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a b s t r a c t

Conventional Compressive Sampling (CS)-based data aggregation methods require a large

number of sensor nodes for each CS measurement leading to an inefficient energy consump-

tion in Wireless Sensor Networks (WSNs). To solve this problem, we propose a new scheme in

the network layer, called “Weighted Compressive Data Aggregation (WCDA)”, which benefits

from the advantage of the sparse random measurement matrix to reduce the energy consump-

tion. The novelty of the WCDA algorithm lies in the power control ability in sensor nodes to

form energy efficient routing trees with focus on the load-balancing issue. In the second part,

we present another new data aggregation method namely “Cluster-based Weighted Compres-

sive Data Aggregation (CWCDA)” to make a significant reduction in the energy consumption in

our WSN model. The main idea behind this algorithm is to apply the WCDA algorithm to each

cluster in order to reduce significantly the number of involved sensor nodes during each CS

measurement. In this case, candidate nodes related to each collector node are selected among

the nodes inside one cluster. This yields in the formation of collection trees with a smaller

structure than that of the WCDA algorithm. The effectiveness of these new algorithms is eval-

uated from the energy consumption, load balancing and lifetime perspectives of the network.

A comprehensive numerical evaluation is performed which shows that the performance of

the proposed WCDA and CWCDA algorithms is significantly better than some existing data

aggregation methods such as plain-CS, hybrid-CS and the Minimum Spanning Tree Projection

(MSTP) schemes.

© 2015 Published by Elsevier B.V.

1. Introduction1

1.1. Background2

Wireless Sensor Networks (WSNs) are commonly recog-Q2
3

nized as a new technology consisting of a large number4

of independent wireless sensor nodes with a spatial distri-5

bution to support a wide variety of applications, including6
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natural environment monitoring, medical services, surveil- 7

lance and ocean pollution detection [1,2]. In a large-scale 8

proactive WSN, each sensor node performs periodically some 9

operations such as computing, sensing and self-organizing 10

to transmit specific data to the sink node through multi- 11

ple paths [3]. In such a configuration, sensors are typically 12

powered by limited lifetime batteries, which are hard to be 13

replaced or recharged. Other resource constraints in WSNs 14

are short communication range, low bandwidth, limited pro- 15

cessing/storage and in particular, the energy consumption. 16

Energy consumption is mainly addressed in the following 17

three stages: sensing, data processing, and data transmis- 18

sion. Generally, sensing and data processing have less en- 19

ergy consumptions than that of data transmission. Indeed, 20
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any reduction in the transmission cost can prolong the WSN’s21

lifetime. Thus, minimizing the total energy consumption is22

of high importance in designing WSNs [4]. Numerous re-23

search works have addressed the energy efficiency challenge24

in WSNs from different perspectives, including energy con-25

serving sleep scheduling [5], topology control [6], mobile26

data collectors [7], and data aggregation [8]. Central to this27

study is to deploy proper data aggregation and routing meth-28

ods in a WSN to enhance both the energy consumption and29

the network’s lifetime with taking the effect of load balanc-30

ing into account.31

With focus on the spatial correlation properties of sensed32

data in real WSNs, the number of data transmissions can33

be reduced by compression techniques to achieve a rela-34

tively high accuracy of recovery at the sink node. The spa-35

tial correlation of sensed data leads to an inherent sparsity36

of data in a proper basis such as Discrete Cosine Transform37

(DCT) domain or wavelet domain [9]. This means that a few38

number of data samples are nonzero or equivalently, a basis39

can be found in which the sensed data is sparse. To address40

the sparsity of such signals, Compressive Sensing (CS) the-41

ory [10,11] is employed as a newly emerged signal processing42

technique for efficiently compressing signals and accurately43

reconstructing of sparse and compressible signals. Unlike the44

Nyquist criterion, in CS theory, signals can be recovered using45

much fewer measurements than their original dimensions.46

More precisely, considering the inherent sparsity features47

and the spatial correlation of input signals in a correlated48

WSN, a CS-based data aggregation method forms a random49

measurement matrix via non-adaptive linear measurements50

to compress the corresponded data, and then reconstructs51

these signals through an optimization process [12].52

1.2. Related work53

In recent years, the attention of researchers has been de-54

voted to utilizing CS-based data aggregation methods to in-55

crease the network’s lifetime by reducing the amount of data56

transmissions and balancing the traffic load throughout the57

whole WSN (e.g. [13–17]). The first study on the decentral-58

ized CS-based data aggregation method in WSNs was framed59

in [13]. The technique in [13] simultaneously computes ran-60

dom measurements of the sensed data and broadcasts them61
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depends on the network’s structure, while the compression 80

matrix design is related to the sensed data. However, the 81

scheme in [16] cannot automatically match the features of 82

complex spatio-temporal correlation data. Reference [17] in- 83

troduces a hybrid-CS data aggregation algorithm to achieve 84

a high throughput in a WSN. The authors in [17] claim that 85

since the measurement matrix is not sparse enough, apply- 86

ing a plain-CS may not yield a significant improvement in the 87

throughput, while, it can result in a high throughput in the 88

hybrid-CS method. 89

So far, the interaction between routing and CS-based 90

data aggregation has been a barrier toward the progress 91

in the field of energy consumption in WSNs [18,19]. These 92

techniques utilize both routing and CS-based data aggrega- 93

tion methods to reduce the data traffic. In [18], the authors 94

present a CS-based scheme which considers both routing and 95

compression methods to minimize the energy consumption 96

required for data collection in a WSN. However, this study 97

does not consider the minimization of the energy consump- 98

tion for transmission of each CS measurement. Most recent 99

data aggregation methods which rely on dense random mea- 100

surements have not highlighted this fact that a large num- 101

ber of elements in the random measurement matrix may 102

be zero. Reference [20] addresses this issue and proposes a 103

distributed sparse random measurement by which the sig- 104

nificant information of a compressible signal can be recon- 105

structed. The authors in [20] claim that each CS measure- 106

ment only needs a combination of some sensed data instead 107

of using all of them. In addition, it is shown in [20] that us- 108

ing the sparse random measurement considerably reduces 109

the energy consumption of WSNs. However, the transmission 110

cost in the gathering process of measured samples in multi- 111

hop WSNs is not considered in this study. Routing and CS 112

are also jointly addressed in [21] in which the routing path 113

is iteratively built through a greedy choice to minimize the 114

coherence measurements error. Since, the proposed routing 115

paths are not the shortest ones, additional transmission cost 116

would be imposed on the network. It is shown in [22] that the 117

data compression capability of sensor nodes and the routing 118

strategy affect the transmission cost of the network. Since 119

both schemes in [21,22] are based on sparse random mea- 120

surements, they improve the energy consumption of WSNs. 121

However, these methods suffer from the fact that the forma- 122
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throughout the network using a simple gossiping algorithm

This line of work was further expanded in [14] by incorporat

ing an efficient Compressive Data Aggregation (CDA) method

to improve both transmissions cost and the network’s life

time in large-scale WSNs. The authors in [14] analyze th

network’s capacity using the CDA method and prove tha

the capacity is proportional to the sparsity level of sensed

data. In this method, the total data transmissions are de
creased only when the number of required measured sam-

ples is small enough. Nevertheless, it is shown numerically

in [14] that an increase in the number of measured samples

leads to an increment in the number of network’s transmis-

sions when compared to the non-CS method. Reference [15]

introduces an adaptive data aggregation method which ap-

plies CS on the local spatial correlation among data of neigh-

boring sensor nodes. In [16], the authors propose a CS-based

data aggregation scheme to reconstruct data at the sink node.

The results show that the proposed data aggregation method

r 131

e 132

133

g 134

- 135

- 136
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tion of routing trees in collecting of each CS measurement i

not optimal, and this degrades the energy efficiency of WSNs

Reference [23] addresses this issue and proposes the Mini

mum Transmission data aggregation Tree (MTT) which form

a spanning tree based on the CS measurement matrix. Ev

ery node shares its sensed data for CS measurements onl

in a couple of times using the sparse random measuremen

matrix. The proposed algorithm in [23] forms the data ag

gregation tree based on the shortest path and the numbe

of times that the nodes transmit their own data. Referenc

[24] proposes a tree-based energy efficient routing method

to reduce the energy consumption of the WSN by considerin

the sensor transmission range and the probability of occur

rence of non-zero elements in the measurement matrix. Fol
lowing the same model as in [20], the authors in [25] intro- 137

duce the Minimum Spanning Tree Projection (MSTP) which 138

incorporates a compressive data aggregation method and 139

the sparse random measurement to reduce the number of 140
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s

ansmissions and mitigates the energy consumption of

hole network. Each projection node collects data of inter-

st nodes and sends them to the sink node through a short-

st path. The MSTP uses the Breath-First-Search (BFS) algo-

thm to form a spanning tree with the minimum number of

ansmission packets. The authors in [25] consider the “same

ansmission cost” for all sensor nodes and model the “un-

eighted network graph”. In fact, regardless of energies re-

uired to send data in different distances and without con-

dering the power control ability of sensor nodes, reference

5] assumes that all the nodes have the “same communica-

on ranges”.

Most of the works on the CS-based data aggregation con-

der tree-type routing methods in which a large number of

nsor nodes take part in each CS measurement. It is shown

[26] that clustering is an efficient mechanism that sur-

asses the tree-based routing methods in terms of the traf-

c load balancing and improves both energy consumption

nd the network’s lifetime. Reviewing the studies on the

S application in WSNs and to the best of our knowledge,

ere exists a few research works that investigate the CS

eory for cluster-based WSNs [27,28]. In [27], the authors

resent centralized and distributed clustering algorithms for

SNs, in which cluster heads transmit data to the sink node

rough a backbone tree using a hybrid CS mechanism. How-

ver, the work in [27] has ignored the fact that the sparse

ndom measurement can be utilized in each cluster to de-

ease the number of transmission packets. Reference [28]

ddresses this issue and presents a cluster-based data ag-

regation method with sparse random measurements in a

ar topology-based WSN. However, the star topology used

each cluster leads to an increase in the intra-cluster en-

rgy consumption.

3. Contributions

Taking the above challenges into account, the key contri-

utions of this work are summarized as follows:

• Part I: Weighted Compressive Data Aggregation (WCDA)

algorithm: The main objective in the first part of this

paper is to minimize the energy consumption of the

network by utilizing the CDA and the sparse random

measurement matrix (normally contains many zero

elements) when compared with Non-CS and some

classical CS-based data aggregation methods. To ad-

dress this problem, a new algorithm, namely Weighted

Compressive Data aggregation (WCDA), is proposed

that aggregates the data from each node and effi-

ciently sends them to the sink node. The novelty of our

proposed WCDA algorithm lies in the power control

ability in sensor nodes and weighted network graph

which distinguish our work from the scheme in [25].

In the proposed WCDA method, each transmit node

adjusts its power level based on the Euclidean distance

to the destination node to prevent more energy loss

in the network. It is numerically shown that employ-

ing the WCDA algorithm can significantly reduce the

network’s energy consumption for the data transmis-

sion between sensor nodes by forming efficient rout-

ing trees and employing the load-balancing.
lease cite this article as: S. Abbasi-Daresari, J. Abouei, Toward cluste

ensor networks, Ad Hoc Networks (2015), http://dx.doi.org/10.1016
• Part II: Cluster-based Weighted Compressive Data Ag-

gregation (CWCDA): In the second part we modify the

WCDA algorithm by jointly utilizing the CS-based data

aggregation and the clustering to further reduce the

energy consumption in the whole WSN. Note that the

classical CS-based data aggregation methods such as

plain-CS, hybrid-CS and the MSTP [25] are based on

the tree routing which suffer from this fact that a

large number of sensor nodes must be involved in

each CS measurement. However, in the Cluster-based

Weighted Compressive Data Aggregation (CWCDA)

scheme, we apply the WCDA algorithm to each clus-

ter in order to reduce significantly the number of in-

volved sensor nodes during each CS measurement. In

this case, candidate nodes related to each collector

node are selected among the nodes inside one clus-

ter. This yields in the formation of collection trees with

a smaller structure than that of the WCDA algorithm.

The effectiveness of these new algorithms is evaluated

from the energy consumption, load balancing and life-

time perspectives of the network. A comprehensive

numerical evaluation is performed which shows that

the performance of the proposed WCDA and CWCDA

algorithms is significantly better than some existing

data aggregation methods such as plain-CS, hybrid-CS

and the Minimum Spanning Tree Projection (MSTP)

schemes. Because the cluster-based data aggregation

method generally has better traffic load balancing than

the tree data aggregation method.

4. Paper organization

The rest of this paper is organized as follows. In Section 2,

e network model is described and the main assumptions

nd performance metrics required for our algorithms are in-

oduced. Section 3 introduces the basic concepts of CS the-

ry and gives an overview of the CS-based data aggregation

ethod in order to present the detail of the WCDA algorithm.

ection 4 deals with introducing the proposed CWCDA al-

orithm. Section 5 reports our experiment and simulation

sults. Finally, in Section 6, an overview of the results and

me conclusion remarks are presented.

Notations: Throughout this paper, we use normal let-

rs for scalars. Matrices and vectors are set in bold cap-

al and lower-case letters, respectively. [.]T indicates the

anspose operator. In the vector domain, the concept of

p − norm is defined as ‖x‖p = (
∑n

i=1 |xi|p)1/p. R
n means the

−dimensional real coordinate space. Finally, the ceiling no-

tion �x� is the smallest integer not less than x.

. Model description and assumptions

.1. Model description

In this work, we consider a multi-hop WSN consisting of

stationary and location-aware sensor nodes, denoted by

1, s2, … , sn}, which are distributed randomly throughout

n A × A square area. The network contains the sink node de-

oted by s0 in a preassigned location that collects data from

ll sensor nodes. The system is modeled by a weighted bidi-

ctional graph G(V, E) in which vertices set V represents the
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sink node and all the sensor nodes, and edge set E represent

bidirectional wireless links between nodes. For each lin

i, j ∈ V, if a link exists, those nodes are in the communica

tion range of each other, or equivalently, a direct communica

tion between them is possible. We denote w(i, j) as the trans

mission cost defined by the Euclidean distance between tw

nodes i, j. For each single-hop link i, j ∈ V with the Euclidean

distance dij, the sensor node si transmits one data packet x

of size L bits toward node sj, where L is a fixed paramete

for all the nodes. Assuming that all si, i = 1, . . . , n, have dat

packets for transmission at the beginning of each round, th

main task of a data aggregation method is to aggregate ad

equate information for recovering the n-dimensional signa

vector x = [x1, . . . , xn]T at the sink node to minimize the en

ergy consumption of the network. In this paper, we assum

that all interferences from different sources are controlled b

the orthogonal signaling (e.g., Walsh–Hadamard codes [29]

in the network. In addition, we suppose that no packet is los

during each transmission.

2.2. Performance metrics

To analyze and evaluate the performance of the underly

ing network, we use various performance metrics such as th

energy consumption of each link, the load balancing, the Firs

Node Dies (FND), and the tree’s cost defined as follows.

• Energy consumption: We follow the same energ

consumption model as in [30] for the link i, j ∈ V de

fined as

ETi
(L, d) = Eelec × L + εamp × L × d2

i j, (1

ERj
(L) = Eelec × L, (2

where ETi
(L, d) and ER j

(L) for all i, j ∈ V represent th

energy consumption for sending and receiving on

packet xi of size L bits, for node i as the transmit

ter and node j as the receiver, respectively, Eelec rep

resents the consumed energy in receiving/sending o

one-bit message via electrical circuits, and εamp de

notes the energy consumption of the transmission am

plifier. It is assumed that each sensor node can ad

just its power level based on the distance from it

corresponding destination. For such an energy mode

we ignore the energy consumption of baseband sig

nal processing blocks such as source coding and pulse

shaping, as these energy consumptions are quite smal

compared to the energy consumption of the RF cir

cuitry [31].

• Load balancing: Let �i represents the number of pack

ets transmitted by node si in each round. To quantif

the performance of the load balancing of the proposed

algorithms, we use the load variance metric denoted

by S2
n for a given �i of node si as follows:

S2
n = 1

n

n∑
i=1

(�i − �)2, (3

where � denotes the average of the number of packet

transmitted by node si in each round, obtained by

� = 1
n∑

�i. (4

n

i=1

Please cite this article as: S. Abbasi-Daresari, J. Abouei, Toward clus

sensor networks, Ad Hoc Networks (2015), http://dx.doi.org/10.10
Clearly, lower S2
n leads to more traffic load balancing.

• Network’s lifetime: The lifetime means the time du

ration that a network is operational and can perform

its assigned tasks. In this work, we consider the Firs

Node Dies (FND) as a performance metric to calculat

the lifetime of the network which is defined as th

number of rounds in which all nodes transmit thei

data to the sink node until the first node runs out o

its energy. For such a definition, the main goal is t

minimize the load variance of sensor nodes in orde

to maximize the network’s lifetime.

• Tree’s cost: The tree’s cost is defined as the sum of th

links’ lengths of the tree. For instance, if a tree include

L links and dj denotes the length of jth link, then th

tree’s cost will be obtained as
∑L

j=1 d j .

3. Weighted Compressive Data Aggregation (WCDA)

algorithm

In this section, we propose a new data aggregation

method, namely Weighted Compressive Data Aggregation

(WCDA), for the network model introduced in Section 2. Th

main idea behind our proposed algorithm is to use both C

theory and sparse random measurements in the underlyin

weighted WSN graph in order to minimize the energy con

sumption and control the traffic load of the network. Befor

proceeding to the main part of this section, some primar

concepts of CS theory and the sparse random measurement

are briefly explained. We also discuss about the application

of CS theory in WSNs and describe in short some existing CS

based data aggregation methods for the upcoming fair com

parison.

3.1. Compressive sampling theory

Compressive sampling theory is a promising methodol

ogy in digital signal processing for reconstructing sparse sig

nals with very few measurements under a certain basis [10]

Indeed, CS theory offers a possibility of high resolution cap

ture of compressible signals from relatively few data mea

surements, typically below the number of data obtained from

the optimal Shannon/Nyquist sampling theorem. CS theor

declares that signal vector x = [x1, . . . , xn]T is k-sparse, if i

has at most k non-zero coefficients in which xi’s represen

the signal samples and n denotes the signal’s dimension

Typically, signals in some WSN applications are not sparse

but they have a sparse representation x = �α on the basi

of compression �n×n = [ψ1, . . . ,ψn] with column vectors ψ
where α = [α1, . . . , αn]T is the sparse equivalent of the origi

nal signal x. CS theory states that if signal x on basis of � ha

a k-sparse representation so that x = ∑k
i=1 αiψi and k � m

under certain conditions and using y = [y1, . . . , ym]T = �x

the original signal can be recovered from just m = O(k log n

samples instead of collecting all samples of signal x [10]. Fo

m × n measurement matrix � = [φ1, . . . ,φn], the row vec

tors φi should have large incoherent with the compression

basis �, or the Restricted Isometry Property (RIP) for th

measurement matrix �m×n = �m×n�n×n is established. It i

shown in [11] that measurement matrix � satisfies the RIP o

order 2k if δ ∈ (0, 1) so that the following statement is tru
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r the signal x with a k-sparse representation:

1 − δk)‖x‖2
2 ≤ ‖�x‖2

2 ≤ (1 + δk)‖x‖2
2. (5)

Existence of the RIP for random matrices such as Gaus-

an matrix with uniformly and independently distributed

lements and Bernoulli matrix with ±1 elements has been

roved in [11]. The reconstruction process is equivalent

finding the signal’s sparse coefficient vector α, which

n be cast into an �1− norm convex optimization problem

at recovers the signal x using the CS measurements y =
1, . . . , ym]T [12]:

in
∈Rn

‖α‖�1
subject to y = ��α = �α. (6)

It is worth mentioning that the practical performance of

e CS theory depends on the amount of the signal sparse-

ess and the recovery algorithms. Also, in this theory, in-

easing the number of CS measurements will enhance the

uality of the data recovery [10].

.2. Application of compressive sampling in WSNs

The ultimate goal of our WSN model is that each node

transmits its measured data xi to the sink node s0 such

at a vector x = [x1, . . . , xn]T is formed at s0. In the Non-

ompressive Sampling (Non-CS) data aggregation method,

own in Fig. 1a, each child si, i ∈ {1, . . . , ν − 1}, sends a sam-

le to νth node, so that the output link of this node sends

packets to its parent through a preassigned path. Clearly

r the Non-CS method, the nodes near to the sink node suf-

r from the heavy data traffic and lose their energies quickly

ading to the network’s lifetime degradation. One heuristic

lution to alleviate this bottleneck problem is to apply the

S theory in the above data aggregation process. The main

ea behind this CS-based data aggregation is illustrated in

ig. 1b, where at the beginning of each round, the node si, i ∈
, . . . , n, extends its data to an m-dimensional vector ui = xiφi

ith m � n, and sends the extended vector to its parent.

or this method, suppose that m is predefined and known in

e whole network, and each node si is aware of its own m-

imensional coding vector φi. Then, each parent node adds

s extended data to that of its children, and this procedure

repeated until all the aggregated data arrive at the sink

ode s0. Eventually, the sink node collects all CS measure-

ents yi = ∑n
j=1 x jφi j, i = 1, . . . , m, and then the recovery

lgorithm is used to reconstruct the n raw samples.

Applying the principles of CS theory directly on the data

ggregation process, namely Plain-CS shown in Fig. 1a, every

ode requires to send m packets to its parent, thus, the traf-

c load on each link will always be the same and it equals to

. Therefore, the sink node receives an m-dimensional vec-

r instead of n-dimensional vector as in the Non-CS method.

hen, the sink node recovers xi, i = 1, . . . , n, by a preassigned

covery algorithm. The above Plain CS-based data aggrega-

on method benefits from the fact that the decoding process

each node is carried out in a distributed manner by some

mple and low computational cost operations such as addi-

on and multiplication. In fact, the main computational load

pushed to the decoding phase on the sink node s0 which

limitless in terms of the energy consumption. In the Plain-

S method, the total number of data packet transmissions for

ata collection from all nodes is equal to mn. It is evident that
lease cite this article as: S. Abbasi-Daresari, J. Abouei, Toward cluste

ensor networks, Ad Hoc Networks (2015), http://dx.doi.org/10.1016
ith an increase in m, the number of transmitted packets in-

fficiently increases. In addition, the Plain-CS method leads

an unnecessary increase in the traffic load in early stages

f the transmission. As a result, applying CS theory naively on

ach node may not be the best choice in the Plain-CS method.

In another data aggregation method, namely the Hybrid-

S algorithm proposed in [17], if the number of transmission

ackets is larger than CS measurements, i.e., ν > m the links

etween the nodes carry out dense random measurements,

therwise, as long as the number of output samples is less

an m, the sensor employs the Non-CS method which only

lays data packets (see Fig. 1a). It is shown in [17] that the

ybrid-CS method outperforms both Non-CS and Plain-CS

hemes in terms of the energy efficiency.

One challenge faced in the aforementioned data aggre-

ation methods is that they have utilized the dense random

easurement matrix, while they have missed the fact that

atrix � may contain many zero entries. On the other hand,

the data aggregation using sparse random measurements,

e measurement matrix includes many zero elements. In

e sparse case, each sensor node participates in the CS mea-

rement only if its respective φij is non-zero, while for the

forementioned Plain-CS and Hybrid-CS methods with dense

ndom measurements, all sensors involve in CS measure-

ents. It is shown in [20] that the transmission cost per

mple measurement is reduced from O(n) for dense ran-

om measurements to O( log n) for sparse random measure-

ents. The authors in [20] state that there is a compromise

etween the number of non-zero elements in each row of

easurement matrix � and the number of rows it contains.

owever, the problem in [20] is that a minimum tree’s cost

r overall network cannot be guaranteed, because for each

ndom measurement, a large number of transmissions is

quired to collect data at the measurement node without

ny proper path. Another challenge for the aforementioned

hemes is that they suffer from the lack of power control

bility in sensor nodes and use energy inefficient routing al-

orithms in the network.

.3. Proposed WCDA algorithm

According to the challenges discussed in section 3.2,

e propose an efficient data aggregation method, namely

eighted Compressive Data Aggregation (WCDA) algorithm,

hich benefits from the advantages of sparse random mea-

rements and the power control ability in sensor nodes.

he proposed WCDA algorithm forms energy efficient rout-

g trees with focus on the load-balancing issue to improve

oth lifetime and energy efficiency of the network.

Let start by briefly describing the features of the sparse

ndom measurement matrix � introduced in [20] which

ormally contains many zero elements. The measurement

atrix � must satisfy two following conditions:

(1) In order to distribute non-zero elements uniformly in

ach row of measurement matrix � with dimension m × n

nd maximize its sparseness, the number of non-zero ele-

ents in each row of � must be as κ = �n/m�.

(2) It is necessary to have no column with all zero ele-

ents in measurement matrix �, because each column of

atrix � corresponds to a sensor node. Thus, if a column

f matrix � has full zero elements, then the data from its
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Fig. 1. (a) Comparison of three data aggregation methods in multi-hop WS

one data aggregation round, and (b) A typical structure of the CS-based dat

corresponding sensor node is discarded. Each sensor nod

si, i = 1, . . . , n, needs to store a column of measurement ma

trix �, denoted by vector φi, in its memory.

To satisfy the above conditions, the distribution process o

elements in each row of measurement matrix � is performed

as follows (see the typical matrix � with dimension 4 × 12

in (7) as well):

• Step 1: Uniformly distribute κ = �n/m� non-zero ele

ments in the first row, while the remaining n − k en

tries are considered zero.

• Step 2: Uniformly distribute κ non-zero element

among the remaining n − iκ entries in the ith row, i =
1, . . . , m, in which the remaining entries in the ith row

are those have considered zero in all previous rows.

• Step 3: i + 1 ← i

• Step 4: Repeat step 2 till all m rows of measuremen

matrix � are filled.
Please cite this article as: S. Abbasi-Daresari, J. Abouei, Toward clus

sensor networks, Ad Hoc Networks (2015), http://dx.doi.org/10.10
1

SC-dirbyH

)

)

link labels represent the number of transmission packets on each link durin

ation method in multi-hop WSNs.

�x =

⎡
⎢⎢⎣

φ1,1 0 0 0 0 φ1,6 0 0 0 φ1,10 0 0

0 0 0 φ2,4 φ2,5 0 φ2,7 0 0 0 0 0

0 0 0 0 0 0 0 φ3,8 φ3,9 0 φ3,11 0

0 φ4,2 φ4,3 0 0 0 0 0 0 0 0 φ4,12

⎤
⎥⎥⎦

(7

Recall that each node si measures one sample xi which

has a spatial correlation with its adjacent nodes. Accordin

to the CS theory, the sink node s0 requires only m random

CS measurement yi = ∑n
j=1 x jφi j, i = 1, . . . , m, to recover al

samples of the sensor nodes. For this purpose, m nodes ar

chosen uniformly as collector nodes, denoted by {r1, r2, . . .

rm}, to collect CS measurements in the network. Each collec

tor node ri aims to collect one random CS measurement y

and transmits yi to the sink node. Toward this goal, the ith

row of measurement matrix �, denoted by φri
, is allocated

to ri, i = 1, . . . , m. For the ith collector node, the correspond

ing nodes with φ 
= 0 (in the ith row of �) are defined as th
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candidate nodes ak, k = 1, . . . , κ . We denote Ti, i = 1, . . . , m,504

as the collection tree corresponding to collector node ri as its505

root. This tree is spread using the proposed WCDA algorithm506

until all the candidate nodes are included.507

The pseudo-code of our WCDA algorithm is outlined in508

Algorithm 1. The network graph G(V, E), the collector nodes509

and the sparse random measurement matrix � act as the in-510

puts of the WCDA algorithm. In each round of performing the511

WCDA algorithm, one heuristic matrix belonging to the col-512

lection tree Ti with three rows is created, in which the first,513

second and third rows indicate the tree nodes, the parent of514

each node and the Euclidean distance between each node515

and its parent, respectively. The procedure of the proposed516

WCDA algorithm is perform as follows:517

• Step 1: Initialization: The candidate nodes corre-518

sponding to collector node ri, represented with the set519

Inti, are placed in the set intTmp. To form Ti, the collec-520

tor node ri with the zero tree’s cost is considered as the521

only node without parent. If ri is one of the candidate522

node, it is removed from the set intTmp.523

• Step 2: Single-hop candidate node: The collection524

tree is extended by adding the candidate nodes which525

can be connected to the current tree with a single-526

hop. This process is carried out during the While loop527

in the lines 5–18 of Algorithm 1. The candidate node528

is connected to the current tree via the link by which529

the tree’s cost is minimized. The parent of the candi-530

date node ai is defined as the node that connects ai to531

the current tree. Then, the nodes connected to the tree532

with the only single-hop connection are removed from533

the set intTmp. Thus, the set intTmp shows the remain-534

ing candidate nodes which are still not connected to535

the tree. If this set is empty, the failure criteria of the536

infinite loop in the line 4 has been met and there is no537

need to run the rest of the algorithm; otherwise, go to538

Step 3.539

• Step 3: Multi-hop candidate node: Among the re-540

maining candidate nodes located in a multi-hop con-541

nection of the current tree, the nearest one will be con-542

nected to the tree via the shortest path. This process543

is run by two nested loops in lines 23 and 24 of the544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

sink node. The WCDA algorithm is performed for all 564

collector nodes so that collection tree Ti, i = 1, . . . , m, 565

for each collector node ri is formed. Similarly, other 566

collector nodes aggregate their measured samples and 567

send them to the sink node. Finally, m collection trees 568

are formed in the network, each constitutes one of the 569

random CS measurements yi. In this step, the proposed 570

WCDA algorithm uses the dijkstra algorithm [32] to 571

find a possible shortest path.

Algorithm 1 WCDA.

Inputs: G(V, E), {r1, r2, . . . , rm}, �
Outputs: Ti, i = 1, . . . , m

1: for i = 1 to m do

2: intTmp ← Inti

3: tree ← [pi −1 0]
T

4: While (intTmp is not empty)

5: Do

6: for C = 1 to NintTmp do

7: for k = 1 to NTree do

8: if adj( intTmp(C) , tree(1,k)) then

9: dist ← [distance(intTmp(C), tree(1, k))
tree(1, k)]

T

10: end if

11: end for

12: if Ndist > 0 then

13: m ← f ind min(dist)
14: tree ← [intTmp(C) dist(2, m) dist(1, m)]

T

15: remmove(intTmp,C)
16: end if

17: end for

18: While (Ndist > 0)
19: if NintTmp = 0 then

20: Break while

21: end if

22: Cst ← ∞;P ← [];
23: for l = 1 to NintTmp do

24: for k = 1 to Ntree do

25: Cst ← min(Cst,Cost(dijkstra shortest path

(tree(1, k), intTmp(l))
26: P ← path(minCst)
2

28

29

30

31

32

33

34

35

36

572

573

a 574

si 575

n 576

c 577

m 578

P

s

 

 

pseudo-code. Since the network graph is weighted, we

use the dijkstra algorithm [32] to find the shortest path

P from the candidate node in a multi-hop route to the

current tree. All existing nodes in the path P is added

to the tree by the for loop in the line 29 of Algorithm 1.

Then, the candidate node connected to the tree by a

multi-hop route is removed from the set intTmp.

• Step 4: Data aggregation: The above steps are re-

peated until all the single-hop and multi-hop candi-

date nodes are connected to the tree. After forming

the collection tree Ti and noting that each node sj

in Ti knows its parent and children nodes, compute

u j = x jφi j . Then, according to the CS-based data aggre-

gation, each node sj aggregates uj with its children’s

data and sends the aggregated data packet to its par-

ent node. Once the collector node ri receives the ran-

dom CS measurement yi = ∑n
j=1 x jφi j, it sends yi to

the sink node in the form of a data packet through
the shortest path between the collector nodes and the o 579

lease cite this article as: S. Abbasi-Daresari, J. Abouei, Toward cluste

ensor networks, Ad Hoc Networks (2015), http://dx.doi.org/10.1016
7: end for

: end for

: for all Nodes n in path P do

: tree ← [n pred(n) distance(n, pred(n))]
T

: end for

: remove(intTmp, minCst)
: end While

: CollectionTree(i) ← tree

: end for

: return CollectionTree(i),Cst

To get more insight into the described WCDA algorithm

nd to compare that with the MSTP algorithm [25], let con-

der a network with 24 sensor nodes shown in Fig 2. In this

etwork, nodes 12, 14 and 24 are uniformly selected as the

ollector nodes. According to the sparse random measure-

ent matrix � with dimension 3 × 24, the candidate nodes

f the first collector node (i.e., root 24) are the nodes 12, 13, 
r-based weighted compressive data aggregation in wireless
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Fig. 2. A typical WSN with n = 24 and m = 3, (a) MSTP algorithm, and (b

Proposed WCDA algorithm.

8, 14, 7 and 23. In both WCDA and MSTP algorithms, the firs

collection tree T1 considers the node 24 as its root and i

spread until all the candidate nodes are included. The node

12 and 14 are the single-hop candidate nodes of T1, which

are directly connected to node 24 in the first step of both al

gorithms. The next candidate nodes in both algorithms ar

23 and 7 which must be connected to the current tree vi

a node having the shortest path. Accordingly, node 23 t

node 14 and node 7 to node 12 are connected. In the nex

step, one of two multi-hop collector nodes 2 or 8 should b

added to the current tree. Since, the MSTP algorithm is per

formed based on the number of hops, it does not discriminat
Please cite this article as: S. Abbasi-Daresari, J. Abouei, Toward clus

sensor networks, Ad Hoc Networks (2015), http://dx.doi.org/10.10
between nodes 8 and 2, thus, it connects the node 8 to th

current tree via the Breath-First-Search (BFS) algorithm [33]

In this case, an efficient path cannot be selected based on th

energy consumption. However in our WCDA algorithm, th

node 2 is connected to the current tree earlier the node 8, a

node 2 has a smaller Euclidean distance with the current tre

than node 8. This selected shortest path results in a highe

energy efficiency than the corresponded path node 8 as wil

be shown in Section 5. After forming the collection trees T1

T2 and T3, the collector nodes 12, 14 and 24 aggregate th

data of their candidate nodes based on the CS-based data ag

gregation process and send them to the sink node through

the shortest path. This backbone tree is shown with the di

rectional lines (−→) in Fig 2. As seen in this figure, the pro

posed WCDA algorithm aims to select the efficient paths t

minimize the energy consumptions in (1) and (2). Numerica

results show that the energy consumptions in the WCDA and

MSTP algorithms are 0.0611 and 0.0994 Jules, respectively

We see that our proposed WCDA algorithm displays 38.53%

more energy efficient than the MSTP algorithm which suffer

from the lack of a power control ability. Our WCDA algorithm

benefits from this advantage that one specific node does no

need to set its power level at the maximum, once it send

data to its nearest node and adjusts its power based on th

Euclidean distance. This leads to more efficiently improve

ment in the formation process of the collection trees than

the MSTP scheme.

4. Cluster-based Weighted Compressive Data Aggregation

(CWCDA)

The existing CS-based data aggregation methods (e.g

Plain-CS, Hybrid-CS, MSTP) rely on routing trees, in which

a large number of sensor nodes are deployed in each C

measurement. Thus, these methods consume more energ

which yields they are not practically feasible in WSNs. On

the other hand, since candidate nodes in the WCDA algo

rithm are uniformly selected, some of them may be far from

each other. For such a situation and to create each CS mea

surement yi, i = 1, . . . , m, a collection tree with lots of link

is formed which increases the tree’s cost. The above chal

lenges motivate us to propose an energy efficient method

namely Cluster-based Weighted Compressive Data Aggrega

tion (CWCDA), to make a significant reduction in the energ

consumption in our WSN model. The main idea behind thi

algorithm is to apply the WCDA algorithm to each cluster in

order to reduce significantly the number of involved senso

nodes during each CS measurement. In this case, candidat

nodes related to each collector node are selected among th

nodes inside one cluster. This yields in the formation of col

lection trees with a smaller structure than that of the WCDA

algorithm.

In the proposed CWCDA algorithm, we divide th

WSN into nC local non-overlapping clusters, denoted b

C = {c1, . . . , cnC
}, using the simple and well-known K-mean

algorithm [34], in which the sink node separately aggregate

the data of all clusters. For this algorithm, when the cluster

ing process is performed uniformly, the number of sensor

in each cluster for a large value of n is approximated by n/nC

The maximum communication range of each node in cluste

c , denoted by Rc , is obtained when the graph is continuou

 

 

 

k k

ter-based weighted compressive data aggregation in wireless

16/j.adhoc.2015.08.014

http://dx.doi.org/10.1016/j.adhoc.2015.08.014


S. Abbasi-Daresari, J. Abouei / Ad Hoc Networks xxx (2015) xxx–xxx 9

ARTICLE IN PRESS
JID: ADHOC [m3Gdc;September 3, 2015;20:43]

in each cluster. Before describing the CWCDA algorithm,651

we go through the properties of the Block Diagonal Matrix652

(BDM) which is formed based on the cluster-based data653

aggregation.654

4.1. Block diagonal matrix (BDM)655

The block diagonal matrix presented in this paper is a ma-656

trix with a total of nC sub-matrices �k, k = 1, . . . , nC, each657

�k has the individual size mk × nk, whereas other nondi-658

agonal entries of the BDM are all zero. Suppose the signal659

x ∈ R
n is partitioned into nC vectors xk ∈ R

nk and for each660

k ∈ {1, … , nC}, sub-matrix �k : R
nk → R

mk collects the CS661

measurements yk = �kxk. The total CS measurement vector662

y = [yT
1
, . . . , yT

nC
]T ∈ R

m is given by663

y = �x ⇔

⎡
⎢⎢⎣

y1

y2

...
ynC

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

�1 0 · · · 0

0 �2

. . .
...

...
. . .

. . . 0
0 · · · 0 �nC

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

...
xnC

⎤
⎥⎥⎦. (8)

In this paper, we suppose that �k is a sparse random mea-664

surement matrix which is formed according to the proce-665

dure explained in Section 3.3. It is shown in [35] that the666

BDM � satisfies the RIP condition and it can be considered667

as an effective measurement matrix. Reference [35] demon-668

strates that the random sampling BDM can be used for the669

signal recovery by the CS theory. The number of CS measure-670

ments m depends on the compression basis � in which the671

signal is sparse. If the measurement matrix has a low coher-672

ence with the compression basis (e.g., Fourier basis or DCT673

basis), increasing nC results in a more sparse measurement674

matrix, while nC does not increase with m. In other words, if675

the measurement matrix has a high coherence with the com-676

pression basis, m would be considered as a linear function of677

nC. With respect to the structure of this measurement matrix,678

the BDM � can be converted to a sparse random measure-679

ment matrix after permutation of their rows and columns680

[35]. Thus, a BDM with sparse random measurements blocks681

can also satisfy the RIP condition.682

In the proposed CWCDA algorithm, the measurement ma-683

trix created in the sink node is not in the shape of the tradi-684
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onal dense random measurement matrix with the Gaussian

r Rademacher elements. In fact, the CS-based data aggre-

ation method creates a BDM consisting of several sampling

b-matrices �k, k = 1, . . . , nC, each �k belongs to the kth

uster. We denote nk and mk as the number of nodes and

e CS measurements for kth cluster, respectively. Since, mk

a linear function of the number of nodes nk in cluster ck,

concludes that mk = (nk/n) × m, k = 1, . . . , nC . Similar to

e WCDA algorithm described in Section 3.3, in the CWCDA

heme, the sink node aggregates m = ∑nC

k=1
mk CS measure-

ents yi, i = 1, . . . , n, however, the traffic load in each cluster

is reduced to m CS measurements.
k

lease cite this article as: S. Abbasi-Daresari, J. Abouei, Toward cluste

ensor networks, Ad Hoc Networks (2015), http://dx.doi.org/10.1016
.2. Proposed CWCDA algorithm

The CWCDA scheme has been described in details in

lgorithm 2. The network graph G(V, E), the number of clus-

lgorithm 2 The proposed CWCDA algorithm.

Inputs : G(V, E), nC , Ep

Outputs : Ti,k, i = 1, . . . , mk, Tk, k = 1, . . . , nC , BT

: Divide nodes into nC clusters using K-means algorithm.

: while all Ei > 0, i = 1, . . . , n do

: for each cluster ck, k = 1, . . . , nC do

: if first round then

: Assign nearest cluster node to center of the

cluster as cluster head

: else

7: Assign cluster node with the most remaining

energy as cluster head

: end if

: Find Rck
for a continuous graph of each cluster

: Create DistanceC and Adjacentc relative to RangeC

: Distribute mk collector nodes among clusters cor-

responding to number of their nodes

: Assign �nk/mk� candidate nodes for each collector

node in cluster ck

: Build collection Trees Ti,k in each cluster using

Algorithm 1

: for each collector node ri do

: Find the shortest path from ri to corresponding

cluster head

: end for

7: end for

: for each cluster head ck, k = 1, . . . , nC do

: Find shortest path to s0

: end for

: for all nodes do

: calculate consumed Ei

: end for

: end while

rs nC, and the primary energy of the node, denoted by Ep

dentical for all the nodes), are the inputs of this algorithm.

e denote Ei, i = 1, . . . , n, as the residual energy of each

ode. The outputs of the CWCDA algorithm are as follows:

• Collection tree: We denote Ti,k, i = 1, . . . , mk, as the

collection tree corresponding to the ith collector node

in cluster ck. This tree is spread using the WCDA algo-

rithm introduced in Section 3.3 until all the candidate

nodes in cluster ck are included.

• Cluster head tree: The cluster head tree, denoted

by Tk, k = 1, . . . , nC, corresponding to the kth cluster

head, includes the cluster head as its root and all col-

lector nodes.

• Backbone tree: The backbone tree, denoted by BT , con-

sists of the sink node (considered as its root) which

connects all cluster heads to the sink node.

To get more insight into how this algorithm works, we

onsider the scenario shown in Fig. 3 to describe the pro-

osed CWCDA algorithm as follows:
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Fig. 3. A typical structure of the CWCDA algorithm in a multi-hop WSN.

• Step 1: Initialization: We divide all sensor nodes in

the network into nC clusters using K-means algorithm

[34]. In each cluster ck, mk = (nk/n) × m, k = 1, . . . , nC

collector nodes are chosen randomly. We conside

�nk/mk� candidate nodes for each collector node in

cluster ck.

• Step 2: Cluster Head election: It is a well known fac

that the cluster head election affects on the energ

consumption in each clustering method [36]. For thi

purpose, in the first round of the CWCDA algorithm (a

shown in Fig. 3), the midpoint of each cluster is iden

tified, and then the nearest node to the selected mid

point is chosen as the Cluster Head (CH). This type o

CH’s election minimizes the intra-cluster energy con

sumption. In the next rounds, the node with a mor

residual energy is selected as the CH that balances th

energy consumption over the whole network. In thi

case, the energy consumption is minimum within each

cluster.

• Step 3: Intra-cluster data aggregation: This step em

ploys the WCDA algorithm to form the collection tree

for each cluster, in which data of candidate nodes ar

aggregated by collector nodes. Fig. 3 only presents on

collection tree T1,k, shown with dash lines, for th

first collector node r1 in cluster ck. Then, the collec

tor nodes in each cluster ck send their data to the cor

responding CH using the shortest path tree, namel

cluster head tree Tk, k = 1, . . . , nC . To find the shortes

path, the dijkstra algorithm [32] is used.

• Step 4: Inter-cluster data aggregation: In each round

the kth CH aggregates its own mk received CS mea

surements yk and then, all data of CHs are sent t

the sink node through a backbone tree. To form th

backbone tree as a shortest path tree between CHs

the proposed CWCDA algorithm makes a graph Gch =
(Vch, Ech) in which Vch is a set of the sink node and th

CHs, while Ech denotes the links between these nodes

In the graph formation, the algorithm calculates th

maximum communication range, Rmin, for a graph tha

contains the CHs and the sink node so that our graph

is finally continuous. In each round, the kth CH col

lects m measured samples of its sensor nodes and
k

Please cite this article as: S. Abbasi-Daresari, J. Abouei, Toward clus

sensor networks, Ad Hoc Networks (2015), http://dx.doi.org/10.10
forms yi = ∑nk
j=1

φi jx j, i = 1, . . . , mk. Then, the vecto

x = [xT
1
, xT

2
, . . . , xT

nC
]T of size n = n1 + n2 + · · · + nnC

i

formed where xk ∈ R
nk denotes the data of nk sen

sor nodes in kth cluster. When the sink node receive

all m � n CS measurements from the CHs, it can re

cover the original data of all sensor nodes. Finally, th

CWCDA algorithm calculates the residual energy for al

the nodes to choose the node with the highest residua

energy as the CH in the next round.

• Step 5: Terminate: The algorithm is terminated when

at least one Ei, i = 1, . . . , n, is equal to zero.

5. Simulation results

In this section, we evaluate and compare the perfor

mances of the proposed WCDA and CWCDA algorithms in

different scenarios with the existing conventional data ag

gregation methods such as Non-CS, Hybrid-CS [17] and MST

[25] in a weighted WSN in terms of the energy consumption

the load balancing and the network’s lifetime. For the scenar

ios under simulation, we investigate the effect of (i) location

variation of the sink node, (ii) the number of CS measure

ments, and (iii) the number of sensor nodes, on the afore

mentioned performance metrics, and show the superiority o

our algorithms compared with traditional data aggregation

methods.

5.1. Simulation setup

We consider a WSN in which the nodes are randomly dis

tributed with the uniform distribution inside a square are

with the size 100 × 100 m2. It is assumed that there ex

ists a spatial correlation between the sensed data of senso

nodes. To apply this correlation on our simulations, we sup

pose that data of all sensor nodes have a sparse representa

tion based on the Discrete Cosine Transform (DCT) basis. Al

simulations have been run in the MATLAB software. In ou

simulations, only the energy consumption of sending and re

ceiving data over the network is computed, and we ignor

the energy consumed by the data routing information. Thi

assumption is used in many relevant literature (e.g., [25,28])

In addition, we set Eelec = 50 nJ/bit, εamp = 100 pJ/bit/m2 and

the length of data packets is L = 1024 bits [30]. The primar

energy of all nodes is set to Ep = 2 J. In addition, we comput

the average of each performance metric over 10 runs of on

algorithm with different measurement matrix � and differ

ent collector nodes. We consider the normalized reconstruc

tion error defined as
‖x−x̂‖2‖x‖2

in the CS signal recovery stage in

which the vectors x and x̂ represent the original and the re

covered signals, respectively. We evaluate the accuracy of ou

proposed methods using the real-world data collected by th

LUCE WSN deployment at the EPFL [37] which focuses on th

ambient temperature values.

5.2. Evaluation and comparison

First scenario: In this scenario, we set n = 1000 and m =
100 for the algorithms under simulation, and the number o

clusters nC = 10 for the CWCDA scheme. The validation of se

lection nC = 10 will be provided numerically at the end o

this section. In addition, the position of the sink node wil
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g. 4. Comparison of the energy consumption in Non-CS, Hybrid-CS, MSTP,

cation varies on the main diameter (a = b).

Table 1

Comparison of load variance in Non-CS, Hybrid-CS, MSTP, WCDA an

location varies on the main diameter (a = b meter).

Algorithm a = 0 a = 10 a = 20 a = 30 a

Non-CS 4612.8 2494.6 2105.8 837.4 7

Hybrid-CS 663.6 592.7 569.2 443.2 4

MSTP 91.7 77.8 68.3 53.7

Proposed WCDA 75.1 66.0 64.6 49.4

Proposed CWCDA 38.5 30.7 19.9 17.9

e changed on the main diameter of the square area of the

etwork to find the best place for this node in terms of the

nergy consumption. Fig. 4 compares the energy consump-

on of the proposed WCDA and CWCDA schemes with that of

e traditional Non-CS, Hybrid-CS [17] and MSTP [25] meth-

ds versus the sink node location. Note that the natural vari-

bles a, b ∈ [0, 100] represent the geographic coordinates of

e sink node location on the main diameter, i.e., a = b in

ig. 4. It is observed from Fig. 4 that the energy consump-

on of all traditional data aggregation methods, in particular

e Non-CS scheme, strongly depends on the location of the

nk node. In fact, the best position for the sink node to min-

ize the energy consumption in all schemes is the center

f the network area. The main reason for this better perfor-

ance is that the tree which connects the sensor nodes to

e sink node is shortest in this point. The interesting result

xtracted from Fig. 4 is that the energy consumption of the

roposed CWCDA scheme is almost robust against the loca-

on of the sink node. Furthermore, our algorithms exhibit a

wer energy consumption in each location of the sink node

hen compared to other data aggregation methods. This can

e justified for noting that in our WCDA algorithm, one spe-

fic sensor node does not need to adjust its power on the

aximum value once it sends data to its nearest node. In fact,
lease cite this article as: S. Abbasi-Daresari, J. Abouei, Toward cluste

ensor networks, Ad Hoc Networks (2015), http://dx.doi.org/10.1016
60 70 80 90 100

 (a=b) (m)

Non−Cs

Hybrid−CS

MSTP

Proposed WCDA

Proposed CWCDA

and CWCDA data aggregation methods for n = 1000 when the sink node

DA data aggregation methods for n = 1000 when the sink node

a = 50 a = 60 a = 70 a = 80 a = 90 a = 100

613.5 766.1 1174.1 1497.4 2919.2 4210.9

399.7 418.7 464.7 549.0 647.5 727.3

48.4 46.6 57.6 60.8 74.6 86.7

43.5 43.5 57.3 59.8 73.1 81.1

13.0 13.3 16.1 18.2 36.8 47.8

ach sensor node sets its power level based on the Euclidean

istance to the destination node. In addition, in the CWCDA

lgorithm, candidate nodes related to each collector node are

lected among the nodes within one cluster. Therefore, the

umber of participated sensor nodes during each CS mea-

rement is reduced. This leads to a more energy efficiency

an other schemes.

Table 1 provides a fair comparison for the load variance
2
n defined in (3) for the aforementioned data aggregation

lgorithms in different sink node locations a = b. As seen

om Table 1, for all data aggregation methods, the minimum
2
n is achieved when the sink node is located at the center

f the network area, because the number of nodes in the

eighborhood of the centered sink node is maximum. The

sults in Table 1 demonstrate that the WCDA, CWCDA and

STP outperform the conventional Non-CS and Hybrid-CS

ethods from the load variance points of view. The worst

ase for load balancing belongs to the Non-CS method. In fact

r the Non-CS scheme, the number of transmission packets

each round for the sensors is different, as the sensors near

the sink node send more packets than leaf nodes. This

ads to a more energy consumption for the nodes in the

icinity of the sink node. In contrast, our CWCDA algorithm

utperforms significantly the other schemes in terms of load
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Fig. 5. Comparison of the network’s lifetime in Non-CS, Hybrid-CS, MSTP, WCDA and CWCDA data aggregation methods for n = 1000 when the sink node location

varies on the main diameter (a = b).

balancing. This superior performance comes from the fact864

that the distance of leaf nodes to the root of the collection865

tree is too short, thus, the collection tree corresponding866

to each collector node within a cluster experiences more867

enhanced balancing in the collection tree comparing to the868

case when the clustering method is not utilized.869

To complete the evaluation of the first scenario, we com-870

pare in Fig. 5 the network’s lifetime of the aforementioned871

algorithms in different sink node locations when the first872

node dies. As illustrated in Fig. 5, the maximum lifetime of873

the network for all data aggregation methods is obtained874

when the sink node is located again in the center of the875
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is located at coordinate (0, 0). We follow the same perfor- 900

mance metrics as in the first scenario to compare our pro- 901

posed WCDA and CWCDA schemes with that of the conven- 902

tional Non-CS, Hybrid-CS and MSTP methods. According to 903

the results in Fig. 6, the minimum energy consumption of the 904

networks in all schemes is achieved when parameter m is set 905

at the minimum value, i.e., m = 10. This leads to a reduction 906

in the number of collection trees and the number of packets 907

transmitted to the sink node. On the other hand, as shown in 908

Table 2 and based on CS theory, we know that reducing the CS 909

measurement m increases the reconstruction error of signals 910

in the network. Thus, there exists a compromise between the 911
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network’s area. This result comes exactly from the results in

Fig. 4 and Table 1, where the energy consumption and th

load variance are in the minimum values at this point. Sim

ilarly, the proposed WCDA and CWCDA schemes outperform

the conventional Non-CS, Hybrid-CS and MSTP methods in

terms of the network’s lifetime. The interesting result from

Fig. 5 is that the network’s lifetime in the proposed CWCDA

is significantly better than the proposed WCDA, due to th

following reasons:

(i) Totally, the network’s lifetime of cluster-based algo

rithms is more than that of non clustering methods [26].

(ii) In the CWCDA scheme, less sensor nodes are involved

in the collection tree formation.

(iii) Of course, it should be noted that in a typical cluster

based algorithm, cluster heads consume more energy than

other nodes that leads to a reduction in the lifetime of th

network. However, we employ a heuristic cluster head elec

tion in the CWCDA scheme described in Section 4.2 to over

come the above problem in enhancing the network’s lifetime

Second scenario: In this scenario, we evaluate the effec

of the number of CS measurements, m ∈ [10, 250], on the net

work’s performance, where we consider again a WSN with

n = 1000 sensor nodes and the number of clusters, nC = 10
for the CWCDA algorithm. We assume that the sink node

Please cite this article as: S. Abbasi-Daresari, J. Abouei, Toward clus

sensor networks, Ad Hoc Networks (2015), http://dx.doi.org/10.10
energy consumption and the data reconstruction error when

m changes. With a similar arguments as in the first scenario

the best scheme in terms of the minimum energy consump

tion is the CWCDA algorithm for different values of m.

As seen from Table 3, an increase in the number of C

measurements m leads to an increase in the difference of th

loads between the leaf nodes and the sensors around the sin

node, hence, the load variance of all CS-based data aggrega

tion methods will be increased. Accordingly, as well as th

reasons mentioned in the first scenario, the WCDA, CWCDA

and MSTP outperform the conventional Non-CS and Hybrid

CS schemes in terms of the load balancing for each value o

m. On the other hand, for all data aggregation methods, by in

creasing the number of CS measurements, the lifetime of th

network is reduced, because the number of collection tree

and the number of packets transmitted by each node will b

increased, as observed in Fig. 7.

Third scenario: In the last scenario, we evaluate th

effect of changing the number of sensor nodes n on the per

formance of the proposed WCDA and CWCDA methods and

compare their energy consumptions, load balancing and th

network’s lifetime with the aforementioned classical dat

aggregation methods. In this scenario, the sink node is lo
cated at coordinate (0, 0). For all values of n, the number of CS 935
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Fig. 6. Comparison of the energy consumption in Non-CS, Hybrid-CS, MSTP, WCDA and CWCDA data aggregation methods for n = 1000 with changing the

number of CS measurements in the range [10,250].

and CW

0 m

5 0.0

5 0.0

, MSTP,

f CS me

m =

367

6

9

9

5

m936

in937

m938

th939

th940

th941

in942

lo943

b944

F945

o946

d947

e948

949

th950

in951

p952

n953

th 954

F 955

m 956

c 957

e 958

c 959

w 960

re 961

o 962

n 963

sc 964

o 965

966

si 967

p 968

w 969

e 970

P

s

 

 

Table 2

Comparison of data reconstruction error in WCDA

of the number of CS measurements.

Data aggregation method m = 10 m = 5

Proposed WCDA 0.29075 0.1414

Proposed CWCDA 0.29220 0.0881

Table 3

Comparison of load variance in Non-CS, Hybrid-CS

for n = 1000 and different values of the number o

Data aggregation method m = 10 m = 50

Non-CS 3673 3673

Hybrid-CS 13.9 240.8

MSTP 1.8 32.5

Proposed WCDA 1.7 22.1

Proposed CWCDA 0.2 10.3

easurements is set to m = n/10. As previously mentioned,

the CWCDA algorithm, the total number of CS measure-

ents increases linearly with the number of clusters nC,

erefore, we consider nC = m/10. It is clearly predictable

at with an increase in the number of sensor nodes n,

e number of packets transmitted over the network is

creased and as a result, the energy consumption and the

ad variance grow, however, the lifetime of the network will

e reduced, as respectively observed from Fig. 8, Table 4 and

ig. 9. With the same arguments as in previous scenarios,

ur CWCDA scheme outperforms significantly other classical

ata aggregation methods in particular from the energy

fficiency points of view.

Remark 1: In the final step of our simulation, we check

e validation of selecting the number of cluster nC = 10

all previous simulations. Toward this goal, we run the

roposed CWCDA scheme with different values of nC, and set
= 1000 and m = 100, in order to evaluate the effect of nc on M

lease cite this article as: S. Abbasi-Daresari, J. Abouei, Toward cluste

ensor networks, Ad Hoc Networks (2015), http://dx.doi.org/10.1016
CDA methods for n = 1000 and different values

= 100 m = 150 m = 200 m = 250

6246 0.04766 0.04468 0.04216

7959 0.04851 0.04695 0.04415

WCDA and CWCDA data aggregation methods

asurements.

100 m = 150 m = 200 m = 250

3 3673 3673 3673

19.0 918.2 1456.1 1916.2

1.2 220.5 317.4 454.6

0.6 109.9 298.2 370.7

0.3 78.9 131.1 229.8

e energy consumption as shown in Fig. 10. It is seen from

ig. 10 that the total energy consumption of the networks is a

onotonically decreasing function of nC, meaning that more

lusters in the network results in more energy saving. How-

ver, it is shown in [35] that an increase in the number of

lusters leads to an increase in the reconstruction error. Thus,

e have a tradeoff between the energy consumption and the

construction error in terms of nC. Since the reduction rate

f the energy consumption in Fig. 10 is sufficiently low for

C ≥ 10, we set nC = 10 in all simulations for the CWCDA

heme to guarantee an acceptable reconstruction error in

ur system model.

Remark 2: To complete our simulation results, we con-

der the following physical layer channel model and the

ractical energy efficiency in the physical layer which is

idely utilized in many WSN literature (e.g., please see ref-

rences [2,4,38]). Toward this goal, we consider the uncoded
-ary FSK modulation where M orthogonal carriers can be 971
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Table 4

Comparison of load variance in Non-CS, Hybrid-CS, MSTP, WCDA and C

Data aggregation method n = 100 n = 200 n = 300 n =

Non-CS 239.3 331.6 392.2 64

Hybrid-CS 13.1 30.1 68.8 13

MSTP 12.8 25.3 32.0 3

Proposed WCDA 12.8 14.9 22.5 2

Proposed CWCDA 7.3 11.9 13.5 1
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 Sensor Nodes

and CWCDA data aggregation methods with changing the number of senso

ata aggregation methods with changing the number of sensor node.

n = 500 n = 600 n = 700 n = 800 n = 900 n = 1000

768.3 1412.8 1885.7 2127.7 3293.2 4131.3

173.4 290.6 383.5 476.2 524.7 597.2

49.8 68.5 70.3 79.2 89.6 98.2

35.5 48.0 58.9 59.0 65.9 74.7

26.6 28.5 29.3 33.7 36.1 41.9
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mapped into b�log2M bits. It is shown in [39] that the trans-972

mit energy consumption per each symbol for an uncoded973

MFSK with non-coherent detector is obtained as974

Et � [(1 − (1 − Ps)
1

M−1 )−1 − 2]
LdN0



(9)

975

(a)=

⎡
⎣(

1 −
(

1 − 2(M − 1)

M
Pb

) 1
M−1

)−1

− 2

⎤
⎦LdN0



, (10)

where (a) comes from the fact that the relationship between976

the average Symbol Error Rate (SER) Ps and the average Bit977

Error Rate (BER) Pb of MFSK is given by Ps = 2(M−1)
M Pb. For978

the above equations and for a ηth power path-loss channel,979

the channel gain factor is given by Ld = Mld
ηL1, where Ml 980

is the gain margin which accounts for the effects of hard- 981

ware process variations, background noise and L1 � (4π)2

GtGrλ2 982

is the gain factor at d = 1 meter which is specified by the 983

transmitter and receiver antenna gains Gt and Gr, and wave- 984

length λ. In addition, we denote the fading channel coeffi- 985

cient corresponding to symbol i as hi, where the amplitude 986

|hi| is Rayleigh distributed with probability density function 987

(pdf) f|hi|(r) = 2r

 e− r2


 , r ≥ 0, where 
 � E[|hi|2]. 988

According to introduced physical layer channel model, the 989

effect of the number of CS measurements, m ∈ [10, 250], on 990

the network’s performance is evaluated and the results are 991
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demonstrated in Fig. 11, where we consider again a WSN with

n = 1000 sensor nodes and the number of clusters, nC = 10

for the CWCDA algorithm. Like to previous scenarios, we as

sume that the sink node is located at coordinate (0, 0). Then

the proposed WCDA and CWCDA schemes are compared with

the conventional Non-CS, Hybrid-CS and MSTP methods. As i

can be seen from Fig. 11, with taking the physical layer chan

nel model into account in the second scenario, the proposed

schemes yet have the best performance in terms of the en

ergy consumption for different values of m.

By considering the specifications and assumptions pre

sented in third scenario and using the aforementioned phys
ical layer channel model, the simulations have been repeated

Please cite this article as: S. Abbasi-Daresari, J. Abouei, Toward clus

sensor networks, Ad Hoc Networks (2015), http://dx.doi.org/10.10
and the results have been shown in Fig. 12. As observed

from Fig. 12, the proposed mehods, especially CWCDA, hav

lower energy consumption with compared to the conven

tional schemes.

6. Conclusion

In this paper, we used the compressive sampling and

the power control ability in sensor nodes to propose a new

energy efficient data aggregation scheme in a weighted WSN

model, called “Weighted Compressive Data Aggregation
algorithm uniformly selects collector nodes to form the 1015
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collection tree in which each collector node aggregates a CS1016

measurement from the corresponding candidate nodes, and1017

then, each collector node sends the CS measurements to the1018

sink node. We also extended the WCDA scheme to a new1019

algorithm, namely “Cluster-based Weighted Compressive1020

Data Aggregation (CWCDA)”, to reduce more energy con-1021

sumption based on an integration of the clustering method1022

and the compressive sampling. Our work has focused on1023

the improvement of the energy consumption, load bal-1024

ancing and the network’s lifetime in different scenarios1025

and has compared our proposed methods with three con-1026

ventional schemes, Non-CS, Hybrid-CS and MSTP, which1027

has demonstrated a superior efficiency of our proposed1028

schemes. In particular, we derived numerical results for1029

the aforementioned performance metrics in terms of the1030

sink node locations, the number of CS measurements, and1031

the number of sensor nodes. Numerical results have shown1032

20% energy saving for the WCDA algorithm keeping at the1033

same time 10% lower load variance when compared to the1034

MSTP algorithm in [25] when the sink node is located at1035

the center of network’s area. For this sensor node’s location,1036

the CWCDA algorithm performs 47% better than the WCDA1037

scheme in terms of the energy consumption. In another1038

scenario, when the number of CS measurements is 10 times1039

the number of sensor nodes in the network, our simulation1040

results showed that the WCDA scheme can reduce the1041

energy consumption by about 24% when compared with1042

the MSTP method. Meanwhile, the CWCDA algorithm can1043

reduce the energy consumption up to 53% compared to the1044

WCDA method. Overall, the CWCDA algorithm is attractive1045

for using in large-scale WSNs already has the advantages1046

of less energy consumption and load variance than classical1047

CS-based data aggregation methods. However, the proposed1048

CWCDA algorithm sacrifices 21% more data reconstruction1049

error than the classical MSTP and WCDA schemes.1050

In this paper, we have selected randomly collector nodes1051

in all proposed algorithms. A possible future extension of1052

this work would be to find the optimal positions of collector1053

nodes which minimize the energy consumption. In addition,1054

this paper has focused on the spatial correlation properties of1055

sensed data in real WSNs. A particularly nice extension of this1056

work is to take into account both spatial and temporal corre-1057

lations between sensors data in the proposed algorithms.1058
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