
Computer Networks 89 (2015) 14–31

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

U-Sphere: Strengthening scalable flat-name routing for

decentralized networks

Jernej Kos a,∗, Mahdi Aiash b, Jonathan Loo b, Denis Trček a

a Laboratory for e-Media, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
b Networks and Distributed Systems Laboratory, Middlesex University, London, UK

a r t i c l e i n f o

Article history:

Received 16 September 2014

Revised 16 April 2015

Accepted 9 July 2015

Available online 16 July 2015

Keywords:

Compact routing

Decentralized networks

Security

Privacy

a b s t r a c t

Supporting decentralized peer-to-peer communication between users is crucial for main-

taining privacy and control over personal data. State-of-the-art protocols mostly rely on dis-

tributed hash tables (DHTs) in order to enable user-to-user communication. They are thus

unable to provide transport address privacy and guaranteed low path stretch while ensur-

ing sub-linear routing state together with tolerance of insider adversaries. In this paper we

present U-Sphere, a novel location-independent routing protocol that is tolerant to Sybil ad-

versaries and achieves low O(1) path stretch while maintaining Õ(
√

n) per-node state. De-

parting from DHT designs, we use a landmark-based construction with node color groupings

to aid flat name resolution while maintaining the stretch and state bounds. We completely

remove the need for landmark-based location directories and build a name-record dissemina-

tion overlay that is able to better tolerate adversarial attacks under the assumption of social

trust links established between nodes. We use large-scale emulation on both synthetic and

actual network topologies to show that the protocol successfully achieves the scalability goals

in addition to mitigating the impact of adversarial attacks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few years, online social network services

have become ubiquitous and at the same time very much

centralized in the hands of a few large providers. Such cen-

tralization poses severe security and privacy concerns and re-

searchers argue [1–3] that adopting a decentralized peer-to-

peer communication architecture would help in mitigating

these security threats as control over personal data would in

this case remain in the hands of the users and message for-

warding would happen only between trusted friends.

So far, several different approaches to decentralized com-

munication between users have been proposed in the liter-

ature [1–5]. A building block of any such system is a rout-
∗ Corresponding author. Tel.: +386 1 479 8243.

E-mail addresses: jernej.kos@fri.uni-lj.si (J. Kos), denis.trcek@fri.uni-lj.si

(D. Trček).

http://dx.doi.org/10.1016/j.comnet.2015.07.006

1389-1286/© 2015 Elsevier B.V. All rights reserved.
ing protocol that enables message forwarding between user

nodes. In this regard, achieving all of the following design

goals at the same time represents an important but elusive

step toward practical solutions:

• Scalability and low path stretch. As the protocol must sup-

port an ever increasing number of users, the amount

of per-node state required for routing must grow sub-

linearly, o(n). Otherwise, the routers will be overwhelmed

by the protocol’s memory and processing requirements.

At the same time, path stretch (ratio between the length

of the path taken by a given routing protocol and the

shortest path in the same network topology) must be kept

low since path stretch directly affects data forwarding

performance. Besides performance, low stretch is also im-

portant from an operational standpoint—solutions hav-

ing an unbounded stretch lack fate sharing [6] and a

failure (or an adversary) far from the path can disrupt

http://dx.doi.org/10.1016/j.comnet.2015.07.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.07.006&domain=pdf
mailto:jernej.kos@fri.uni-lj.si
mailto:denis.trcek@fri.uni-lj.si
http://dx.doi.org/10.1016/j.comnet.2015.07.006

J. Kos et al. / Computer Networks 89 (2015) 14–31 15

V

Adversary NodeHonest Node Attack Edge

Fig. 1. A visualization of adversary attachment in the assumed threat model.

Edges between adversarial and honest nodes are called attack edges.
communication. Ideally, path stretch should be indepen-

dent of the network size, O(1).

• Location independence. In order for the protocol to be

practical, user nodes must be addressable by a single

known flat identifier, which must be independent of the

node’s attachment point in the network topology. This

enables any higher-layer applications to rely on a known

identifier without having to know anything about the un-

derlying network topology.

• Tolerance of Sybil attacks. The protocol must be tolerant

of insider adversaries that are able to create many inter-

connected nodes inside the network and use them to dis-

rupt the network’s normal operation [7–11]. This must be

achieved without relying on any central points of trust

and with the assumption that the adversary is able to in-

fluence the node identifier prefixes of its nodes.

• Privacy. The protocol must protect the privacy of users’

social contacts. This means that users should not be able

to easily infer the social topology or transport addresses

of distant nodes by examining the protocol messages.

Also, the protocol must not require nodes to disclose their

transport address to other nodes that are not their direct

trusted neighbors, as this would also compromise their

privacy.

Existing solutions all fall short in at least one of the de-

scribed design goals. Requiring transport address privacy ex-

cludes most of the standard DHT designs as their structured

topology requires arbitrary connections between nodes that

have no direct trust relations. Additionally, standard DHT

designs lack Sybil-tolerance by default [12]. Network-layer

DHTs like X-Vine [13] can work over arbitrary topologies and

can therefore preserve privacy, but as has been shown in

[14,15] they cannot provide bounded path stretch. Also, X-

ine fails to provide Sybil-tolerance when the adversary is

allowed to influence the prefixes of its node identifiers. Of the

practical systems deployed in the wild, we should highlight

two pursuing similar goals. Freenet [16] is a peer-to-peer

platform for decentralized communication. It uses its own

routing protocol, which does not even guarantee message de-

livery and has been shown to be vulnerable to attacks [17].

CJDNS [18] is a newer routing protocol based on a network-

layer DHT design similar to X-Vine with Sybil-tolerance fea-

tures removed and as such inherits its mentioned problems.

As we will show, state-of-the-art solutions that can

achieve both state and stretch guarantees are all vulnerable

to Sybil attacks that target name-to-locator resolution. Our

contributions in this paper are therefore as follows:

• We present U-Sphere, a novel location-independent pro-

tocol that maintains the low state and low path stretch

guarantees offered by distributed compact routing proto-

cols while additionally offering stronger resilience against

Sybil adversaries. The protocol is scalable due to its

compact Õ(
√

n) routing state and path stretch indepen-

dent of the network size, O(1). These goals are achieved

via key novel features—instead of DHT-based designs or

landmark-based location directories, we embed an un-

structured record dissemination overlay into the exist-

ing topology. Our construction achieves scalable location-

independence and Sybil-tolerance at the same time.
• To evaluate our protocol in a realistic environment, we de-

sign a distributed emulation testbed that contains a full

protocol implementation covering all described signaling.

The testbed is designed to run on a cluster of machines in

order to support emulation of large networks. For our ex-

periments, we have used up to 9 of the largest Amazon

EC2 instances. Using the testbed, we have run extensive

emulations of our protocol, using realistic topologies with

more than 6000 nodes and more than 16, 000 links.

The rest of the paper is organized as follows. Section 2

first presents the threat model used in our security analysis,

together with all the assumptions and a high-level overview

of the proposed protocol. Section 3 focuses on base proto-

col design while Section 4 presents possible attacks and se-

curity mechanisms to mitigate them. The protocol is evalu-

ated in large-scale emulation and we analyze the results in

Section 5. We survey the related work and compare our pro-

tocol with state of the art in Section 6. The paper concludes

with Section 7.

2. U-Sphere overview

This section provides a high-level overview of U-Sphere

together with the threat model used in our analysis.

2.1. Threat model and assumptions

The protocol makes certain assumptions about the trust

encoded into edges between nodes in the network topology.

It is assumed that the established edges are based on real-life

trust relationships, previously established out-of-band. As

the process of establishing an edge requires the exchange and

verification of either public key fingerprints or pre-shared

keys, the topology should resemble a social network or a web

of trust similar to PGP [19], Freenet [16] and CJDNS [18].

Because of this assumption it should be hard for an ad-

versary to establish trust edges to honest participants as it

requires social engineering or compromising existing hon-

est nodes. We do not assume that the adversary is clustered

in one part of the network (see Fig. 1 for a visualization of

16 J. Kos et al. / Computer Networks 89 (2015) 14–31
the adversarial attachment topology model). Social engineer-

ing or malware attacks that compromise private key material

of honest users present a real threat, but protecting against

them is beyond the scope of this paper.

The threat model assumes a Byzantine adversary, which

means that the adversary can deviate from the protocol in an

arbitrary manner, including forging route update messages

and generating specific node identifiers for its set of compro-

mised nodes. The adversary has multiple compromised and

colluding nodes available inside the network and is allowed

to perform a Sybil attack, by introducing additional adver-

sarial nodes and connecting them with existing adversarial

nodes in an arbitrary topology. The adversary is only limited

in the number of trust edges that he can establish with hon-

est nodes.

2.1.1. Definition of Sybil-tolerance

The protocol aims to achieve Sybil-tolerance, which we de-

fine in the following manner. An adversary attached to the

network topology according to the threat model must not

be able to misroute or drop traffic in cases where he is not

placed on the shortest path between the source and desti-

nation in the network topology. This means that he should

not be able to redirect traffic or cause name-to-locator reso-

lution to fail for arbitrary nodes from an arbitrary position in

the network topology.

As we will show in Section 6, in existing scalable and low-

stretch location-independent routing protocols, an adversary

that can influence the choice of its node identifiers is able to

disrupt the protocol from any position in the network topol-

ogy simply by choosing appropriate node identifiers.

2.1.2. Local knowledge and secure size estimation

We assume that each node has only local knowledge of

the network topology—a node is only directly aware of its 1-

hop neighbors with whom it has established trusted links.

In order to be able to adapt to increasing topology sizes, we

assume the existence of a secure rough size estimation com-

ponent running as part of U-Sphere. The estimation does not

need to be exact (an order of magnitude is sufficient), and it

has to be secure in the sense that an adversary cannot arbi-

trarily skew the size estimate or cause a denial-of-service at-

tack with little resources. An example of a suitable protocol,

based on crypto-puzzles, is presented by Evans et al. [20].

2.1.3. Cryptographic primitives

As the protocol relies extensively on public key cryptogra-

phy operations that might be expensive to perform for each

update message, U-Sphere assumes the use of elliptic curve

cryptography based on Curve25519 [21] presented by Bern-

stein. These primitives have been shown to be very efficient

and secure, with lower overheads when compared to RSA

[22].

2.2. Protocol overview

We first describe how the protocol performs message

routing with location-independent identifiers, and then de-

scribe how our specific design of the name-to-locator resolu-

tion overlay tolerates possible adversarial attacks.
2.2.1. Location-independent message routing

In order to achieve the performance goals we have spec-

ified in the introduction, we base our protocol design on in-

sights from compact routing theory [15,23]. At most Õ(
√

n)
nodes are designated as landmarks in a distributed fashion.

By the standard route update process via a path-vector pro-

tocol, non-landmark nodes are assigned location-dependent

addresses in the form of source routes from nearby land-

marks and at the same time learn routes to all the landmark

nodes. These addresses alone already enable routing, but in

practice, routing always via the landmark nodes will cause

the path stretch to become large when nodes are close. To

ensure low stretch, each node, via the same path-vector pro-

tocol, also learns shortest paths to its closest Õ(
√

n) nodes. To

enable location-independent routing, nodes are placed into

groups based on their node identifier prefixes. A name-to-

locator record dissemination overlay is constructed for each

group in order to be able to resolve node identifiers to cur-

rent location-dependent addresses, all while keeping the low

stretch and state bounds.

2.2.2. Security

As described, the above protocol is not secure. The

first attack vector is via the path-vector protocol that is

used to learn paths to various nodes in the network. Any

intermediate node is able to manipulate route update mes-

sages to misroute traffic. In order to prevent this, U-Sphere

employs a chained announce delegation scheme where

route update messages are cryptographically signed and

multi-hop paths are cryptographically protected from being

shortened. The second attack vector is the name-to-locator

resolution process, which is required to make routing

location-independent. Existing location-independent com-

pact routing protocols [15,24] make use of landmark-based

location directories that present likely attack targets as

adversary-controlled landmarks (which an adversary can

generate at will) are able to prevent resolution of arbitrary

node identifiers. U-Sphere uses a novel overlay construction

that does not require any location directories on landmarks

and does not rely on DHT protocols. The overlay is con-

structed by discovering nearby nodes of the local group

and establishing multi-hop overlay links with them. As

the links are prioritized based on hop distance, the overlay

topology resembles the underlying network with nodes of

the other groups removed. This ensures that selection of

node identifiers does not influence a node’s position in the

overlay and thus greatly improves security.

3. The proposed protocol

This section presents the details of U-Sphere, consisting

of two complementary components, which together provide

efficient Sybil-tolerant and location-independent routing.

3.1. Location-dependent routing

We first present the location-dependent routing compo-

nent that routes on addresses, which change together with

the topology. This component is complemented in the next

section, so that the protocol is then able to route directly

J. Kos et al. / Computer Networks 89 (2015) 14–31 17
on location-independent node identifiers. Here, we first de-

scribe how nodes and links are identified in the protocol,

what state each node must maintain and then show how the

location-dependent routing protocol operates.

3.1.1. Node identifiers

Each node generates a private/public key pair and uses the

first 160 bits of the public key’s binary representation hashed

using SHA-512 as its self-certifying node identifier. This iden-

tifier is globally unique among nodes, as creating a duplicate

would require either finding a collision for SHA-512 or gen-

erating an existing private key, both of which are highly un-

likely. However, an adversary can generate an identifier that

shares a large common prefix with some other known iden-

tifier by trying a large set of public keys, hashing them and

selecting the ones that share specific prefixes.

3.1.2. Virtual port identifiers (vports)

Each node establishes direct authenticated transport links

with other nodes that it trusts. A locally unique identifier

called the virtual port identifier or vport is assigned to each

such outgoing link. This identifier is a 16-bit unsigned integer

and being only locally unique, the same identifier can easily

be used by different nodes to identify different links. Coming

from regular network routing, this concept of vports is anal-

ogous to interfaces.

3.1.3. Landmarks

U-Sphere requires some nodes to be designated as land-

marks. These nodes have no special requirements as far as

their operation is concerned—they behave the same as any

other node, do not store any additional state and other nodes

do not perform any additional queries to them. The only con-

sequence of a node being a landmark is that all other nodes

will learn shortest paths to it. Landmark nodes will be used

to stitch long-range routing paths through them. In general,

a path from source s to destination d via landmark �d will be

stitched from two paths s � �d and �d � d.

Because the protocol requires that all nodes know paths

to all the landmarks, the number of landmarks must be lim-

ited to Õ(
√

n) in order to preserve the state bound. This

is done in a distributed fashion by having each node de-

cide locally and independently whether to become a land-

mark or not. Each chooses a number x from the range [0,

1), uniformly at random, and becomes a landmark if x <√
(log n)/n where n is the estimated network size. Following

from this, the expected number of landmark nodes will be

n ·
√

(log n)/n =
√

n log n. By using a Chernoff bound, there

will then be O(
√

n log n) = Õ(
√

n) landmarks with high prob-

ability. In the context of this paper, an event E occurs with

high probability if, for any α ≥ 1, E occurs with probability

≥ 1 − O(n−α).

Since nodes can join and leave the network at any time,

the set of landmark nodes will change through time. To me-

diate this dynamic, U-Sphere relies on a signal from the size

estimation component. Whenever the size estimate changes

by a constant factor, a node’s state may be flipped and a node

becomes or ceases to be a landmark.
3.1.4. Landmark-relative addresses

As mentioned, U-Sphere builds paths via landmarks. To

enable construction of such paths, the protocol ensures that

each node is assigned a landmark-relative address (L-R ad-

dress) of length n in the form of 〈�d, [p1, p2, . . . , pn]〉. Here, �d

is the node identifier of a landmark node and p1, p2, . . . , pn is

a path of vports identifying links leading from the landmark

node to the destination node, enabling a form of source rout-

ing. Landmarks themselves have L-R addresses of size zero,

as they are always directly reachable by their node identifier.

Given a L-R address, any node s is able to route toward

the destination d by first routing via path s � �d and then

using the source route �d

p1−→ n1

p2−→ n2

p3−→ . . .
pn−→ d to reach

the destination. Any node can route toward �d efficiently, be-

cause all nodes know the shortest paths to landmarks.

Each node chooses at least one L-R address for itself,

based on the closeness (hop count) of landmark nodes in the

topology. It may choose more than one address for redun-

dancy. These addresses are location-dependent addresses

that change as the topology evolves. We show later how a

node can route using location-independent node identifiers,

but for now let us assume that each node also knows the des-

tination’s L-R address in addition to its node identifier.

It is interesting to quickly analyze the growth of L-R ad-

dresses with respect to network size. To see what happens in

the worst case, imagine a ring topology where each node has

degree 2. If there are n total nodes and
√

n log n landmarks,

in the worst case all landmarks are clustered one after an-

other and the node with the longest L-R address is located

� 1
2 (n −

√
n log n)	 = O(D) hops from any landmark, where D

is the graph’s diameter. However, we show experimentally

that in realistic social network topologies and with landmark

distributions generated by U-Sphere, L-R addresses are in fact

much shorter.

3.1.5. Vicinities

Always routing via landmark nodes can cause high path

stretch when the destination node is topologically close to

the source. To mitigate this while preserving the per-node

state bound, in U-Sphere each node also learns the routes to

O(
√

n log n) topologically closest nodes, based on hop count

distance. This set of close nodes of node n is designated the

vicinity of n and denoted Vn. Using this additional vicinity in-

formation, a source node s can route to a destination d di-

rectly via s � d when d ∈ Vs.

3.1.6. Path-vector route update protocol

To maintain the required routing state described so far,

U-Sphere uses a single proactive path-vector protocol. Each

node periodically (with period τ r) announces itself to its

neighbors using a route update message. All updates encode

the following information:

• Node identifier of the originator (the node that generated

this update message).

• Landmark flag, a Boolean flag indicating whether the orig-

inator node is currently a landmark node or not.

• Forward path, a path of vports that can be used to for-

ward messages directly to the originator. When receiving

an update, each node prepends the vport of the link on

which it received the update.

18 J. Kos et al. / Computer Networks 89 (2015) 14–31

0000 0001 0010 0011 0100 0101 0110 0111
0000 0001 0010 0011 0100 0101 0110 0111

p=1
p=2

Fig. 2. Size estimate difference by a factor of 2 means a sloppy group pre-

fix p difference of one bit. Shown above is the difference in node groupings

between p = 1 (gray group) and p = 2 (red and blue groups). (For interpre-

tation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

• In case the originator node is a landmark node, the mes-

sage also includes the reverse path. This is a path of vports

that can be used to route from the originator toward the

current node. Such reverse paths can be used as L-R ad-

dresses by nodes, preferring short paths. Before forward-

ing an update with a valid reverse path, each node first

appends the vport of the outgoing link.

• A sequence number that is monotonically increasing.

Note that full node identifiers could easily be used instead

of just vports in forward and reverse paths. However, we

chose not to do this because vports can be more compactly

encoded [25] and because their use obscures the nodes’ so-

cial neighborhood. If node identifiers had been used instead,

the social neighborhood of the originator node would be dis-

closed with each update and this would go against our pri-

vacy goal.

When a properly formatted update message is received

by a node, it is imported into the routing table only under

specific conditions. The conditions are as follows, in order:

(i) If the message originated on the node itself, the route

update is immediately discarded.

(ii) If the originator node is not a landmark node and it

does not fall into the current node’s vicinity, the route

update is discarded.

(iii) If the route update contains a new route for a desti-

nation not previously seen via a link, the update is ac-

cepted.

(iv) If the route update contains a better route toward

the destination, the update is accepted and the active

route is replaced.

The quality of routes is evaluated based on hop count. Any

other metric for link quality, latency, “trustedness” or even a

composite metric could easily be used instead. Whenever an

active route is updated, the route update is also propagated

to neighbor nodes. Each node also periodically exports all of

its active routes to all neighbors. Due to the above conditions,

the flooding of non-landmark announces is limited in scope

to a node’s vicinity.

On non-landmark nodes, after the route update is ac-

cepted and the originator is a landmark node, the local node

also performs L-R address selection. This process determines

its current set of landmark-relative addresses that can be

used by other far away nodes to reach it by stitching paths

via selected landmarks. The protocol handles the changing

of nodes’ landmark status gracefully. As the landmark sta-

tus of the originator is part of regular route update mes-

sages, U-Sphere will deal with landmark changes simply by

re-evaluating the above conditions for accepting an update

based on the changed landmark flag. Due to the second

condition, when a node transitions from landmark to non-

landmark status, its route updates will no longer be propa-

gated everywhere, but will instead become scope-limited to

the originator node’s vicinity. Routes at faraway nodes will

expire after going 3τ r without a new update. The reverse will

happen when a node transitions from non-landmark to land-

mark status, as route updates propagate throughout the net-

work. Non-landmark nodes will perform the usual L-R ad-

dress selection and update their addresses when needed. As

landmarks have no other special roles besides being used in

L-R addresses, nothing else needs to be done explicitly.
3.2. Destination L-R address resolution

Until now, we have assumed that when a node wishes to

route a message toward some destination, it somehow knows

its current L-R address and is able to stitch a proper path. L-R

addresses are topology-dependent and can therefore change

as new links are established or existing links are removed.

In order to be location-independent and route directly on

node identifiers, U-Sphere needs to resolve node identifiers

into L-R addresses. Achieving this without considering secu-

rity and path stretch is easy—we could use a DHT overlay to

store the mappings. But as mentioned before, we aim higher:

We wish to retain the constant-bounded stretch even for the

first packet of a flow while not allowing an adversary (capa-

ble of choosing node identifiers and launching Sybil attacks)

to disrupt name resolution.

The core idea is to group the nodes and create an unstruc-

tured overlay embedding for each such group. This overlay is

used to disseminate name records containing mappings be-

tween node identifiers and nodes’ L-R addresses.

3.2.1. Sloppy groups

We use the concept of node “color” groupings from [26]

with the adaptation to a more distributed and dynamic set-

ting presented in Disco [15]. Nodes are split into groups based

on the value of their node identifiers. Each node takes the

first �log2 (
√

n/ log n)� bits of its node identifier to represent

the identifier of its group. Given a uniform random distribu-

tion of node identifiers among honest nodes, this gives us,

with high probability (again by a Chernoff bound),
√

n/ log n

groups, each of size
√

n log n.

Groups are “sloppy” because the group identifier de-

pends on the node’s own estimate of n that might differ

slightly among the nodes. Sloppy grouping is resilient to

small changes in n, as unless the estimate differs by a fac-

tor of 2, the grouping stays the same. And even in cases when

the estimate differs by a factor of 2, this only corresponds to

splitting/merging of a group (see Fig. 2). These properties are

important from a performance standpoint, similarly to the

notion of consistent hashing—a small change in n does not re-

sult in a lot of group reorganizations.

3.2.2. Extended vicinity

When the simple vicinity definition is used, each node

will store
√

n log n routes to topologically nearest nodes. Tak-

ing into account the division into sloppy groups and assum-

ing perfectly uniform distribution, we can compute the num-

ber of expected nodes of each sloppy group in any node’s

vicinity. Let S be the set of all sloppy groups and Sc ∈ S the

J. Kos et al. / Computer Networks 89 (2015) 14–31 19

Va

a

Fig. 3. Dissemination overlay construction for node a. Dark nodes belong to

the same sloppy group as a and are part of its extended vicinity, Va . Dashed

lines represent overlay links while light lines represent direct links.

set of nodes in sloppy group with identifier c. Then, for any

node m and any group identifier c, it follows:

E[|Vm ∩ Sc|] = E[|Vm|] · P[m′ ∈ Sc]

=
√

n log n · E[|S|]−1

=
√

n log n · (
√

n/ log n)−1

=
√

n log
2

n

n
= log n

This gives us log n expected nodes of each sloppy group

in any node’s vicinity. But in practice, topology is also a fac-

tor when considering a node’s vicinity and it can happen that

some vicinities contain less nodes of a certain sloppy group—

breaking the perfectly uniform distribution. This is undesir-

able because U-Sphere assumes that each node has at least

one node of each group in its vicinity for proper operation—

and having more is better both for redundancy and, as we

will see, for raising the probability that the name record dis-

semination overlay is connected.

In order to ensure that each node has a properly bal-

anced vicinity regarding sloppy groups, we introduce an ex-

tended vicinity. In addition to the already mentioned criteria

for including the nearest
√

n log n nodes, U-Sphere also ac-

cepts route updates for nodes that may be outside the “nor-

mal” vicinity (because they are too far away) but which be-

long to sloppy groups that are currently under-represented

(have less than log n routes stored). This additional condition

for accepting route updates enables us to balance the repre-

sentation of sloppy groups in each node’s vicinity, thus in-

creasing redundancy. It should be noted that even with the

extended vicinity, the per-node state bound is not violated.

Since the additional state per sloppy group is less than log n

and there are
√

n/ log n sloppy groups in expectation, the

state remains bounded by Õ(
√

n).

3.2.3. Dissemination overlay construction

After assigning a sloppy group to each node and ensur-

ing that each node has members of all sloppy groups in its

extended vicinity, we have to enable that all nodes within a

given group learn each others’ L-R addresses. To do this, a dis-

semination overlay topology is constructed for each sloppy

group, connecting all of its members and enabling them to

exchange L-R address updates (see Fig. 3). Overlay construc-

tion proceeds in the following steps on each node a:

(i) The node a maintains a list of sloppy group neighbors

together with their L-R addresses. These are the nodes

that are in the same sloppy group as a and are close in

hop distance in the social topology.

(ii) To discover suitable nodes, node a checks its extended

vicinity set for any nodes whose sloppy group identi-

fier matches theirs.

(iii) Upon discovering new members, it sends them record

update messages.

(iv) When receiving record update messages from nodes

that a does not have in its extended vicinity but be-

long to the same sloppy group (based on comparing

group prefixes), it may establish back-links to them.

Each node will establish up to log2n back-links, where

the available link slots will be prioritized based on hop
distance.
The above algorithm favors establishing links between

nodes that are close and well connected in the network

topology. It is also simple to implement in a dynamic setting.

Neighbors are updated incrementally as part of extended

vicinity maintenance in the location-dependent routing

component. Back-links are established based on incoming

record update messages and expire when no updates have

been received through them for some specified period of

time. No landmark-based location directories are required

for maintenance or for bootstrapping.

3.2.4. Name/locator record update protocol

Once the overlay topology has been established, sloppy

group members are able to exchange name record update

messages. The aim of these messages is to disseminate up-to-

date L-R addresses of all sloppy group members. Each name

update message contains the following attributes, crypto-

graphically signed by the originating node in order to prevent

modification while in transit:

• Node identifier and public key of the node that is originat-

ing the update message and whose current L-R addresses

are included in the update.

• Timestamp in originator-local time, which must be mono-

tonically increasing.

• Sequence number that is used in case multiple updates are

emitted with the same timestamp.

• A list of currently active L-R addresses for the originator

node.

Each node emits name update messages for its own set

of active L-R addresses whenever this set changes (triggered

by route updates from landmark nodes). It also transmits the

updates periodically to its sloppy group neighbors, with pe-

riod τ s. Name update messages describing all the currently

known mappings are transmitted whenever a new sloppy

group overlay neighbor is detected (either via the extended

vicinity or when a new back-link is established). Whenever

a name update message with a valid cryptographic signature

is received by a node, it is imported only if it meets all of the

following criteria:

(i) The node originator belongs to the same sloppy group

as the receiving node, based on the receiving node’s

sloppy group prefix.

20 J. Kos et al. / Computer Networks 89 (2015) 14–31

Fig. 4. Routing from node s toward node 1FB in three steps via landmark

7EA when s does not know the destination L-R address: (1) L-R address res-

olution via v ∈ Vs that is in the same sloppy group as 1FB, (2) once the L-R

address is known, message is routed toward the designated landmark, (3) af-

ter the landmark receives the message (and if no shortcutting occurs), source

routing is used to reach the destination.
(ii) Name record for this originator either does not yet ex-

ist or the newly received name record is more fresh

as determined by its timestamp and sequence number

attributes.

Stale name records are periodically expired in order to

ensure that only fresh and valid records remain. Since the

timestamp is cryptographically signed, an adversary cannot

propagate stale information.

3.3. Routing decisions

Now that we have both the location-dependent routing

component and the name to L-R address resolution compo-

nent, we can describe how the routing process looks like and

how it achieves low path stretch. When a source node s wants

to route a message toward some destination d the following

scenarios are possible:

• In case d is a landmark node, s can route directly based on

d’s node identifier as all nodes will know shortest paths

to any landmark node.

• Also, when d is part of the (extended) vicinity of s, a short-

est path is known and can be taken.

• The last case occurs when s does not know d’s current L-R

address. In this case, s computes the sloppy group identi-

fier of d by taking a properly sized prefix out of d’s node

identifier. Then, it searches its extended vicinity for the

closest node v that is also a member of d’s sloppy group.

Due to the construction of extended vicinities such a node

will exist and due to exchange of name records via the

overlay it will have knowledge of d’s current L-R address.

Therefore s first routes the message to v that updates the

message with a proper L-R destination address and routes

it toward its designated landmark. The landmark then

uses source routing to reach the destination d. A visual-

ization of this last scenario can be seen in Fig. 4.

Besides using landmark-based source routing, path

stretch can be further improved by using shortcutting as in

[15,24]. Whenever a node on path s � d is encountered that

has an active route toward d, this route is followed instead of

routing via the source route provided in the L-R address. As

the evaluation will show, this leads to improved path stretch

at almost no additional cost, while also reducing link conges-

tion. We provide formal proofs of path stretch and routing
state bounds in Appendix A and also confirm this behavior in

our experimental evaluations.

4. Securing U-Sphere

In this section we analyze the security of U-Sphere and

present additional mechanisms to secure the routing proto-

col.

4.1. Signed route updates

The path-vector protocol works as described, but is inher-

ently insecure when dealing with an adversary defined by

the threat model. Without additional protection, any node

is able to forge route updates and specifically target paths

in route update messages so that they appear to be shorter

than they actually are. In this way, adversarial nodes are

able to gain control over traffic that would not normally pass

through them, which goes against our security goals.

To address this, two modifications to the original path-

vector protocol are introduced. First, the originator’s public

key is added to route update attributes and the attributes

then get signed by the route originator with its private key.

Since a node identifier is self-certifying it is easy for any node

to verify that the route update was actually signed by the

node listed as the originator and discard any invalid updates.

However, this still does not solve the problem that nodes can

shorten paths listed in route updates. For example, if a node

receives an update with path [n1, n2, n3] where n3 is the origi-

nator node, it can simply truncate the path so that it becomes

just [n3]. In this way, the path now appears shorter and will

therefore be preferred in routing decisions. One cannot sim-

ply sign path attributes as each node that receives and re-

announces the update needs to append itself to the end of

the path.

To combat this, U-Sphere uses signed announce delegation

chains. This is a mechanism where each node must explicitly

delegate route update announcement privileges to a neigh-

boring node in order for that node to be able to export the

route update on originator’s behalf. Using node’s main key

pairs (denoted PubA/PrivA) for this operation would disclose

social topology information in the same way as using node

identifiers instead of vports would. This is why U-Sphere

establishes security associations (SAs) between neighboring

nodes, assigning key pairs to specific links. Nodes on both

ends of a link generate and exchange the public SA-PubAB

part of the key. These keys are then used to delegate an-

nounce privileges (see Fig. 5) and discard any updates con-

taining paths that fail chain verification. In order to make cor-

relation between SA-derived keys and nodes harder, nodes

can use multiple SAs for the same link and rotate them peri-

odically.

4.2. Name resolution

The security of name resolution is based on the sloppy

group overlay construction. Each node selects log n neighbors

that share its sloppy group prefix from its extended vicin-

ity to form the overlay. Additionally it also establishes up to

log2n back-links to nodes that contacted it. As all the overlay

neighbor links are prioritized based on low hop distance in

J. Kos et al. / Computer Networks 89 (2015) 14–31 21

A

originator: {A, PubA}
landmark: false
anchor: SA-PubAB

<Signature: PrivA>

CB

originator: {A, PubA}
landmark: false
anchor: SA-PubAB

<Signature: PrivA>

Attributes

Delegations

originator: {A, PubA}
landmark: false
anchor: SA-PubAB

<Signature: PrivA>

SA-PubBC

<Signature: SA-PrivAB>
SA-PubBC

<Signature: SA-PrivAB>

SA-PubCD

<Signature: SA-PrivBC>

announce announce

verify

verify

Fig. 5. An explanation of how signed announce delegation chains work. For every neighbor B, the originator A sets the anchor attribute to a public key that is

part of the security association between nodes A and B, and for which node B knows the private key. It then signs the attributes with its main private key PrivA .

Each following node in the chain receiving the route update then delegates the announce privilege to each neighbor node to which it propagates the update. In

this way, a chain of signatures is established and nodes in the middle cannot change the path as they do not know the private keys of previous links—for example

node C cannot remove the links A → B or B → C without invalidating the route update message.

the network topology, a node is more likely to choose close

trusted nodes as its neighbors. An adversary is not able to

influence this selection by choosing appropriate node iden-

tifiers, because due to the prioritization, he also needs to be

close in the network topology. And being close requires gain-

ing trust from other users.

The most effective attack would be for an adversary to es-

tablish trust edges close to a targeted node, but this requires

social engineering of very specific edges in the social vicinity

of the target. And even in this case, assuming that the target

is well connected to other honest nodes, some of the overlay

links may also be established with honest members of the

sloppy group. And because of update record distribution, one

honest link is enough to ensure that the node learns name

records for its sloppy group. Denial of service on specific links

is the next logical step, but the adversary cannot learn trans-

port addresses of the link endpoints unless he engineers trust

from their users.

Another attack on name resolution is possible when a

node chooses a nearby adversarial node as its relay during

destination location resolution in its extended vicinity (first

step in Fig. 4). In this case, the relay might drop the mes-

sage and it will never be delivered. To combat this problem,

nodes should keep track of how well the relays are perform-

ing and deprioritize them for future routing. This is possible

as the nodes are free to choose any member of the destina-

tion’s sloppy group in their extended vicinity as an address

resolution relay.

4.3. Landmarks

In contrast to existing scalable low-stretch location-

independent routing schemes, U-Sphere does not rely on any

special state (like location directories) being maintained on

landmark nodes. As an adversary can designate any of its

nodes as landmarks, this would give him another attack vec-

tor for targeting name resolution.
But an adversary can still cause the nodes in the network

to have to hold increased routing state by introducing many

landmark nodes into the system. This could be mitigated by

requiring crypto-puzzle solutions attached to landmark an-

nounces. Even so, the only advantage that an attacker would

gain by having more landmarks is that honest nodes near at-

tack edges would be more likely to choose adversarial nodes

for its L-R addresses. This might not present an issue because

as soon as a message enters the vicinity of a node, it may use

shortcutting to be delivered directly to its destination with-

out being routed over the landmark at all. But in any case,

nodes are able to choose any nearby landmarks (and may opt

explicitly for more trusted ones) and multiple L-R addresses,

which together with measurement of how well each of them

performs, can mitigate this problem.

5. Evaluation

The following section examines how the U-Sphere pro-

tocol performs in practice—specifically we test whether it

achieves all the goals outlined in the beginning, namely low

per-node state, low path stretch and tolerance of Sybil at-

tacks. Before discussing the results, the methodology used to

evaluate the protocol is briefly described.

5.1. Methodology

The evaluation methodology is based on the principles of

large-scale emulation [27]. We find this approach the most

suitable because it enables us to study a concrete implemen-

tation in greater detail than it would be possible had we used

only simulation. Specifically, we can measure how message

complexity changes through time for both routing compo-

nents and observe the effect of churn. To ease the testing of

U-Sphere implementation, a testbed has been developed, al-

lowing realistic experiments on large topologies. The testbed

is general and it can be used—besides performing scientific

experiments—as an automated integration test tool during

22 J. Kos et al. / Computer Networks 89 (2015) 14–31

Fig. 6. Components of a U-Sphere node. Core (red) implements the ASIO

event loop, the Transport (green) component handles I/O operations with re-

mote nodes while the Social (blue) component handles message routing. NIB

and RIB represent the name and routing information bases, respectively. (For

interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Table 1

Topology datasets used for experiments.

Topology Degree Vertices Edges

Min Avg Max

synthetic-hk 4 6.0–7.98 14–309 16–4096 48–16,362

hyperboria 1 3.97 66 687 1365

as-733-a 1 3.67 592 3015 5539

as-733-b 1 4.29 1460 6474 13,895

protocol development. In this section we describe how the

testbed environment is implemented and how it is used to

run test scenarios.

5.1.1. Protocol implementation overview

U-Sphere implementation is designed as a set of C++ li-

braries, each library covering one component (see Fig. 6

for an overview of the components and their relations).

All communication between components and all I/O opera-

tions are implemented by using asynchronous events via the

Boost.ASIO library. The implementation is designed for use in

multi-threaded applications.

The Social component contains a full implementation of

U-Sphere as described in Section 3. To exchange messages

between nodes, the Transport component provides an ab-

straction layer that exposes inter-node links using a simple

message-based API. It currently supports both the CurveCP

protocol [28] and UNIX sockets for underlying communica-

tion between node processes. Messages are efficiently seri-

alized using Google Protocol Buffers and then dispatched via

the underlying transport. The Transport component is mod-

ular, so additional transports can be easily implemented. The

protocol implementation includes security association estab-

lishment between peers and chain verification in route up-

date messages.

5.1.2. Testbed

The testbed is implemented as an application that uses

the above libraries for running multiple U-Sphere nodes (im-

plementation instances). Its main role is thus the provision-

ing of emulated nodes and support for execution of test sce-

narios on the emulated network. To enable emulation of large

networks, the testbed is designed to work on a cluster of ma-

chines. For our experiments, we have run the testbed on up to

9 of the largest (c3.8xlarge) Amazon EC2 instances con-

nected together into one network segment.

Scenarios are able to invoke test cases at specific points

in time. Each test case is designed to be executed in the dis-

tributed testbed environment on selected emulated nodes.
This testbed enables us to evaluate the protocol performance

under a number of different scenarios on large topologies.

The protocol implementation, together with the testbed en-

vironment, is available as an open source project [29] li-

censed under GPLv3.

5.2. Results

In this section we present the results of evaluating U-

Sphere under different scenarios and topologies. To generate

the synthetic topologies, we have initially used the Barabàsi–

Albert preferential attachment model [30] which can gen-

erate scale-free networks. But since the B–A model gener-

ates topologies with a low clustering coefficient, to obtain

more realistic topologies, we have used the Holme–Kim tun-

able clustering modification [31] where the triangle forma-

tion probability parameter has been set to 0.2, giving us de-

gree distributions as shown in Table 1. In order to test the

protocol on realistic datasets we have chosen the following

additional topologies extracted from actually deployed sys-

tems:

hyperboria Topology of the largest deployed CJDNS [18]

network (Hyperboria). This topology has been aggre-

gated from multiple observation points around the

network.

as-733 Two topologies extracted from Internet BGP

routers, representing a network of autonomous sys-

tems. We use the dataset from [32]. Topology as-733-a

is from 1997-11-08, while the larger as-733-b is from

2000-01-02.

The datasets used in our experiments are available to-

gether with the mentioned open source testbed environ-

ment. Statistical information about all the used topology

datasets is shown in Table 1.

5.2.1. Path stretch

To perform path stretch measurements, two random des-

tinations are selected for each node and ping RPCs from

source to destination node are made. We record the length

of the path taken by actual messages routed using U-Sphere

and compare it to the shortest path between the two desti-

nations in the network topology. An important observation in

these measurements is that the average size of a node’s ex-

tended vicinity in 4096-node topologies is only 184 nodes,

with about the same amount of landmarks. Together, this

amounts to around 8% of nodes, which means that to reach

most destinations, direct paths are not known and name res-

olution needs to be performed (thus the messages need to

make the full resolution process as shown in Fig. 4).

J. Kos et al. / Computer Networks 89 (2015) 14–31 23

Fig. 7. Path stretch in dependence of varying topologies. Left figure is the average patch stretch plotted using logarithmic scale for topology synthetic-hk and the

right one shows path stretch distribution with varying topologies (for synthetic-hk with increasing topology sizes). Error bars show standard deviations of path

stretch.

Fig. 8. Average length of primary and secondary L-R addresses with increas-

ing topology sizes (note the logarithmic scale). Error bars show standard de-

viations of path address length.

Results of the measurements can be seen in Fig. 7. We

show both, the average path stretch as it changes with in-

creasing number of nodes in the generated topology and the

distribution of path stretch over all measured paths. We can

see that the path stretch remains low throughout the tests,

with averages ranging from 1.05 to 1.25. The maximum path

stretch obtained over all topologies is 3.0 and in all cases it

covers only a small (< 0.05%) percentage of paths. Stretch

distribution is also similar on the three realistic topologies,

with stretch being ≤ 2.5 in the hyperboria topology and ≤ 3.0

in both as-733 topologies.

We have also measured variations in path stretch where

we examined the influence of community structure (1

through 16 sparsely interconnected communities) and node

degrees (average degrees ranging from 2 to 64) on path

stretch. The results show that community structure does not

affect path stretches, while doubling the average node degree

causes a small increase at small degrees but has no noticeable

effect when degrees get larger.

5.2.2. L-R address lengths

We mentioned earlier that L-R addresses can grow on the

order of graph diameter in the worst case. To test what hap-

pens during protocol operation on realistic topologies, we

have measured the length of primary and secondary node L-R

addresses with increasing topology sizes (secondary address

is an additional address chosen by a node for redundancy in

case the primary landmark fails). As can be seen in Fig. 8, ad-

dress lengths are short in practice and only grow with log n

on emulated topologies. Note that the shown average can be

lower than 1 as landmarks are considered to have a L-R ad-

dress length of zero.

5.2.3. Link congestion

Since the protocol uses landmarks to stitch together paths

to distant nodes, we expected that some paths would be-

come more congested than others. We compared the link

congestion of paths selected by U-Sphere to link congestion

encountered when using shortest paths instead. To measure
link congestion in the emulated network realistically, the sce-

nario instructed each node to keep track of the number of

RPC ping packets traversing each of its links. Then we used

the same test as when computing path stretch—each node

routed a ping RPC to two randomly selected nodes and the

destination node sent back a reply. After all measurements

were complete we gathered the link congestion counters

from all links and compared the values to a routing proto-

col that instead used only shortest paths between the same

source-destination pairs.

As can be seen in Fig. 9, U-Sphere does indeed show in-

creased link congestion for a small (< 0.1%) percentage of

links when compared to a shortest-path routing protocol.

Values on the x-axis represent the number of times a link has

been traversed and distribution is over all links. Some links

are highly congested even in the case of a shortest-paths pro-

tocol because the as-733-a topology contains small amount

24 J. Kos et al. / Computer Networks 89 (2015) 14–31

Fig. 9. Comparison of link congestion on topology as-733-a with 3015

nodes. The plot is zoomed into the region where the most difference be-

tween the two can be seen.

Fig. 11. Combined state distribution over nodes for varying topology sizes.

number of records stabilizes as no new nodes are started and

of bridges between communities which require repeated use

of a few links.

5.2.4. RIB and NIB state

Next, we measured the amount of state held by U-Sphere

nodes in their routing tables and name-to-locator resolution

databases. Fig. 10 shows the growth of average routing state

per node in the number of stored entries. Here we see that

name-to-locator mapping state seems to increase only on

every second measurement. This is due to the way nodes

are partitioned into sloppy groups as the number of sloppy

groups only increases after the size estimate doubles. The

growth in state follows Õ(
√

n) and looking at combined state

distribution (see Fig. 11) we can see that state is also evenly

distributed among all the nodes with no apparent long tails

that would indicate higher state on some nodes. The same

state distributions have also been measured for hyperboria

and both as-733 topologies.
Fig. 10. Average routing table size (left) and name-to-locator resolution database s

Dashed line represents a fit of a
√

x + c over the measurements. Error bars show stan
5.2.5. Message complexity

An important factor in the evaluation is also the U-

Sphere’s message complexity. We measure the amount of

control messages required to establish and maintain all rout-

ing state through time. Routing announce period τ r and

name-to-locator mapping announce period τ s greatly affect

the measured message complexities. In all our experiments

we use τr = 30 s and τs = 600ss.

Fig. 12 shows the number of updates (RT for route updates,

SG for sloppy group name-to-locator mapping updates and SA

for security association updates) that are transmitted per sec-

ond per node on average. Note that this is not necessarily

the number of messages because multiple records can be

grouped in the same message in order to improve through-

put and reduce the number of transmitted messages, which

is why counting the update records is a better measure.

The initial rise in transmitted records corresponds to the

node initialization phase where more and more nodes are

started in the emulated network. After the initial phase, the
ize (right) at a node with increasing topology sizes (topology synthetic-hk).

dard deviations of routing state size.

J. Kos et al. / Computer Networks 89 (2015) 14–31 25

Fig. 12. Number of records transmitted per second per node (topology

synthetic-hk, n = 2048). Shown are route updates (RT), name-to-locator

mapping updates (SG) and security associations (SA).

Fig. 13. Average records (route and name-to-locator mapping update)

transmitted per second per node with increasing topology sizes. Averages

are counted only after all the nodes have started. Error bars show standard

deviations of record transmission rates.

Fig. 14. Node degrees in the sloppy group overlay topology under varying

number of nodes (note the logarithmic scale). Error bars show standard de-

viations of node degrees.

the state converges. Initial overhead in sloppy group mes-

sages corresponds to the establishment of the sloppy group

overlay. After the overlay is established, only periodic an-

nounces are enough for its maintenance, so the number of

updates is reduced. Fig. 13 shows how the message complex-

ity scales with increasing topology sizes. We have also exper-

imented with varying the node degree in the social topology.

As expected, the average message complexity for route up-

dates grows linearly with average node degree—each neigh-

bor has to periodically update all its links.

Another important factor in the scalability of the protocol

is the degree of nodes in the sloppy group overlay topology.

It is important because we do not want to create too many

copies of the update messages, but at the same time we want

to increase the probability of successful delivery. We mea-

sured the average in, out and combined degrees of nodes

in the overlay topology. Results, seen on Fig. 14, show that
the degrees grow with log n which ensures that the scheme

scales well in practice.

5.2.6. Sybil attacks

The last scenarios include adversarial Sybil nodes that at-

tempt to interfere with the normal operation of the routing

protocol. We generate the Sybil topologies according to the

threat model. First we use the already mentioned Holme–

Kim model to generate a base topology. Then we randomly

attach Sybil nodes to honest nodes in order to establish a pre-

defined percentage of attack edges. Sybil nodes are also ran-

domly interconnected among themselves. We generate mul-

tiple topologies for each percentage of attack edges and show

the standard deviations. Multiple scenarios are used to eval-

uate the limits of Sybil-tolerance:

Scenario A Instructs all Sybil nodes to forward name-to-

locator records only for other Sybil nodes. Records of

honest nodes are simply dropped by a Sybil node.

Scenario B Same as in Scenario A, but additionally all

Sybil nodes designate themselves as landmarks.

Scenario C In this scenario, Sybil nodes also interfere with

data forwarding. All messages that do not originate

from another Sybil node are dropped. We should note

that U-Sphere does not protect data forwarding by it-

self.

For scenarios A and B, we measure the percentage of hon-

est resolved node pairs. A resolved node pair (s, d) means that

node s knows the L-R address of node d, given that both nodes

are members of the same sloppy group. A value of 100%

means that all honest nodes are able to resolve L-R addresses

for all the other nodes in their sloppy group. In scenario C we

measure the percentage of successful ping RPC calls where

each node pings two randomly selected other nodes. We vary

the percentage of attack edges so that up to 7% of all edges

in the topology are attack edges. Fig. 15 shows that the pro-

tocol successfully defends against Sybil attackers interfering

with name resolution even when the fraction of attack edges

is high and even when all Sybil nodes designate themselves

26 J. Kos et al. / Computer Networks 89 (2015) 14–31

Fig. 15. Fractions of resolved pairs and delivered messages vs. the fraction

of attack edges under different Sybil scenarios. Error bars show standard de-

viations.

Table 2

Related distributed routing protocols.

Protocol Flat Low stretch Low state Sybil-t.

CJDNS [18] � – � –

X-Vine [13] � – � Partiala

VRR [33] � – – –

Disco [15] � � � –

U-Sphere � � � �
a Sybil-tolerant under the assumption that the adversarial

nodes’ identifiers are randomly distributed.
as landmarks. As there are no specific defenses for ensuring

deliverability of forwarded data messages, it can be seen that

the protocol does much worse with data forwarding when

percentage of attack edges increases.

6. Related work

In this section we survey related routing protocols and ap-

proaches from different fields of research and compare them

with U-Sphere based on the protocol design and evaluation

results. Table 2 shows an overview of compared protocols.

6.1. Compact routing

Compact routing protocol research dates back to the sem-

inal work of Thorup and Zwick [34] who have first pro-

posed an algorithm that can guarantee O(1) (at most 3)

path stretch with Õ(
√

n) per-node state for the location-

dependent case. Abraham et al. [23,26] have later shown that

very similar guarantees can also be obtained for the location-

independent case. All of these designs, however, assume a

static network topology and centralized routing table con-

struction for all nodes participating as routers in the network.

This is in contrast to a distributed routing protocol like U-

Sphere, that one could use in practice where there is no such

central point.

Motivated by supporting efficient routing on small em-

bedded devices with heavily constrained resources (such as
wireless sensors), Mao et al. [24] presented S4, a distributed

compact routing protocol building on the theory of Thorup

and Zwick. The S4 protocol aims to deliver bounded per-node

routing state and bounded path stretch. It routes on location-

dependent names, where the name-to-locator resolution is

provided by a consistent hashing database (known as the lo-

cation directory) over the set of landmark nodes. This reso-

lution step can arbitrarily increase path stretch for the first

packet of a flow and additionally it has been shown in [15]

that S4 can sometimes violate the per-node state bound of

Õ(
√

n) by a large margin.

Addressing some of S4’s deficiencies, Singla et al. [15]

have presented a protocol called Disco, that can route on

location-independent node identifiers and at the same time

guarantee constant path stretch and Õ(
√

n) bounded per-

node routing state for arbitrary topologies. In addition to

a landmark-based location directory a DHT-like ring over-

lay was introduced for the dissemination of name-to-locator

mapping records in order to distribute the load away from

landmark nodes. The location directory is still used to boot-

strap and repair the overlay.

A different route is taken by Caesar et al. [33] with a pro-

tocol called VRR (Virtual Ring Routing). Each node has both

physical neighbors (based on network topology) and virtual

neighbors (based on DHT key identifiers). The routing pro-

tocol is a network-layer DHT where routing is performed

greedily by looking up ever closer location-independent

identifiers in key space. This protocol does not provide

any guarantees regarding path stretch and routing state—

evaluations in [14,15] have shown that it can experience high

stretch in practice and that some nodes can also exhibit very

high state.

In contrast to U-Sphere, all of the above location-

independent protocols are vulnerable to Sybil attacks where

an adversary is allowed to arbitrarily choose node identifiers

and can introduce many adversarial nodes into the network.

In S4 and Disco, the point of attack is the location directory—

adversarial nodes can choose specific identifiers in such a

way that the consistent hashing scheme will store specific

name-to-locator mappings on them and can then proceed to

censor them at will (see Fig. 16 for an overview of this at-

tack). In Disco, an additional attack can be mounted on the

DHT-like ring overlay, which again uses adversary-influenced

node identifiers for its structure. Disco and S4 also do not

protect the paths in route announces and they can thus be

shortened, enabling the adversary to be seemingly placed on

shortest paths and giving him the power to control more traf-

fic. VRR, being based on a DHT construction, is vulnerable to

routing table poisoning with specifically chosen node iden-

tifiers [12]. The reliance on node identifiers for structure in

all these protocols means that such attacks can be mounted

from any position in the network topology. In U-Sphere, an

adversary is limited in influence to its trusted neighborhood.

6.2. Securing routing in DHTs

Whānau [11] is a general one-hop DHT protocol bundled

with a social network based Sybil-detection scheme and a

scheme for preventing identifier clustering attacks. Routing

tables are built by nodes performing
√

e short random walks

(where e is the number of all edges) and sampling end nodes

J. Kos et al. / Computer Networks 89 (2015) 14–31 27

Fig. 16. Sybil attack on the location directory needed by S4 [24] for name-to-locator resolution and Disco [15] for sloppy group overlay bootstrapping. Since the

adversary is able to control the m-bit prefixes of its nodes by doing O(2m) computation [12], it can get hold of almost arbitrary positions within the overlay. It can

then use this fact to deny the querying nodes access to certain records, causing the name-to-locator resolution to fail for arbitrary identifiers.

to construct routing tables. It uses layered node identifiers

in order to combat clustering attacks. The downside of the

protocol is the requirement that all routing tables need to be

recalculated once the network topology changes, making it

unsuitable for dynamic networks.

R5N [35] is a DHT routing protocol that combines random

walks with greedy recursive routing. Its design is based on

the recursive version of the Kademlia protocol [36]. When

routing, a message is forwarded randomly for the first few

hops, before it switches to standard greedy DHT routing. This

enables the protocol to de-correlate the message from the

source node’s vicinity and reduce the chance that the adver-

sary is present on the routing path. Since it uses random rout-

ing for the first few hops, the protocol only delivers messages

with certain probability and messages must thus be retried

multiple times to ensure delivery. As such, there is no bound

on path stretch.

X-Vine [13] is a DHT-based protocol for routing over so-

cial network topologies. Its security properties are based on

limiting the amount of routes that can be established over

a node’s edges. It, however, does not guarantee any bounds

on stretch and as authors specify in their paper, it also as-

sumes that node identifiers (even those of the adversary) are

randomly distributed in identifier space. When they are not,

similarly to VRR, poisoning attacks can be mounted against

the protocol in order to control specific paths.

6.3. General Sybil-detection protocols

There exists a number of protocols that aim to pro-

tect general decentralized systems from Sybil attacks. None

of these schemes are routing protocols by themselves and

therefore cannot be directly compared to U-Sphere or other

routing protocols, but we include them here for complete-

ness.

SybilGuard [9] and the improved SybilLimit [37] are

among the first protocols to use social networks for Sybil de-

fense. Each node first performs
√

e (where e is the number of

edges in the social topology) random walks of length O(log n)

and remembers the last edge in the walk (the tail). Honest
nodes then have intersecting tails with high probability and

so any nodes that cannot find such an intersection are con-

sidered adversarial, and are not accepted into the network.

Gatekeeper [38] aims to improve the guarantees provided

by SybilLimit on graphs that exhibit random expander prop-

erties. It accepts only O(log n) adversarial nodes per attack

edge. The protocol is based on a ticket distribution scheme

that uses multiple randomly selected nodes as ticket distri-

bution sources in order to validate nodes. SybilInfer is a cen-

tralized protocol by Danezis and Mittal [10] which detects

Sybil nodes by using Bayesian inference. It requires complete

knowledge of the social topology and is thus not appropriate

as a distributed protocol.

6.4. General attacks on routing protocols

In this paper we have focused our attention on

strengthening scalable location-independent routing proto-

cols against Sybil attacks which are common in real-world

decentralized systems and social networks [39,40]. In addi-

tion to Sybil attacks, there exist several classes of routing

attacks against decentralized routing schemes. We explore

them in this section and show that most control-plane at-

tacks are actually mitigated by mechanisms employed by U-

Sphere.

Many of the routing attack studies in the literature origi-

nate from routing in mobile ad-hoc networks (MANETs) [41].

This is due to the fact that MANETs are fully decentralized in

nature, without any central points of trust, and this makes

them especially difficult to secure. While MANETs have some

unique characteristics like a highly dynamic topology and

severely resource-constrained devices, we can draw parallels

between them and decentralized peer-to-peer communica-

tion networks that we address in this paper. In both, new

nodes may attach themselves at any point in the topology

and there is no central authority that would regulate admis-

sion into the network. Both require scalable protocols that

can handle increasing numbers of nodes without consum-

ing too many resources. In addition to MANETs, routing at-

tacks are also important when talking about securing BGP,

28 J. Kos et al. / Computer Networks 89 (2015) 14–31
the routing protocol used for managing the global Internet

routing table [42].

The following general classes of attacks are the most com-

monly analyzed in regard to routing protocol security. For

each of them, we describe state-of-the-art mitigations and

compare them to the U-Sphere protocol.

Flooding attack In a flooding attack, an adversary at-

tempts to prevent normal network operation by

continuously generating control traffic that must

then be processed by other routers, consuming their

resources. State-of-the-art mitigations generally focus

on identifying and rate limiting flood traffic, most

successfully using statistical analysis [43]. It is also

possible to perform such an attack on the U-Sphere

network, which does not implement any kind of

mitigations. But, as all the control messages are cryp-

tographically signed and routing paths in messages

are protected by the signed announce delegation

chain mechanism, flooding nodes may be detected

and their links revoked, requiring the adversary to

gain trust of new users that he can exploit for prop-

agating flood traffic. In order to detect flood traffic

in the first place, the mentioned existing mitigation

methods may easily be added on top of U-Sphere.

Blackhole attack In a blackhole attack, an adversary

propagates false routing information and causes the

traffic of legitimate nodes to be redirected to nodes

under his control, where he can drop it. In a U-Sphere

network, an adversary is unable to generate valid route

announcements for non-existent links or modify exist-

ing announcements to make the paths appear shorter

due to the signed announce delegation chain mecha-

nism. The adversary is still able to drop control and

data traffic that passes through his nodes and so the

blackhole attack cannot be prevented in cases where

the adversary is already on the shortest path between

the source and destination.

Link withholding attack In a link withholding attack, an

adversary fails to propagate routing control traffic. In

U-Sphere, this attack is possible, but in case alternate

paths exist, it is not particularly disruptive as data traf-

fic will be routed around such link-withholding nodes.

Link spoofing and path truncation attacks In a link

spoofing attack, an adversary attempts to advertise

fake (non-existent) links with honest nodes in order

to redirect traffic. S-BGP [42] and SPV [44] present

solutions for these attacks in case of the global

Internet routing table with an existing public-key

infrastructure (PKI). In U-Sphere, we focus on a fully

decentralized solution without any PKI in place. A

U-Sphere node cannot spoof a link or truncate the

path without access to the neighbor’s private key

as all the routing announces are cryptographically

signed by the originator and paths in route updates

are protected by signed announce delegation chains.

Replay attack In a replay attack, an adversary propagates

old but otherwise valid control messages in order to

create routing issues as the information is no longer

correct. This attack is prevented by U-Sphere through
the use of cryptographically signed timestamps in the

control messages.

Wormhole attack In a wormhole attack, a pair of col-

luding adversarial nodes use an out-of-band network

to capture valid control messages at one location in

the network and reply them in another location, basi-

cally creating a virtual network link which may now be

the shortest path. Solutions for MANETs require either

tightly synchronized clocks or access to GPS locations

[45], both of which are not feasible in a network like U-

Sphere where various transports may be used. This is

one of the hardest attacks to prevent as the adversary

actually creates a shorter path by using an out-of-band

network. As such, U-Sphere is also unable to prevent

this attack.

As we have shown in this section, some of the mitigation

strategies used for securing MANETs and the global Internet

routing table may also be reused in U-Sphere, while others

are unnecessary due to the protocol’s existing security fea-

tures.

6.5. Limitations of U-Sphere

As any practical protocol, the U-Sphere routing protocol

is not a silver bullet. In its current form, the protocol requires

online presence of user nodes. This is suitable for use as a net-

work routing protocol, similar to CJDNS or X-Vine, but it can

be an issue when building decentralized social network ser-

vices where not all users can be online all the time. Concepts

from delay/disruption tolerant networks could be used to en-

able delivery of messages in such scenarios. Targeted attacks,

where the adversary targets a single user or her friends, can-

not be prevented by U-Sphere. This is due to the fact that

the protocol relies on having trusted friends as one-hop links.

Also as shown, the protocol cannot resist attacks where the

adversary is located on the shortest path between two nodes

and then selectively drops data traffic. Handling such cases

requires some sort of fault detection mechanism. Using re-

dundant paths combined with techniques from reputation

management and data-plane fault localization could be pos-

sible as U-Sphere supports some path flexibility by routing

via different landmarks.

7. Conclusion

In this paper we have proposed U-Sphere, a novel

location-independent routing protocol that is tolerant of

Sybil adversaries and is scalable to large topologies due

to compact routing state and low, constant bounded, path

stretch. In contrast to other state-of-the-art solutions, our

contributions therefore address all of the goals outlined in

the introduction, namely (a) location-independent routing is

achieved by using a fully distributed overlay that can boot-

strap itself without the need for landmark-based databases,

making it robust against Sybil attacks; (b) scalability in the

form of low message overhead, low per-node state, bounded

by Õ(
√

n), is achieved together with O(1) path stretch; and

(c) privacy is ensured by not disclosing transport addresses

to any non-trusted nodes and by using non-unique identi-

fiers and rotating public keys for identifying links between

nodes.

J. Kos et al. / Computer Networks 89 (2015) 14–31 29
We have performed emulation-based experiments on dif-

ferent network topologies, including real datasets of existing

networks. All of these experiments confirmed that the above

goals have been successfully met.

Acknowledgments

The authors have been supported by the following in-

stitutions: Jernej Kos by the Slovenian Research Agency

(grant 1000-11-310153) and the WiNeMo COST Action (STSM

grant IC0906-160913-035608-35608); and Denis Trček by

the Slovenian Research Agency (research program Pervasive

computing P2-0359).

Appendix A. Proofs of stretch and state bounds

In this section we provide proofs for our stated path

stretch and state bounds. Path stretch is the ratio between

the length of paths taken by U-Sphere and the length of the

shortest possible path in the network topology. We measure

state in the number of entries in the routing and name res-

olution tables. These proofs do not assume any adversarial

attacks.

Theorem 1 (Path Stretch Bound). After routing state conver-

gence, U-Sphere routes the first message with path stretch ≤ 7.

Proof. There are several scenarios that can result in lower

path stretch—if the source s knows a destination d’s L-R ad-

dress, if d is a landmark node, if d ∈ Vs or in case of shortcut-

ting. In these cases it is easy to see that the stretch will be

lower, so we omit these scenarios and focus instead on the

last scenario where name-resolution via a relay sloppy group

member v in the extended vicinity is needed and therefore

d �∈ Vs and d is not a landmark node. In this case, the full path

required will be s � v � � �d � d (see Fig. 4) where v ∈
Sd and by construction of extended vicinities v ∈ Vs. �d is the

landmark closest to d and each intermediate path segment �
is the shortest path learned via the path-vector protocol. Let

d(a, b) represent the shortest distance metric between nodes

a and b in the network topology. To aid with the proof we first

provide the following lemma.

Lemma 1.1. Shortest distance between �d and d is at most twice

the distance between s and d: d(�d, d) ≤ 2d(s, d).

Proof.

d(�d, d) = d(d, �d) (undirected graph)

≤ d(d, �s) (�disd′s(closest landmark)

≤ d(d, s) + d(s, �s) (triangle inequality)

= d(s, d) + d(s, �s) (undirected graph)

≤ d(s, d) + d(s, d) (�s ∈ Vs ∧ d �∈ Vs)

= 2d(s, d).

�

Now we can derive the upper bound for each segment of

the full path a message must traverse. For the first segment s

� v, the following holds true:

d(s, v) ≤ d(s, d) (v ∈ Vs ∧ d �∈ Vs)
For the second segment v � �d, the following holds true:

d(v, �d) ≤ d(v, s) + d(s, d)+d(d, �d) (triangle inequality)

≤ d(s, v) + d(s, d)+d(�d, d) (undirected graph)

≤ d(s, d) + d(s, d) + d(�d, d) (v ∈ Vs ∧ d �∈ Vs)

≤ d(s, d) + d(s, d) + 2d(s, d) Lemma1.1

= 4d(s, d).

For the third segment �d � d, the following statement

holds true by simple application of Lemma 1.1:

d(�d, d) ≤ 2d(s, d).

Now, by combining all three path segments into the final

path, we see that its length is ≤ 7d(s, d). This result shows an

upper bound on path stretch of 7. �

Theorem 2 (State Bound). After routing state convergence

and with high probability, each U-Sphere node must maintain

O(
√

n log n) entries in its routing and name resolution tables.

Proof. Each node must maintain the following state in its

routing tables via the path-vector protocol: (a) route entries

for each of the landmark nodes; and (b) route entries for its

extended vicinity. The protocol has each node become a land-

mark independently with probability
√

(log n)/n (based on a

node’s size estimate n). There are therefore O(
√

n log n) land-

mark nodes in expectation and, by a Chernoff bound, with

high probability. For the extended vicinity, each node accepts

O(
√

n log n) route updates from its neighbors.

In addition to routing tables, each node must also main-

tain name resolution state that is required for resolving node

identifiers into L-R addresses: (a) node identifier to L-R ad-

dress mappings for all members of its own sloppy group;

(b) links to near members of its own sloppy group; and (c)

back-links to members of its own sloppy group. By construc-

tion, each node assigns itself into a sloppy group by exam-

ining the first �log2 (
√

n/ log n)� bits of its node identifier.

This results in each sloppy group having O(
√

n log n) nodes

in expectation, and again by a Chernoff bound, with high

probability. Therefore, each node must maintain mappings

for O(
√

n log n) other nodes.

Overlay construction requires each node to maintain links

to O(log n) members of its own sloppy group and O(log2n)

back-links to members of its own sloppy group. Forward

sloppy group link state is shared with the extended vicinity

route entries stored in the routing table.

Finally, each node with degree δ must also maintain O(δ)

security associations with its peers. Although, in the worst

case, O(δ) could be larger than O(
√

n log n), the node only

needs to store security associations for the peers that are

part of active routes in the routing table—and there are only

O(
√

n log n) active routes at any one time.

Summing up all the different amounts of state needed by

different parts of the protocol, we see that U-Sphere requires

O(
√

n log n) per-node state. �

References

[1] I. Baumgart, F. Hartmann, Towards secure user-centric networking:
service-oriented and decentralized social networks, in: 2011 Fifth IEEE

Conference on Self-adaptive and Self-organizing Systems Workshops
(SASOW), 2011, pp. 3–8.

http://dx.doi.org/10.13039/501100004329
http://dx.doi.org/10.13039/501100004329
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0001

30 J. Kos et al. / Computer Networks 89 (2015) 14–31
[2] L. Cutillo, R. Molva, T. Strufe, Safebook: a privacy-preserving online so-
cial network leveraging on real-life trust, IEEE Commun. Mag. 47 (12)

(2009) 94–101. ISSN 0163-6804.
[3] C. Grothoff, B. Polot, C. von Loesch, The internet is broken: idealistic

ideas for building a GNU network, in: W3C/IAB Workshop on Strength-
ening the Internet Against Pervasive Monitoring (STRINT), W3C/IAB,

W3C/IAB, London, UK, 2014.

[4] B.C. Popescu, B. Crispo, A.S. Tanenbaum, Safe and private data shar-
ing with turtle: friends team-up and beat the system, in: Proceed-

ings of the 12th International Conference on Security Protocols, SP’04,
Springer-Verlag, Berlin, Heidelberg, 2006, pp. 213–220. ISBN 3-540-

40925-4, 978-3-540-40925-0.
[5] B.A. Ford, UIA: a global connectivity architecture for mobile personal

devices, Massachusetts Institute of Technology, 2008 (Ph.D. thesis).
[6] D. Clark, The design philosophy of the DARPA Internet protocols, in:

Symposium Proceedings on Communications Architectures and Proto-

cols, SIGCOMM ’88, ACM, New York, NY, USA, 1988, pp. 106–114. ISBN
0-89791-279-9.

[7] J.R. Douceur, The Sybil attack, in: P. Druschel, F. Kaashoek, A. Row-
stron (Eds.), Peer-to-peer Systems, Lecture Notes in Computer Science,

2429, Springer/Berlin/Heidelberg, 2002, pp. 251–260. ISBN 978-3-540-
44179-3.

[8] L. Alvisi, A. Clement, A. Epasto, S. Lattanzi, A. Panconesi, SoK: the evo-

lution of Sybil defense via social networks, in: 2013 IEEE Symposium
on Security and Privacy (SP), 2013, pp. 382–396. ISSN 1081-6011.

[9] H. Yu, M. Kaminsky, P.B. Gibbons, A.D. Flaxman, SybilGuard: defending
against Sybil attacks via social networks, IEEE/ACM Trans. Netw. 16 (3)

(2008) 576–589.
[10] G. Danezis, P. Mittal, SybilInfer: detecting Sybil nodes using social net-

works, in: NDSS, 2009.

[11] C. Lesniewski-Laas, M.F. Kaashoek, Whanau: a Sybil-proof distributed
hash table, in: Proceedings of the Seventh USENIX Conference on Net-

worked Systems Design and Implementation, NSDI’10, USENIX Associ-
ation, Berkeley, CA, USA, 2010, p. 8.

[12] G. Urdaneta, G. Pierre, M.V. Steen, A survey of DHT security techniques,
ACM Comput. Surv. 43 (2) (2011) 8:1–8:49. ISSN 0360-0300.

[13] P. Mittal, M. Caesar, N. Borisov, X-Vine: secure and pseudonymous rout-

ing using social networks, in: Proceedings of NDSS 2012, 2012.
[14] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, ROFL:

routing on flat labels, SIGCOMM Comput. Commun. Rev. 36 (4) (2006)
363–374. ISSN 0146-4833.

[15] A. Singla, P.B. Godfrey, K. Fall, G. Iannaccone, S. Ratnasamy, Scalable
Routing on Flat Names, Association for Computing Machinery, p. 1.

ISBN 9781450304481.

[16] I. Clarke, O. Sandberg, B. Wiley, T. Hong, Freenet: a distributed anony-
mous information storage and retrieval system, in: H. Federrath (Ed.),

Designing Privacy Enhancing Technologies, Lecture Notes in Computer
Science, 2009, Springer, Berlin/Heidelberg, 2001, pp. 46–66. ISBN 978-

3-540-41724-8.
[17] N. Evans, C. GauthierDickey, C. Grothoff, Routing in the dark: pitch

black, in: Twenty-third Annual Computer Security Applications Con-

ference, 2007. ACSAC 2007, 2007, pp. 305–314. ISSN 1063–9527.
[18] C.J. Delisle, CJDNS. URL: https://github.com/cjdelisle/cjdns, 2014.

[19] P.R. Zimmermann, The Official PGP User’s Guide, MIT Press, Cambridge,
MA, USA, 1995. ISBN 0-262-74017-6.

[20] N. Evans, B. Polot, C. Grothoff, Efficient and Secure Decentralized Net-
work Size Estimation, Springer-Verlag, 2012.

[21] D. Bernstein, Curve25519: new Diffie–Hellman speed records, in:
M. Yung, Y. Dodis, A. Kiayias, T. Malkin (Eds.), Public Key Cryptography—

PKC 2006, Lecture Notes in Computer Science, 3958, Springer,

Berlin/Heidelberg, 2006, pp. 207–228. ISBN 978-3-540-33851-2.
[22] D. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang, High-speed high-

security signatures, J. Cryptogr. Eng. 2 (2) (2012) 77–89. ISSN 2190-
8508.

[23] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, M. Thorup, Compact name-
independent routing with minimum stretch, ACM Trans. Algorithms 4

(3) (2008) 37:1–37:12. ISSN 1549-6325.

[24] Y. Mao, F. Wang, L. Qiu, S. Lam, J. Smith, S4: small state and small stretch
compact routing protocol for large static wireless networks, IEEE/ACM

Trans. Netw. 18 (3) (2010) 761–774.
[25] P.B. Godfrey, I. Ganichev, S. Shenker, I. Stoica, Pathlet routing, SIGCOMM

Comput. Commun. Rev. 39 (4) (2009) 111–122. ISSN 0146-4833.
[26] I. Abraham, C. Gavoille, D. Malkhi, Routing with improved

communication-space trade-off, in: R. Guerraoui (Ed.), Distributed

Computing, Lecture Notes in Computer Science, 3274, Springer,
Berlin/Heidelberg, 2004, pp. 305–319. ISBN 978-3-540-23306-0.

[27] N.S. Evans, C. Grothoff, Beyond simulation: large-scale distributed em-
ulation of p2p protocols, in: Proceedings of the Fourth Conference on

Cyber Security Experimentation and Test, CSET’11, USENIX Association,
Berkeley, CA, USA, 2011, p. 4.
[28] D.J. Bernstein, Curvecp: usable security for the internet. URL: http://
curvecp.org, 2011.

[29] J. Kos, U-sphere implementation and testbed. URL: https://
github.com/kostko/unisphere, 2014.

[30] A.-L. Barabasi, R. Albert, Emergence of scaling in random networks, Sci-
ence 286 (5439) (1999) 509–512.

[31] P. Holme, B.J. Kim, Growing scale-free networks with tunable cluster-

ing, Phys. Rev. E 65 (2002) 026107.
[32] J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: densification

laws, shrinking diameters and possible explanations, in: Proceedings
of the Eleventh ACM SIGKDD International Conference on Knowledge

Discovery in Data Mining, KDD ’05, ACM, New York, NY, USA, 2005,
pp. 177–187. ISBN 1-59593-135-X.

[33] M. Caesar, M. Castro, E.B. Nightingale, G. O’Shea, A. Rowstron, Virtual
ring routing: network routing inspired by DHTs, SIGCOMM Comput.

Commun. Rev. 36 (4) (2006) 351–362. ISSN 0146-4833.

[34] M. Thorup, U. Zwick, Compact routing schemes, in: Proceedings of the
Thirteenth Annual ACM Symposium on Parallel Algorithms and Archi-

tectures, SPAA ’01, ACM, New York, NY, USA, 2001, pp. 1–10. ISBN 1-
58113-409-6.

[35] N.S. Evans, C. Grothoff, R5N: Randomized Recursive Routing for
Restricted-route Networks, Institute of Electrical and Electronics En-

gineers, pp. 316–321. ISBN 978-1-4577-0458-1.

[36] B. Heep, R/Kademlia: recursive and topology-aware overlay routing, in:
2010 Australasian Telecommunication Networks and Applications Con-

ference (ATNAC), 2010, pp. 102–107.
[37] H. Yu, P.B. Gibbons, M. Kaminsky, F. Xiao, SybilLimit: a near-optimal

social network defense against Sybil attacks, IEEE/ACM Trans. Netw. 18
(3) (2010) 885–898.

[38] N. Tran, J. Li, L. Subramanian, S.S. Chow, Optimal Sybil-resilient Node

Admission Control, Institute of Electrical and Electronics Engineers, pp.
3218–3226. ISBN 978-1-4244-9919-9.

[39] L. Wang, J. Kangasharju, Real-world Sybil attacks in BitTorrent mainline
DHT, in: 2012 IEEE Global Communications Conference (GLOBECOM),

2012, pp. 826–832. ISSN 1930-529X.
[40] Z. Yang, C. Wilson, X. Wang, T. Gao, B.Y. Zhao, Y. Dai, Uncovering social

network Sybils in the wild, ACM Trans. Knowl. Discov. Data 8 (1) (2014)

2:1–2:29. ISSN 1556-4681.
[41] B. Kannhavong, H. Nakayama, Y. Nemoto, N. Kato, A. Jamalipour, A sur-

vey of routing attacks in mobile ad hoc networks, IEEE Wireless Com-
mun. 14 (5) (2007) 85–91. ISSN 1536-1284.

[42] S. Kent, C. Lynn, K. Seo, Secure border gateway protocol (S-BGP), IEEE J.
Selected Areas Commun. 18 (4) (2000) 582–592. ISSN 0733-8716.

[43] S. Desilva, R. Boppana, Mitigating malicious control packet floods in ad

hoc networks, in: 2005 IEEE Wireless Communications and Network-
ing Conference, 4, 2005, pp. 2112–2117. ISSN 1525-3511.

[44] Y.-C. Hu, A. Perrig, M. Sirbu, SPV: secure path vector routing for secur-
ing BGP, SIGCOMM Comput. Commun. Rev. 34 (4) (2004) 179–192. ISSN

0146-4833.
[45] Y.-C. Hu, A. Perrig, D. Johnson, Wormhole attacks in wireless networks,

IEEE J. Selected Areas Commun. 24 (2) (2006) 370–380. ISSN 0733-

8716.

Jernej Kos is a computer science researcher, soft-

ware developer and network engineer with over
10 years of experience. He enjoys working on in-

teresting projects, specifically with backend ar-
chitecture and low-level details. He has experi-

ence with scalable web application development,

development of software for embedded devices,
routing protocol internals and security protocols.

He is currently involved the open source project
wlan slovenija, where he has developed a mod-

ular platform for configuration, provisioning and
network monitoring of large-scale wireless mesh

networks, an efficient VPN solution based on

L2TPv3 support in the Linux kernel and a big data time series process-
ing library. His current research interests include secure, Sybil-tolerant and

privacy-aware decentralized services and novel location-independent com-
pact routing protocols. To this end he has also developed Boost.ASIO C++

bindings for the CuveCP protocol and in the course of his Ph.D. thesis is work-
ing on a secure and scalable location-independent routing protocol that can

be used in mesh networks and/or for building decentralized social networks.

Together with other members of the Laboratory for e-Media he is currently
involved with EU project SALUS which aims to deliver a secure PPDR net-

work infrastructure based on LTE and IEEE802.11 technologies. He has suc-
cessfully applied for and received grants from the Shuttleworth Foundation

and the NLnet Foundation.

http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0016
https://github.com/cjdelisle/cjdns
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0025
http://curvecp.org
https://github.com/kostko/unisphere
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0029
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0030
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0031
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0031
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0032
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0032
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0032
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0032
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0032
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0033
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0033
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0033
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0034
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0034
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0034
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0034
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0034
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0034
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0034
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0035
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0035
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0035
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0035
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0035
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0035
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0036
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0036
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0036
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0036
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0037
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0037
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0037
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0038
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0038
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0038
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0038
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0039
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0039
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0039
http://refhub.elsevier.com/S1389-1286(15)00229-7/sbref0039

J. Kos et al. / Computer Networks 89 (2015) 14–31 31

Mahdi Aiash received his B.Eng. degree in Com-

puter Engineering from Aleppo University, Syria
in 2004 and a master degree (M.Sc.) from Mid-

dlesex University, London, UK in 2008. Recently,

he finished his Ph.D. at the same University. His
main research area is in information security and

networking.

Jonathan Loo received his M.Sc. degree in Elec-
tronics (with distinction) from the University of

Hertfordshire, UK in 1998 and his Ph.D. degree in

Electronics and Communications from the same
university in 2003. Currently, he is a reader (as-

sociate professor) at the School of Engineering
and Information Sciences, Middlesex University,

UK. He leads a research team in the area of com-
munication and networking. His research inter-

est includes network architecture, communica-

tion protocols, network security, embedded sys-
tems, video coding and transmission, wireless

communications, digital signal processing, and
optical networks. He has successfully graduated 11 Ph.D.s as director of stud-

ies in the aforementioned specialist areas.
Denis Trček is with Faculty of Computer and In-

formation Science, University of Ljubljana, where
he heads Laboratory of e-Media. He has been in-

volved in the field of computer networks and IS

security and privacy for over 20 years. He has
taken part in various EU and national projects

in government, banking and insurance sectors
(projects under his supervision totaled to ap-

prox. one million EUR). His bibliography includes
over 100 titles, including monograph published

by renowned publisher Springer. He has served

(and still serves) as a member of various inter-
national bodies and boards (MB of the European

Network and Information Security Agency, etc.). His interests include secu-
rity, trust management, privacy and human factor modeling. He is a member

of the IEEE.

	U-Sphere: Strengthening scalable flat-name routing for decentralized networks
	1 Introduction
	2 U-Sphere overview
	2.1 Threat model and assumptions
	2.1.1 Definition of Sybil-tolerance
	2.1.2 Local knowledge and secure size estimation
	2.1.3 Cryptographic primitives

	2.2 Protocol overview
	2.2.1 Location-independent message routing
	2.2.2 Security

	3 The proposed protocol
	3.1 Location-dependent routing
	3.1.1 Node identifiers
	3.1.2 Virtual port identifiers (vports)
	3.1.3 Landmarks
	3.1.4 Landmark-relative addresses
	3.1.5 Vicinities
	3.1.6 Path-vector route update protocol

	3.2 Destination L-R address resolution
	3.2.1 Sloppy groups
	3.2.2 Extended vicinity
	3.2.3 Dissemination overlay construction
	3.2.4 Name/locator record update protocol

	3.3 Routing decisions

	4 Securing U-Sphere
	4.1 Signed route updates
	4.2 Name resolution
	4.3 Landmarks

	5 Evaluation
	5.1 Methodology
	5.1.1 Protocol implementation overview
	5.1.2 Testbed

	5.2 Results
	5.2.1 Path stretch
	5.2.2 L-R address lengths
	5.2.3 Link congestion
	5.2.4 RIB and NIB state
	5.2.5 Message complexity
	5.2.6 Sybil attacks

	6 Related work
	6.1 Compact routing
	6.2 Securing routing in DHTs
	6.3 General Sybil-detection protocols
	6.4 General attacks on routing protocols
	6.5 Limitations of U-Sphere

	7 Conclusion
	 Acknowledgments
	Appendix A Proofs of stretch and state bounds
	 References

