parallelization as discussed in Section 2.3. The evaluation time measurements are performed on a computer with two Intel(R) Xeon(R)
E5-2440 @ 2.40 GHz CPUs, having 16 MiB L3 cache on each socket, and 2x 32 GiB RAM running under Scientific Linux 6.5. The machine
has been locked down exclusively for these runs to minimize context switches as far as possible.

4.1. Runtime performance

In Figs. 3–5, we show the measured CPU times for QCD, SM and QED processes with two different optimization levels for the compiled
code and the OVM using the GNU and Intel compiler. Since the evaluation times are highly reproducible, we use only three runs to obtain
mean and standard deviation. Inmost cases this results in vanishing error bars. We stress that we show here the relative times normalized
for each process to gfortran-O3, which is why the times are not growingwith the number of particles. Absolute times for fully color and
helicity summed amplitudes are increasing at least like 2n due to helicity and like (n − 1)! (for the gluon amplitude) due to the number
of color flows if no Monte Carlo methods are employed to include these sums in the integration. Lower optimization levels than -O2 are
not competitive in terms of run time. For gfortran, we observe for most processes the fastest performance with -O3 and for ifort
with -O2, which is an effect commonly encountered. The fastest performance is given by the source code compiled with ifort-O2 being
roughly 0.75 times the time needed by gfortran-O3.

The crucial point, however, is that ifort fails to compile the n = 7 gluon and the uū → e+e−6j Drell–Yan process while the OVM
immediately starts computing. The GNU compiler is usually able to compile one multiplicity higher compared to the Intel before breaking
down. This fits together with the better performance of the compilable processes and longer compile times as ifort seems to apply
more sophisticated optimization methods to the source code. Disabling the optimizations with -O0 still does not allow to compute the
aforementioned processes with both compilers.

Another interesting observation is that the OVM gets faster compared to the compiled code with increasing multiplicity of external
particles though this feature ismore pronounced in SM and QCD processes. This is no initialization effect sincewe allocate the arrays in the
beginning and onlymeasure the generation time ofmatrix elements forM different phase space points.M has been set beforehand for each
process with the known approximate scaling for higher multiplicities such that it takes a couple of minutes to complete the computation
to have a reliable measurement. The absolute costs for translating an instruction line to actual machine code, i.e. the virtualization costs,
are proportional to the number of instructions resulting hence in a constant factor in the relative, normalized time and cannot account for
this scaling behavior. The most important difference between the compiled source code and the VM is then the explicit double loop in the
VM, which goes over the instructions in a level and over all levels as shown in the code excerpt in Section 2.3, ignoring the OpenMP part
for now. The advantages and disadvantages of the double loop are basically the same as general loop unrolling considerations. The native
source code represents hereby the unrolled loop that does not have to check for the loop variables, can use latency hiding to start the next
instruction while waiting for memory, potentially use CSE3 and optimize the prefetching of the processor. The double loop of the VM on
the other hand has the advantage of having a higher probability to keep the decode function in the instruction cache. Note that the number
of instructions for the compiled code grows exponentially with increasing multiplicity, while the decode function has a constant number
of different instructions. This can potentially explain the scaling behavior with growing complexity compared to the compiled code. We
observe roughly the same effect for both compilers, but the OVM compiled with ifort is about a factor of two slower than the version
with gfortran, rendering it not really useful for production runs. We have experimented with slightly different formulations of the
algorithm with very little effect on the runtime. Keep in mind that compilers always have to employ heuristics to decide how to optimize

3 Although all common subexpressions have in our case already been avoided by O’Mega.
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Fig. 4. Same as Fig. 3 but for the SM Drell–Yan process uū → e+e−nj where j = u, ū, g .

Fig. 5. Same as Fig. 3 but for quantum electrodynamics (QED) photon production e+e−
→ nγ .

and we see here merely a more suitable strategy for gfortran compared to ifort given the OVM code. This is likely to be solvable with
a profile-guided optimization, which gives the compiler much more information what and how to optimize, but this is beyond the scope
of this work.

Finally, we want to understand the performance difference of the OVM between the QED and QCD amplitudes. To get an impression
of the computational complexity, consider that the e+e−

→ 9γ amplitude is represented by 125 KiB and the gg → 4g by 269 KiB
of byte-code consisting of 3373 and 6780 instructions, respectively. Here we can see that although the processes scale exponentially
with the number of particles, the offset is quite different and the color flows supply a further factor of (6 − 1)! = 120. This is why these
processes can be considered approximatively equally expensive despite the differentmultiplicity. The difference is, however, that the QED
amplitude consists, due to the very high number of external particles, of 8 levels while the QCD amplitude has only 4 levels. This results in
about 422 and 1695 instructions per level on average. We can therefore expect poorer parallel performance for the QED amplitude due to
higher synchronization costs compared to the work to be done per level, as will be investigated in the next subsection. Furthermore, this
is accompanied with higher memory needs: for the QED amplitude, we need 549 momenta, 256 spinors, 256 conjugated spinors and 9
vector wave functions. The QCD amplitude, on the other hand, requires only 31 momenta and 330 vector wave functions. Returning with
this information to the argument made in the last paragraph, the compiled code can gain more from data prefetching in the case of the
QED amplitude while the VM improves for more instructions on less data as it is the case for QCD. Overall, we can expect QED to be the
worst case scenario for the OVM as it has the lowest number of flavors and the simplest gauge structure one can think of.4 Considering
all results, we find that the runtimes are in the same order of magnitude and that a VM can be competitive in terms of speed with the
compiled version, especially for extreme computations with a high amount of operations per memory.

4 Excluding toy models like φ4 theory.
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Fig. 6. Speedup and efficiency to compute a fixed number of phase space points for the parallel evaluation of multiple phase space points (PS) and the parallel evaluation
of the amplitude itself (A) are shown as dashed and dotted lines. The error bars correspond to the standard deviation of three runs. The solid lines represent Amdahl’s law
for a fixed value of the parallelizable part p.

4.2. Parallelization

Amdahl’s idealized law [31] simply divides an algorithm into parallelizable parts p and strictly serial parts 1−p. Therefore, the possible
speedup s for a computation with n processors is

s(n) ≡
t(1)
t(n)

=
1

(1 − p) +
p
n

. (1)

Communication costs between processors O (n) have been neglected hereby in the denominator of Eq. (1). This means that we have
limn→∞ s(n) = 1/(1 − p) in the idealized case and limn→∞ s(n) = 0 including communication costs. In reality, we are interested in high
speedups for finite n and also have to care about efficient cache usage. The picture becomes more complicated in modern Non-Uniform
Memory Access (NUMA) environments with multiple CPUs on the same board where each socket has its ownmemory that the others can
access as distributed sharedmemory. For our machine, the two sockets have even and odd numbers for the cores on them. To improve the
thread scheduling, we have pinned the OpenMP threads to the cores via the environment variable

GOMP_CPU_AFFINITY=’0 2 4 6 8 10 1 3 5 7 9 11’

corresponding to using the first socket for the threads 1–6 and then the second for 7–12. Hyper-threading is disabled as it is not expected
to speedup such a calculation. Sadly, we could not achieve any s > 1 for the parallelization of the OVM with the Intel compiler neither
by using multiple phase space points at once nor by computing the amplitude in parallel. The reason for this is quite unclear, as the exact
same code shows the expected speedup with the GNU compiler, and seems to be correlated with the bad single-core performance of the
OVM compiled with ifort.

In Figs. 6–8, we show the speedup with multiple cores N by either using the parallelization procedure, discussed in Section 2.3, to
compute one amplitude in parallel or by computing multiple amplitudes for multiple phase space points in parallel again for processes
with different multiplicities n in QCD, SM and QED. In a real application the phase space parallelization cannot be as efficient as the naive
version here, where we can just parallelize the do loop over Npoints, since usually Vegas [32] grids are used to approximate the matrix-
element and these have to be adjusted iteratively. These book-keeping tasks reduce the parallel parts and the phase-space parallelization
shown here (PS) can therefore be regarded as upper bounds. For the parallelization, we chose to only compare the runtime of a single
helicity combination to reduce the overall time needed to perform the tests since numerical off-shell recursion algorithms have the same
runtime for every helicity, opposed to the closed analytical formulas [33]. To measure the speedup we have used wall clock times as given
by the OpenMP function omp_get_wtime. In Fig. 6, we can see that the n = 7 and n = 8 gluon amplitudes parallelize very well with both
methods with parallelizable parts above 95 %. In the shared memory parallel evaluation of the amplitude (A), the impact of the hardware
architecture is quite obvious. For N = 7, i.e. when the second socket of the NUMA environment is activated, we see a drop in efficiency,
which can be expected since there will be synchronization costs at the end of each level and costs to maintain cache coherency after each
instruction inside the amplitude. This relative drop is the stronger the higher the communication costs are compared to the calculation
done in the individual threads and can thus be seenmost cleanly for the n = 6 gluon and the n = 4 Drell–Yan aswell as the QED processes.
For more complex amplitudes this effect becomes likewise less important. Compare also the curvature of the lines of the measured points
below N = 7 to Amdahl’s law. Though it might look as if the n = 4 curve of the Drell–Yan process slowly starts to saturate in speedup
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Fig. 7. Same as Fig. 3 but for the standard model (SM) Drell–Yan process uū → e+e−nj where j = u, ū, g .

Fig. 8. Same as Fig. 3 but for QED photon production e+e−
→ nγ .

for N = 6, it is exactly what one would expect for p ≈ 90%. On the other hand, at N = 7 we can observe an immediate saturation that
does not fit to the parallelizable part, indicating that the performance is now bound by the memory transfer rates between both sockets.
To understand this, note that Sandy Bridge with its Intel Quick Path Interconnect (QPI) is actually a cache coherent NUMA architecture,
meaning that the cache controllers are required to maintain a consistent memory image when more than one local cache stores the same
memory location. Such cache coherency effects have been studied e.g. for the related Nehalem microarchitecture in Ref. [34]. They have
shown that the bandwidth to other cores strongly depends on the coherency state of the accessed data. If the latest copy is in the local
caches of the remote core, which is more likely to occur for smaller processes, read bandwidths decrease significantly. As expected by the
discussion in Section 4.1, the QED amplitudes do only parallelize well if phase space parallelization is used.

The very good performance of the phase space parallelization can be explained by the available cache. The size of the L3 cache per core,
2.7 MiB, is more than enough to host N = 12 independent versions of the OVM even for the n = 8 gluon amplitude, where momenta,
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Table 2
Size of the byte-code (BC) compared to the Fortran source code together with the
corresponding compile timewith gfortran. The compile timesweremeasured on
a computer with an i7–2720QM CPU. The 2g → 6g process fails to compile.

process BC size Fortran size tcompile

gg → gggggg 428 MiB 4.0 GiB –
gg → ggggg 9.4 MiB 85 MiB 483(18) s
gg → qq̄q′q̄′q′′q̄′′g 3.2 MiB 27 MiB 166(15) s
e+e−

→ 5 (e+e−) 0.7 MiB 1.9 MiB 32.46(0.13) s

amplitudes and wave functions account to 464.77 KiB. This will break down for this architecture, however, for one multiplicity higher if
we extrapolate the given scaling for the number of objects involved in the calculation. The current version of O’Megawill produce a code
for all color flows of a given process simultaneously. Therefore we have not included the n = 9 gluon amplitude in the tests, because the
(9−1)! = 40 320 different color flow amplitudes do not fit intomemory. For real world applications the summation of all color amplitudes
will have to be replaced by a sampling of color space.

Either way, it is important to also have the possibility to compute one amplitude in parallel since architectures change and e.g. the Intel
Xeon Phi has only 512 KiB cache per core, rendering already the n = 8 case close to inappropriate for phase space parallelization.

4.3. Bytecode generation

It is intuitively clear that integer byte-code is smaller than syntactically correct Fortran source code. Furthermore, we use long strings
in the source code for debugging purposes, i.e. to directly see to which color flow and momentum combination a 1POW belongs. To be
specific, we note that the byte-code for the OVM is about one order of magnitude smaller. For convenience, some values together with
their old compile times are shown in Table 2. The byte-code size has been furthermore almost halved for very colorful amplitudes in a
later version, by using the symmetry of the color factor table, but this could have been achieved with the Fortran output as well and is
not shown here. The smaller output format leads to less required RAM and time to produce it. Especially for many color flows, where the
generation time of O’Mega is dominated by the output procedure, we observe e.g. for gg → 6g a reduction in memory from 2.17 GiB to
1.34 GiB and in generation time from 11 min 52 s to 3 min 35 s, while staying roughly the same for small processes.

5. Summary and outlook

A VM circumvents the compile and link problems that are associated with huge source code as it emerges from very complex algebraic
expressions. This work is a, to our knowledge first, proof of principle that VMs are indeed a viable option that is maintaining relatively high
performance in the numerical evaluation of these expressions and allows to approach the hardware limits. In practice, a VM saves hours
of compile time that would result often enough in internal compiler errors instead of working code. The concept has been successively
applied to construct the OVM that is now an alternative method to compute tree-level matrix elements in the publicly available package
O’Mega and can be chosen in Whizard with a simple option since version 2.2.3. Any computation can in principle be performed with a
VM though the benefits are clearly in the regime of extreme computations that run into compiler limits with the conventional method.
Here, we have seen that VMs can even perform better than compiled code. Also the parallelization of the amplitude is for very complex
processes close to the optimum.

It would be an interesting experiment to remove the virtualization overhead by using dedicated hardware that has the same instruction
set as the OVM to computematrix elements. The number of instructions corresponding to different wave function fusions and propagators
is finite for renormalizable theories (including effective theories up to a fixed mass dimension) and implemented similarly in the various
matrix element generators. If the authors can agree on a common set of instructions and conventions this machine could therefore be used
by all those programs. The LHC collaborations might actually have a need for this, especially in the light of the HL-LHC, where the number
of events for simulation and reconstruction increases by an order of magnitude and new computing clusters will most likely be needed.
Field programmable gate arrays (FPGAs) can serve as such a machine as they have comparable if not superior floating-point performance
with respect to current microprocessors and the OVM and its instruction set is the first step to test the feasibility and potential gains of
computing matrix elements in this environment. The hardware integration might be quite easy as Intel has recently revealed [35] that
Xeon processors can in future be paired with a FPGA in a single socket.

While GPUs and FPGAs are rather unconventional devices that will need large code modifications, similar speedups could be achieved
with theMany Integrated Cores (MIC) platform. Various existing scientific applications inFortran andC++have been analyzed in Ref. [36]
with an early development environment release of the upcoming Intel Xeon Phi. They have shown that it is possible to compile libraries that
utilize the Autotools build system for the MIC environment just by setting the proper ./configure options, at least for static builds.
This is a clear advantage as no rewriting is necessary while the speedup can still be in the order of 20 for about 100 threads. Obviously,
this strongly depends on having a highly parallel code. We would expect for the OVM speedups in the range of 17–50 for processes that
exhibit 95%–99% parallel fractions by extrapolating the data of Section 4 and assuming no severe memory problems. In fact, the Xeon
Phi possesses no L3 cache at all but a set of coherent L2 caches with less overall cache per core. Thus, we might see a break down in the
efficiency of the phase space parallelization, when the objects of one matrix element exceed the L2 cache, while on the other hand high
speedups in the parallelization of the amplitude can be maintained.
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Appendix. A trivial example

In this appendix, we apply the concept of a VM as explained in Section 2 to a trivial problem to show the general applicability of the
method. Assume that wewant to numerically compute the result of some series. Let us use fixed-length instruction lines consisting of five
integers each. They consist of the operation code (opcode), which specifies what to do, a left-hand side (LHS) – the address of the register
that will be changed – and a couple of right-hand side (RHS) objects upon which the instruction depends:

OPCODE LHS RHS1 RHS2 RHS3.

This structure fits most calculations though the number of RHS objects will vary as explained in Section 2.1.
As a toy model for our implementation, consider the identity, for x ∈ R,

(−1)x = eiπ x
+ eln 2

+
1

1 −
1
2

−
1

1 −
1
2

2
≡ C1(x) + eR1 + R2 − R3 , (A.1)

which can be written in terms of the known series C1 and Ri as

C1(x) =

∞
n=0

1
n!

(iπ x)n R1 =

∞
n=1

(−1)n+1 1
n

R2 =

∞
n=0


1
2

n

R3 =

∞
n=1

n

1
2

n−1

. (A.2)

We can create byte-code by truncating the series, whereby the above equations follow for an infinite number of operations, and execute
it in the VM. Though these series are not particularly interesting by themselves, they allow us to test the whole VM infrastructure in a
self-contained way, i.e. without dependencies on external libraries.5

The first step in writing a VM is to identify the set of operations that are needed to perform the computation. We could just use the
explicit iteration steps of the series:

CN
1 (x) = CN−1

1 +
1
N!

(iπ x)N RN
1 = RN−1

1 + (−1)N+1 1
N

RN
2 = RN−1

2 +


1
2

N

RN
3 = RN−1

3 + N

1
2

N−1

. (A.3)

But we can reduce the number of multiplications, if we perform the exact integer multiplications on the higher level. Then there are only
two types of iteration steps left:

CN
1 (x) = CN−1

1 +
1
N!

(iπ x)N RN
LHS = RN−1

LHS +
RHS1
RHS2

. (A.4)

Suppose further that we do not want to compute the factorials in the VM, we can also precompute them and store them in the table. To
also compute the sum of the results as in Eq. (A.1), we end up with three fundamental operations, identified by the opcodes 1–3,

1 real(LHS) += RHS1 / RHS2
2 cmplx(LHS) += (const(RHS1) * input(RHS1))R̂HS2 / table(RHS3)
3 output(LHS) = cmplx(1) + exp(real(RHS1)) + real(RHS2) - real (RHS3).

Hereby, we have also assumed that the calling application will supply the constant block

const(1) = iπ (A.5)

and as input data

input(1) = x. (A.6)

With this setup the byte-code has a quite small header. If we set e.g. N = 4:

N_factorials N_input_real N_tmp_real N_tmp_cmplx N_output_cmplx
4 1 3 1 1

Using this information, the arrays can be allocated accordingly. The factorial table can be given as a simple line-by-line array

1
1
2
6...

5 Except OpenMP, which is needed for parallelization, but the single-threaded execution also works without the library.
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As the four sums do not depend on each other but highly on themselves, in each level we could compute up to four instructions in parallel
corresponding to the iteration step. Each of these levels would be separated by instructions lines with zero opcode. Note finally that the
byte-code for the first elements of C1 = 1 + iπ −

1
2π

2
+ · · · now reads

2 1 1 0 1
2 1 1 1 2
2 1 1 2 3
2 1 1 3 4...

Full example byte-codes are part of the repository, which is freely accessible at https://github.com/bijancn/basic-vm, as well as a Python
script to dynamically construct such byte-code for any N that it is capable to compute factorials for. Building and running the code is
explained in the README.

The corresponding template code can be used to create a VM for any purpose. It is written in a subset ofFortran2003 that is supported
by most modern compilers for mere convenience of the author and due to the environment in which the O’Mega virtual machine (OVM)
is used. A translation to C or Fortran95 is straightforward as the code structure is very simple. An earlier version in Fortran95 had the
same performance characteristics in the tested cases as the one shown here, indicating that possible performance penalties for the use of
some higher-level constructs on the top-level are negligible.
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