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In this work, a nonlocal damage-plasticity model for dynamic finite element analyses of cohesive struc-
tural elements is presented. The proposed cohesive model is able to reproduce the main relevant behav-
iors of quasi-brittle materials despite being quite simple, i.e. governed by only a few parameters which
can be determined by standard laboratory tests. In particular, the model is able to reproduce the mecha-
nisms of cohesive materials under static or dynamic loads: degradation of the mechanical properties
(damage) and accumulation of irreversible strains (plasticity). Moreover, the model also simulates the
cyclic macroscopic behavior of quasi-brittle materials, taking into account the loss and recovery of stiff-
ness due to crack closure and reopening. The latter effect represents a particularly important character-
istic in the case of dynamic loads. The proposed formulation is implemented as a constitutive model for
two-dimensional plane stress four-node quadrilateral elements. The second order equations of motion
are solved adopting the implicit Newmark time integration scheme. The proposed model is validated
and its dynamic performance is numerically demonstrated through the analysis of a large-scale structural
element.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Earthquakes represent one of the major threats to the world’s
architectural heritage, which consists mostly of structures made
of cohesive materials, such as concrete or masonry. Thus, the
inelastic dynamic analysis has become an important task for eval-
uating the safety of existing structures subject to seismic actions.
One of the most crucial point in the modeling process is the adop-
tion of appropriate material constitutive laws. Many mathematical
models and computational tools have been proposed to date for
nonlinear analysis of structures made of cohesive material.
Common models able to satisfactory reproduce the cyclic behavior,
which is a quite complex phenomenon of cohesive materials, are
based on damage mechanics, plasticity theory or a combination
of both.

The failure of cohesive material is modeled by constitutive laws
characterized by strain softening; indeed, numerical approaches
based on standard local constitutive models are widely deemed
inappropriate for studying this class of materials. Applications of
these models in finite element programs to perform structural
analyses run into severe difficulties. In fact, in a finite element
approach, the strain may localize into narrow bands whose width
depends on the finite element size and tends to zero when the
mesh is refined; consequently, the bulk energy dissipated in the
process zone tends to zero. Therefore, the numerical solution
becomes ineffective as strongly depending on the choice of mesh
made by the analyst. A general and effective way to avoid strain
localization into a zero volume and to overcome spurious mesh
sensitivity is the use of regularized models based on nonlocal con-
tinuum approaches [1–4].

The presence of damage or of other inelastic phenomena modi-
fies the overall structural dynamic response, and the damage prop-
agation potentially interacts dynamically with the element
vibrations; in other words, the degradation of the mechanical
properties of a system are associated with changes in its structural
behavior. Based on these considerations, research efforts have
sought to use variations in the dynamic behavior to detect struc-
tural damage. Particular attention has been focused on the use of
frequencies only, on account of the ease of measuring them and,
therefore, their experimental reliability. Within this framework,
dynamic analyses of damaged structures have been performed in
[5,6] with the aim of detecting damage and evaluating the condi-
tion of the structure.

The study of the evolution of damage under dynamic loading
has been approached in [7], where a local one-dimensional
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constitutive law implemented into a fiber model is proposed for a
beam finite element.

In the field of nonlocal constitutive laws, an integral nonlocal
damage model is presented in [8], where an explicit time step algo-
rithm is implemented in a parallel finite element code. A gradient
nonlocal model for nonlinear dynamic analysis of heterogeneous
media is presented in [9], where the coupling between rate-depen-
dent plasticity and rate-independent damage is considered. A non-
linear elasticity approach has been adopted for investigating the
transverse vibration of bilayer graphene sheets [10]. Numerical
simulations developed adopting both local and nonlocal con-
stitutive laws of high velocity impact problem of a rigid projectile
within softening material are presented in [11]; it is shown that
the nonlocal model allows to alleviate numerical instabilities, spur-
ious post-bifurcation and mesh dependency solutions.

A further aspect of the dynamics of structures in which evolving
damage occurs is the opening and closure of microcracks, which
define the damage state. Indeed, when the material is subjected
to compressive strain, the microcracks reclose, inducing a stiffen-
ing recovery of the damaged material. The unilateral behavior of
damaged materials has been studied mainly in the framework of
quasi-static cyclic analyses, as for instance in [12–14]. It can be
remarked that the unilateral phenomenon can induce peculiar fea-
tures in the dynamics of damaged elements [5].

It can be remarked that, while there is a great interest in the
response of damaging and damaged structures subjected to seis-
mic actions, there is a quite reduced research activity concerning
the dynamic structural response in the framework of nonlocal for-
mulations for damage evolution, allowing softening effect. The
main purpose of this paper is to give a contribution in this direc-
tion, developing a suitable numerical procedure to study the
mechanical behavior of structures made of cohesive materials.

On the base of the above considerations, this work explores the
dynamic response of two-dimensional cohesive structural ele-
ments taking into account the damage evolution, the presence of
inelastic strains, and the unilateral effect due to crack closure
within a nonlocal constitutive law. To this end, a nonlocal model
[15] is formulated in a dynamic framework for investigating the
damaging evolution of vibrating structures. Specifically, a slightly
modified version of the model is presented and the validation of
the formulated methodology in reproducing the degradation of
structures under dynamic cyclic loadings is provided. Moreover,
the present work presents a set of applications with the aim to
validate the model for the dynamic analyses, by emphasizing the
importance of the adoption of a nonlocal constitutive law, able to
satisfactorily simulate the hysteretic behavior of a cohesive mate-
rial. Therefore, the presented model reproduces the typical behav-
ior of quasi-brittle materials, while remaining quite simple;
indeed, the model is governed by only a few parameters which
can be determined by standard laboratory tests. In particular,
through the introduction of only five parameters, the model is able
to reproduce the main features characterizing the macroscopic
response of the quasi-brittle material under static or dynamic
loads: degradation of the mechanical properties in tension and in
compression, different strengths and softening responses in ten-
sion and in compression, evolution of irreversible strains, and uni-
lateral phenomena due to microcrack reclosure and nonlocal
stress-strain relationships. The proposed formulation is imple-
mented as a constitutive model for two-dimensional, four-node
quadrilateral elements in a research version of the finite element
code FEAP [16,17]. The second-order equations of motion are
solved adopting the implicit Newmark time integration scheme.

The dynamic performance of the proposed model is assessed
through the numerical analysis of a large-scale structural element.
Specifically, a vertical structural member belonging to the Basilica
of S. Maria di Collemaggio, an important medieval church located
in L’Aquila town and heavily damaged during the 2009 earthquake,
is considered as a case study. The damage propagation induced in
the examined mechanical system by two types of imposed base
motion, i.e. by a simple harmonic motion and by the motion pro-
duced during 2009 L’Aquila earthquake, is investigated. The varia-
tions in the dynamic behavior (i.e. displacement amplitudes,
frequency contents, hysteretic dissipation energy) due to harmonic
motions are analyzed for the structural member with respect to
undamaged condition. The performance of the cohesive model in
reproducing the degradation state observed after 2009 L’Aquila
earthquake are tested. Furthermore, some advantages provided
by the nonlocal approach, compared to the local formulation, are
verified for both applied loading functions.

The paper is organized as follows. First, the governing equations
of the cohesive model are provided. Then, the numerical procedure
is briefly presented and the results of some numerical applications
are illustrated. Finally, concluding remarks are made.

 

2. Cohesive constitutive model

2.1. Constitutive law

The following isotropic damage model is introduced:

r ¼ �r ð1� DtÞH Je
1

� �
þ ð1� DcÞ 1� H Je

1

� �� �� �
ð1Þ

where r and �r are the stress tensor and effective stress tensor,
respectively; Dt and Dc are two damage variables which capture
the stiffness degradations of the concrete in tension and compres-
sion; Je

1 ¼ trðeÞ is the first invariant of the elastic strain; HðxÞ
denotes the Heaviside function (i.e. HðxÞ ¼ 1 if x P 0, otherwise
HðxÞ ¼ 0). In formula (1), as the damage variables affect the whole
effective stress �r, an isotropic damage state is implicitly considered.

The effective stress tensor is computed as:

�r ¼ C : ðe� pÞ ¼ C : e ð2Þ

where e;p and e are the total strain, the plastic strain and the elastic
strain, respectively; C is the fourth-order elastic stiffness tensor; the
colon symbol indicates the double contraction.

It can be remarked that the constitutive law defined by Eqs. (1)
and (2) leads to discontinuities in the stress-strain relationship.
Indeed, considering an isotropic cohesive material subjected to a
shear strain c12 accompanied with e11 ¼ e22 ¼ a, the shear stress
is s12 ¼ Gc12½ð1� DtÞHðaÞ þ ð1� DcÞð1� HðaÞÞ�, with G the shear
modulus. Setting Dt > Dc and taking c12 as a constant, s12 suddenly
modifies when the value of a changes from negative to positive. It
can be considered realistic to have a stiffer shear response when
the material point is subjected to volumetric contraction (a < 0)
with respect to the case of volumetric expansion (a > 0), because
of the positive effect of the friction in compression. However, this
strong discontinuity of the response in the material point is
undesirable from both a physical and a mathematical point of
view. For this reason, in order to avoid the strong discontinuity
in the stress value, a regularized form of the Heaviside function
is adopted in the present model; in particular, it is posed:

HðxÞ ¼ 1
1þ e�x=h

ð3Þ

where h is a small parameter governing the regularization effect
(h = 0.001–0.0005).

The introduction of the regularization function (3) in the con-
stitutive law (1) does not completely overcome the deficiency of
the model but improves and confines the sudden jumps, which
occur for infrequent cyclic strain paths.
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2.2. Evolution law of the plastic strain

The evolution of the plastic strain is described by introducing a
yield function, which is a branch of a modified hyperbola (Fig. 1a),
the associative law and the loading–unloading conditions in the
Kuhn–Tucker form:

f Y ð�rÞ¼A�ð�r1� �rY Þð�r2� �rY ÞþB h�r1� �rYi2�þh�r2� �rY i2�
h i

60 ð4Þ

_p ¼ _k
@f Y

@�r
ð5Þ

_k P 0; f Yð�rÞ 6 0; _kf Y ð�rÞ ¼ 0 ð6Þ

respectively, where �r1 and �r2 are the principal stresses of the effec-
tive stress tensor �r; the bracket symbol h:i� denotes the negative
part of the number; �rY is the material parameter linked to the uni-
axial compressive strength of the concrete rY thorough the expres-
sion �rY ¼ ðAþ r2

YÞ=rY ; A and B are parameters governing the shape
of the yield function whose values are assumed in the following
analyses as A ¼ 0:1 N2=mm4 and B ¼ 1; _k is the plastic multiplier.

2.3. Evolution law of the damage

As a damage softening constitutive law is introduced, the local-
ization of the strain and damage could occur. In order to overcome
this pathological problem, to account for the correct size of the
localization zone and, also, to avoid strong mesh sensitivity in
the numerical results in finite element analyses, a nonlocal con-
stitutive law is considered both for the compressive and tensile
damage.

In particular, the evolution of the compressive damage Dc is
combined with the development of the plastic strain through the
following cubic relationship:

Dc ¼max
history
fminf1; eDcgg with eDc ¼ �

2
j3

u

�j3 þ 3
j2

u

�j2 ð7Þ

where ju is the final accumulated plastic strain associated with the
compressive damage Dc ¼ 1; �j is the nonlocal accumulated plastic
strain:

�jðxÞ ¼ 1R
X wcðx; yÞdXðyÞ

Z
X

wcðx; yÞjðyÞdXðyÞ ð8Þ

with j the local value of the accumulated plastic strain, and wc the
weight function in compression which determines the influence of
(a)

Fig. 1. (a) Elastic domain in the principal stress space;
the point y on x; in particular, the function wc is set to depend only
on the distance kx� yk as:

j ¼
Z t

0
k _pkdt wcðx; yÞ ¼ 1� kx� yk2

R2
c

* +
þ

ð9Þ

In Eq. (9), the bracket symbol h:iþ denotes the positive part of
the number, the parameter 2Rc is the characteristic length, deter-
mining the size of the volume X, which significantly contributes
to the definition of the nonlocal accumulated plastic strain.

The evolution of the tensile damage parameter Dt is governed
through the following nonlocal exponential law:

Dt ¼max
history
f0; eDtg with eDt ¼

�eeq � e0 expð�kð�eeq � e0ÞÞ
�eeq

ð10Þ

where e0 is a material parameter indicating the strain damage
threshold; k is a parameter governing the softening branch of the
stress–strain relation and is related to the damage tensile fracture
energy Gt ¼ Ee0ðe0kþ 2Þ=ð2kÞ; �eeq is the nonlocal equivalent elastic
strain:

�eeqðxÞ ¼
1R

X wtðx; yÞdXðyÞ

Z
X

wtðx; yÞeeqðyÞdXðyÞ ð11Þ

with the equivalent elastic strain eeq and weight function in tension
wt , which determines the influence of the point y on x, defined as:

eeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
he1i2þ þ he2i2þ

q
wtðx; yÞ ¼ 1� kx� yk2

R2
t

* +
þ

ð12Þ

In Eq. (12), e1 and e2 are the principal elastic strains. Moreover,
the condition that the damage in compression must not be lower
than the one in tension is assumed Dt P Dc . The graph of the limit
function for the tensile damage in principle stresses field is reported
in Fig. 1a. A qualitative trend of the local responses of the cohesive
model in tension and in compression is shown in Fig. 1b.

3. Motion equations and finite element discretization

A deformable body X subjected to a motion is considered; the
weak form of the linear momentum balance, or virtual work
expression, takes the following form:Z

X
r : de dXþ

Z
X
qa �du dX�

Z
X

b �du dX�
Z
@X

t �du dX¼0 ð13Þ

where q is the mass density, a is the acceleration, b is the body
force, t is the traction force acting on @X; de is a strain field com-
patible with the admissible displacement field du.

 

(b)

(b) Uniaxial response in tension and compression.
 



Fig. 2. Basilica S. Maria di Collemaggio: (a) view of entire historical complex; (b) facade; (c) naves.

Fig. 3. Cracking in the octagonal central column located in the hall to due to out-of-plane-mechanism caused by earthquakes; (a) found during the restoration of the 1970s;
(b, c) after the 2009 L’Aquila earthquake.
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The body X is discretized into finite elements Xe and a suitable
displacement interpolation is introduced into the virtual displace-
ment expression, which leads to the ordinary differential system of
equations of motion:

M€uþ f intðuÞ ¼ fext ð14Þ

where u is the nodal displacement vector and €u the nodal accelera-
tion vector, in which dots denote the derivative with respect to

time. In Eq. (14) the mass matrix M, the internal forces vector f int,
and the external force acting upon the system fext are obtained
assembling the element mass matrix and force vectors:
Me ¼
Z

Xe

qNT N dX

f int
e ¼

Z
Xe

BTr dX

fext
e ¼

Z
Xe

NT b dXþ
Z
@Xe

NT t @X

ð15Þ

The matrices N and B contain the conventional element interpola-
tion functions and its derivatives, respectively. Notice that in the sec-
ond expression of the Eq. (15), the stress tensor r is a function of the
damage variables governed by nonlocal measure of the strain scalar
quantities, �j and �eeq, defined in the relationships (8) and (11). 



(b)(a)

c

Examined column

Section A-A

Fig. 4. Examined structural system: (a) position in plan; (b) geometry (units in meters).

Fig. 5. Finite element modeling of the examined structural system: (a) discretization and initial boundary condition; (b) modeling of the geometry of the ogival arch; (c)
modeling of the cross section of the octagonal pillar.

Table 1
Material parameters.

E (N/mm2) m e0 rY (N/mm2) ju Gt (N/mm2) R (m) q (kN/m3)

Ogival arch 2500 0.2 0.00012 �3 0.07 0.01 0.4 21.35
Column 20400 0.2 0.00005 �3 0.07 0.01 0.4 17
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From the set of Eq. (14), only the equations related to the free-
coordinates ~u can be discerned and, taking into account the bound-

ary conditions on the restrained-coordinates u
_

, they are rewritten
in following form:fM€~uþ ~f intð~uÞ ¼ ~fext �fMr€ug ð16Þ

where fM;~f int and ~fext are the restrictions of M; f int and fext to the
degrees of freedom ~u; moreover, ug is an imposed displacement
time-history at the ground in the direction described by the alloca-
tion vector r, and €ug is its second time derivative, i.e. the ground
acceleration.

The proposed nonlocal material model is implemented as a con-
stitutive model for two-dimensional four-node quadrilateral ele-
ments in a research version of the finite element code FEAP [17].
In the implementations, the integrals of Eq. (15) are solved adopt-
ing the Gauss–Legendre quadrature technique. The second order 



Table 2
Comparison of the natural frequencies of the two different models.

Mode f
_

[Hz] f [Hz] Error [%]

1 1.449 1.455 0.41
2 4.531 4.593 1.37
3 9.073 9.331 2.76
4 20.964 21.875 4.16
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equations of motion (16) are solved adopting the implicit
Newmark time integration scheme setting d ¼ 1=2 and a ¼ 1=4.

4. Damage propagation in a large-scale structural system

4.1. Case study

The damage propagation in a large-scale structure under in-
plane loading is investigated. In particular, the study analyzes the
local dynamic behavior of a particular structural member belong-
ing to the Basilica S. Maria di Collemaggio, the most celebrated
medieval church in the Italian Region of Abruzzo, located in the
town of L’Aquila. The architectonic complex of S. Maria di
Collemaggio comprises the church and the monastery (Fig. 2a).

The church is famous for the elegant Romanesque facade
(Fig. 2b), which features a central door and two smaller flanking
doors; each door is a round arch set into a series of archivolts,
and each is surmounted by a rose window. The main decoration
of the facade consists in contrasting stone arranged in a sort of
tapestry of cruciform elements. An octagonal belfry located on
the left side of the facade gives the building an asymmetrical
appearance. The interior hall follows the standard plan of a nave
and two side aisles. Each side aisle is divided from the nave by a
row of seven columns (Fig. 2c), from which ogival arches support
a tall wooden ceiling (Fig. 2c). The hall is separated from the trans-
ept by two large columns, which support the two barrel vaults, the
dome and a part of the internal walls. The transept of the Basilica
does not produce the so called ‘‘Latina cross shape’’ because it does
not extend beyond the perimeter wall of the side aisles. Finally,
behind the transept there are a presbytery and three apses con-
structed in masonry.

Over the years, the basilica has undergone numerous trans-
formations, whether due to earthquake damages or stylistic ren-
ovation. In the last thirty years, numerous research experiments
and numerical studies have been undertaken with the purpose of
understanding the dynamic behavior of this historical monument,
e.g. [18,19]. Several diagnostic tests and renovations have been
carried out in order to improve the static and dynamic behavior
of the basilica.

The most recent works were performed on the basilica immedi-
ately after the devastating earthquake, of 5.8 Richter magnitude,
which struck L’Aquila on the 6th of April, 2009. The main shock
caused the collapse of the dome and the large pillars beneath it,
as well as severe damage to the presbytery and almost all of the
columns in the hall. In particular, the structural interventions per-
formed on the monument to preserve it during aftershocks and up
to reconstruction included: the positioning of a temporary roof in
the transept area, the strengthening of the ends of the two internal
masonry walls by the use of fiber reinforced polymer (FRP) strips,
the shoring up of the internal walls localized in the hall, the wrap-
ping of all columns with polyester belts, the installation of steel
ties connecting the side panels, the restoration of the façade, and
the installation of a permanent structural monitoring system
[20,21].

The Basilica presents a slender shape in the direction parallel to
the naves, and the absence of significant transversal walls makes
the panels of the hall seismically vulnerable for out-of-plane
actions. For this reason, the strong earthquakes which have
occurred in the territory of L’Aquila in recent years have often
caused severe damage to the columns in the hall, which damage
has been characterized by large and deep corresponding cracks
in the bases and tops of the columns, mainly due to out-of-plane
mechanisms (Fig. 3).

In view of the above, the numerical analyses developed here
have the purpose of examining the vibrations and the degradation
of a single hall pillar under different out-of-plane loadings. In
particular, the central pillar belonging to the left internal wall is
considered; this central pillar is the one farthest from the two
transversal walls and, as a consequence, it is the least constrained,
subject to higher stresses, and the most free to deform.

The geometry of the studied structural system is depicted in
Fig. 4. It is composed of the central stone column and two half ogi-
val arches above it, which belong to the influence area of the pillar.
The stone column is 5.25 m high with an octagonal cross section,
each of the eight sides measuring 0.5 m wide, and the column as
a whole measuring 1.2 m wide. The masonry arch has a thickness
of 1.16 m and extends to a height of 13 m from the top of the pillar
to the high wooden ceiling; the distance between the two consecu-
tive keystones is 7.5 m. The ogival arch is characterized by a mid-
span, a rise, and a radius which measure 3.14, 3.8 and 3.85 m,
respectively; the centers of the two circumferences constituting
it are shifted 0.66 m with respect to the midspan.

 

4.2. Modeling

The large scale structural member is modeled using the devel-
oped two-dimensional four-node quadrilateral element, where
the isotropic damage model is implemented at Gauss point level.
It has to underline that the adoption of the isotropic damage model
for the macromechanical analysis of the masonry structures is an
approximation and the use of an orthotropic model would be more
appropriate. The use of an isotropic damage model is often not
strongly limiting, as the geometric distribution of the damage field
leads to the formation of specific areas highly damaged, which are
responsible for the collapse mechanisms governing the response of
the structure.

The discretization of the structural system is characterized by a
total of 700 finite elements. This choice of mesh assures a satisfac-
tory numerical result, particularly with reference to the initial
evaluation of the elastic modal analysis. Indeed, considering
refined meshes characterized by a number of finite elements
greater than 700, the first fundamental modal frequencies and
shapes do not change. The finite element discretization of the
two-dimensional model is schematically illustrated in Fig. 5. In
particular, the adopted mesh is depicted in Fig. 5a, while Fig. 5b
and c show the strategy in modeling the ogival arch and column
geometry, respectively. Specifically, the geometry of the arch and
the octagonal cross section of the pillar are modeled by modulating
the thickness of the two-dimensional finite elements.

The adopted mechanical properties for the stone pillar and the
masonry ogival arch are reported in Table 1, where they it is set
Rc ¼ Rt ¼ R. The material parameters are selected by local tests
[20] on undamaged masonry samples. In particular, the elastic
properties (E; m) of the materials are defined through the results
of ultrasonic testing, while the post peak parameters in tension
ðe0;GtÞ and in compression ðrY ; juÞ are determined on the base
of single and double flat-jack tests. The dimension of the parameter
R has been set in function of the maximum heterogeneity size,
which is linked to the size of the clay brick presented in the
masonry.

In order to take into account the influence of the connection of
the selected portion of the nave with the remaining structure and
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with the roof, concentrated masses and springs acting in a horizon-
tal direction are considered in the upper nodes of the finite ele-
ment model. The applied masses and the stiffness of the springs
are indicated with M and K , respectively. As an a priori evaluation
of these two parameters could be quite cumbersome, an inverse
procedure based on error minimization is adopted here.

Furthermore, as the examined zone is located very far from the
two transversal walls, the masonry panel contiguous to the exam-
ined structural system does not provide significant stiffness to the
out-of-plane oscillations. For this reason, their eventual con-
tributions are only modeled by the springs at the top without con-
sidering other elastic connections along the wall of the ogival arch.
The above observation is also confirmed in a study recently carried
out by Gattulli et al. [20], in which a refined finite element model
of the basilica is developed in order to understand the dynamic
behavior evidenced during the 2009 L’Aquila earthquake. In that
work, a linear modal analysis of the entire church has been pro-
vided and, from the results of the natural shapes, it appears evident
that the whole central zone of the masonry walls located in the
hall, including the examined central pillar, in correspondence with
the bending out-of-plane modes, oscillates transversally with the
remaining part of the structure furnishing only a global stiffness
and mass participation.

4.3. M and K parameter setting

The setting of the parameters M and K is performed assuring
that the dynamic characteristics, computed in terms of the natural
frequencies and modes of the two-dimensional model herein
developed, are equal to those ones obtained by the finite element
modeling of the entire basilica. In particular, the dynamic parame-
ters of the whole church, as previously mentioned, are reported in
[21].

Specifically, the modal parameters related to the first two
modes of vibration are considered. The first two out-of-plane fre-
quencies and flexional modal shapes, determined through a linear
dynamic analysis of the entire basilica, are denoted, respectively,

as f
_

1;w
_

1 and f
_

2;w
_

2.

It is has to be emphasized that the two vectors w
_

1 and w
_

2,
although provided by modal analysis of the modeling of the entire
structure, are a reduced portion of the complete modal vectors, and
have been extracted considering only the horizontal and vertical
displacement components u;v belonging to the symmetry axis of
the analyzed structural system.

It can be remarked that the numerical solution of the eigenvalue
problem, derived from the two-dimensional modeling of the con-
sidered substructure, heavily depends on the values of the two
parameters M and K. Indeed, the first two frequencies and modal
shapes are denoted as f 1ðM;KÞ;w1ðM;KÞ and f 2ðM;KÞ;w2ðM;KÞ,
respectively.
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Also in this case the vectors w1 and w2 contain only the compo-
nents of nodal displacement belonging to the axis of the two-di-

mensional structural system. Therefore, w
_

1;w
_

2 and w1;w2 are the
subeigenvectors deriving from two different models and represent
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-6
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-2
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6

u A

t [s]

elastic model
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Fig. 9. Time history of the control displacement uA for g ¼ 0:7 and u0 = 4 mm.
the modal shapes of the axis of the studied structural system. They
have the same size because the two-dimensional model herein
developed adopts a finite element discretization so that the same
nodes are introduced along the axis of the structural system as in
the model proposed in [21].

The following four equivalence conditions between the
dynamic characteristics of the two different models are enforced:

f i

f
_

i

¼ 1

MACi ¼MACðwi;w
_

iÞ ¼
jwT

i w
_

ij2

wT
i wiw

_
T
i w
_

i

¼ 1 with i ¼ 1;2

ð17Þ

where the acronym MAC stands for Modal Assurance Criterion. In
the equivalence relationships (17), the first two expressions assure
the equality between the corresponding frequencies, while the last
two equations guarantee the correlation between the two mode

shapes, wi and w
_

i with i ¼ 1;2. In particular, for quantifying the

comparison of the pair of eigenvectors w1;w2 and w
_

1;w
_

2, the
Modal Assurance Criterion yields a good statistical indicator and a
degree of consistency between mode shapes [22]. It is easy to apply
and does not require an estimate of the mass matrix. It is bounded
between 0 and 1, with 1 indicating fully consistent mode shapes,
while a value of the MAC near to 0 indicating that the modes are
not consistent. Therefore, it can only indicate consistency and does
not assure orthogonality, which in distinction from the case of
model updating [23], is not here required.

The mass M and the spring K values, which approximately sat-
isfy the equivalence conditions (17), are adopted. In order to find
these parameters, the Eq. (17) are rewritten in residual form:

Ri ¼ ðf i= f
_

i � 1Þ
Riþ2 ¼ ðMACi � 1Þ with i ¼ 1;2

ð18Þ

and accordingly, the residual function is defined as follows f R ¼ kRk.
Indeed, the approximate solution of the problem (17) is determined
finding the values M and K which minimize the function f R.
Specifically, the solution is found using an optimization function
in MATLAB [24], which leads to have the following approximate
solution M ¼ 5:2½Ns2=mm� and K ¼ 6690½N=mm�.

The comparison between the natural frequencies and shapes
provided by the two types of analysis are shown in Table 2 and
Fig. 6, respectively. In Fig. 6, the numerical result obtained by con-
sidering the global model of the basilica is indicated with Model 1,
while the one deriving from the partial model is named Model 2.
Finally, from Table 2 and Fig. 6 it is possible to observe that the
selected mass and spring values lead to a very satisfactory accor-
dance between the modal parameters linked to the first two modes
of vibrations. Moreover, from Table 2 it is evident that the provided
identification procedure leads to reasonable results also for the
third and fourth modes.

4.4. Harmonic loading

Numerical analyses are conducted to investigate the damage
propagation induced by a sinusoidal synchronous motion applied
to all nodes of base:

ugðtÞ ¼ u0 sinð2pf 0tÞ ð19Þ

where f 0 and u0 indicate the frequency and the displacement ampli-
tude of the harmonic imposed displacement, respectively.

The structural response is analyzed for different values of the
frequency ratio g ¼ f 0=f 1; specifically, in the numerical simulations
are considered two different values: g ¼ 0:7 and g ¼ 1:3. For each
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frequency ratio, the response of the structural system is evaluated
for increasing values of the amplitude of the base motion:
u0 ¼ 2 mm;u0 ¼ 3 mm and u0 ¼ 4 mm.

The equations of motion are integrated until the final time
tf ¼ 60 s, with a time step equal to Dt ¼ 0:005 s, which
corresponds approximately to 1/40 of the second natural period
of vibration.

The response comparisons between the damage and the elastic
models are provided in terms of time histories of the displacement
uA of the center point at the top of the structure (Fig. 5). The effect
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of damage on the dynamic response has been analyzed through the
Fourier spectral analysis. Figs. 7 and 8 show Fourier spectra of the
displacement response at the time t ¼ 10 s in the case of g ¼ 0:7
and g ¼ 1:3, respectively, for both the elastic and the proposed
nonlinear damage-plastic models. Observing these figures, it can
be remarked that:

� the structural system collapses before tf ¼ 60 s, for g ¼ 0:7,
when the amplitude of the imposed motion is set at u0 ¼ 4 mm;
� the development of the damage in the nonlinear model pro-

duces, away from the failure mechanism, only a decrease in
time of the natural frequencies; the frequency contents become
richer only when the structural system is close to the collapse
condition;
(a)

(b)
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Fig. 12. Fourier spectra of the displacement response in the case g ¼ 1:3 and
u0 ¼ 4 mm for three different discretizations of the finite element modeling
adopting: (a) the local damage model (R ¼ 0 m); (b) the nonlocal damage model
(R ¼ 0:4 m).
� the reduction of the frequency contents speeds up as the forcing
displacement amplitude increases.

Fig. 9 shows the time history of the displacement response for
the case g ¼ 0:7 and u0 ¼ 4 mm. Making reference to correspond-
ing results of Fourier spectral analysis (Fig. 7c), a peculiar phe-
nomenon can be observed. In particular, the first natural
frequency of the damaged system approaches that of forcing one,
at an elapsed time of about 5 s, the system goes into resonance
and, as a consequence, collapses. In contrast, for the other two
cases, which are characterized by lower forcing displacement
amplitudes, the structural system does not reach critical condition
after 5 s; instead, the damage of the structure leads only to hys-
teretic energy dissipation.

For the applied loadings and the imposed boundary conditions
the structure tends to be damaged mainly as a consequence of
reaching the tensile strength limit. In Fig. 10, the tensile damage
maps are depicted at the time steps equal to 1 and 10 s for all
the analysis cases. It can be remarked that:

� the damage mainly occurs at the base of the structural element;
� maintaining constant g, the increase of the displacement ampli-

tude u0 leads to a larger spreading of damage in the thickness of
the member;
� maintaining constant u0, the increase of the frequency ratio g

influences the propagation of the damage zone along the height
of the structure.

In particular, the damage zone appears larger for the higher
forcing base motion to which is associated a larger imposed
acceleration. Indeed, in these cases the damage tends to develop
from the base upward toward the top of the octagonal pillar, affect-
ing only a very small zone of the ogival arches. By observing
Fig. 10g–n, it appears evident that the collapse of the studied struc-
tural element does not correspond to the more severe damaging
distribution because, for the case g ¼ 0:7 and u0 ¼ 4 mm, the dam-
age involves less volume and localizes at the base of the system. In
other words, the structural collapse occurs because of the failure of
the masonry at the base of the column. Indeed, in this case the
damage assumes unit value along the entire section.

A structural damage variable in tension is computed through
the following integral:

DS
t ¼

1
Vdf

Z
X

Dt dX ð20Þ

where Vdf
is the damaged volume of the structure at the final time

of the analysis. High value of DS
t indicates that the volume Vdf

is
affected by severe tensile damages. It can be remarked that the
expression of the structural damage is not able to give information
neither on the spatial distribution of the damage or where it is tends
to be concentrated, neither on the size of Vdf

, but the its determina-
tion furnishes indications on the presence of partial or complete
detachment of masonry in the portion of damaged volume.

Certainly, in the previously showed cases the acceleration

amplitudes (i.e. €u0 ¼ u0ð2pf 0Þ
2) are different and a direct compar-

ison at equal level of exciting force is not possible. Undoubtedly,
the frequency content plays a crucial role; indeed, a forcing fre-
quency lower than the first natural frequency induces a peculiar
evolving phenomenon in which the damage produces a reduction
of the first natural frequency, moving it toward the forcing fre-
quency. This observation is more evident if the damage evolution
is compared selecting an equal level of the imposed acceleration
(inertia forces) for the two forcing frequencies. Specifically,
Fig. 11 records the tensile damage variable versus time for six
cases, three of which characterized by a scaled imposed
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acceleration at two different excitation frequencies. By observing
Fig. 11 reached a certain level of imposed acceleration (bold black
curves), the collapse occurs only when the forcing frequency is
lower than the first natural one, evidencing that at the same level
of exciting force, the resonance mechanism produces larger dam-
age e consequently the final collapse. The collapse mechanism of
the structural system, due to a total damage of the masonry along
the entire base of the column, occurs at the time step indicated in
Fig. 11 with the star symbol. In particular, in correspondence of
this occurrence the analysis lost significance and it was automati-
cally interrupted. However, from Fig. 11 it is evident that in all
cases the structural damage evolution follows a similar trend: in
the first time interval of about 2 s, the evolution of the structural
damage is very fast, then the damage remains almost constant.
For the case g ¼ 1:3 and u0 ¼ 4 mm, the comparison between
the nonlocal and local formulation is provided. Fig. 12 shows the
Fourier spectral analysis of time history of the displacement uA

by adopting the local and nonlocal approach for three different dis-
cretizations of the model: 350 elements, 700 elements and 1400
elements. It is evident that the proposed nonlocal damage model,
in distinction from the local one, ensures that the numerical results
are not influenced by the mesh size. Indeed, at a discretization of
700 elements, the numerical response of the mechanical system
can be considered mesh independent.

Finally, the effect of the unilateral behavior modeling on the
dynamic response is analyzed for the case g ¼ 1:3 and u0 ¼ 4 mm.
Fig. 13a shows the comparison of Fourier spectral analysis at the
time t ¼ 5 s obtained by considering two material models: the
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model proposed here, which takes into account the stiffness recov-
ery due to microcrack closure after decrease in stiffness for tensile
cracking; and the same model from which this unilateral effect is
removed. From the comparison of Fig. 13a, it appears clear that the
unilateral phenomenon significantly influences the masonry
dynamic behavior. Indeed, the model, which does not consider the
unilateral phenomenon, tends to underestimate the contents of
the natural frequencies of a damaging system. Fig. 13b and c illus-
trate the stress-strain curves obtained by assuming the damage
model with the unilateral effect and without unilateral effect,
respectively, at a Gauss point of the finite element located in
correspondence of the left corner at the base. Note that the scale of
the two plots are different. From the figures, it can be observed that:
in the model without unilateral effect (Fig. 13b), both the damage in
tension and the damage in compression evolve; in the model with
unilateral effect (Fig. 13c) the damage in tension evolves, while the
damage in compression is not activated.

4.5. 2009 L’Aquila earthquake

This section develops a damage analysis of a structural member,
a central hall pillar, damaged in the 2009 L’Aquila earthquake [25].

The Up–Down (UD), North–South (NS) and East–West (EW)
earthquake acceleration components are shown in Fig. 14. As can
be observed in Fig. 14, the longitudinal and transversal directions
of the basilica are positioned at a rotation of 17� with respect to
the true NS and WE directions. In order to perform an out-of-plane
analysis of the structure, the sum of the transversal components of
the NS and WE accelerations, together with the UD acceleration
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Fig. 16. Damage maps at time steps: (a) t ¼
component, are considered. The transversal components of the
NS and WE accelerations are the projections on the transversal
direction of the Basilica, which is illustrated in Fig. 14.

The seismic analysis is conducted by imposing at the base of the
system a motion in term of displacements obtained by performing
a twice numerical time integration of the transversal acceleration
components and by considering a time step equal to 0.005 s,
corresponding to the acquisition frequency of the earthquake data.

The magnitude of the imposed base displacement and the ten-
sile structural damage are plotted versus the time in Fig. 15. As
regards the time evolution of the damage, three phases can be dis-
tinguished: from the beginning of the earthquake until 3 s, the
damage is null; during the period of 2–9 s, the growth of damage
occurs quickly; after 10 s, the structural damage remains constant.
It is evident from the figure that the development of the damage is
closely related to the seismic action, since precisely in the 2–9 s
interval the displacement amplitude becomes more pronounced
and the frequency of oscillations higher.

Tensile damage maps at significant time steps during the dam-
age evolution phase (i.e. 2, 5, 8 and 9 s) are depicted in Fig. 16. It
can be noted that: the damaging remains localized in the stone col-
umn; initially the damage occurs at the top of the column in
correspondence with the connections at the ogival arch; the dam-
age then develops at the base of the column and tends to propagate
upward, involving a large part of the structural element; although
the column is severely damaged at the base and top, local collapse
does not occur.

Finally, a comparison between the local and nonlocal for-
mulations in predicting the final damage propagation is provided
in Fig. 17. The structural damage determined with the local model
appears lower than the one defined through the use of the regular-
ization technique. Making reference to Figs. 3b,c and 17, it can be
emphasized that the nonlocal approach better simulates the final
degradation of the structure than does the local model.
Specifically, the nonlocal model is able to catch a diffusion and a
level of the damage more realistic than the local model, by which
the obtained damaging appears heavily localized and under-
estimated. Indeed, the damages provided by the nonlocal model
appears widespread at the base and at the top of the columns,
affecting a very extensive area of the structural system.
Moreover, the simulated degradation really occurs in those zones
where the macrocracks have been developed because of 2009
L’Aquila earthquake.
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5. Conclusions

A nonlocal damage-plastic model is proposed and applied to the
dynamic analysis of a large-scale masonry structure; the model has
been used to characterize the damage propagation induced by an
imposed base motion. For this purpose, two different types of
motions are considered: a simple harmonic motion and the motion
induced by the 2009 L’Aquila earthquake.

In the first series of direct time integrations of the discretized
model, simple harmonic motions are imposed at the base in order
to evidence the effect of both the amplitude and the frequency con-
tent of the base motion on the damage propagation. The analyses
conducted in both the time and frequency domains show that base
motion at a higher forcing frequency than the first natural one is
accompanied by large accelerations and consequently by a large
response, which produces a faster damage propagation; however,
in the case of a forcing frequency lower than the first natural one
due to the stiffness degradation, even in the presence of a small
imposed acceleration, collapse occurs due to an ongoing resonance
mechanism between the decreasing first natural frequency and the
lower forcing frequency. The numerical examples show that the
damage model is able to capture the dissipation of energy and
the reduction of the natural frequency occurring in system under-
going damage.

Damage analysis caused by the 2009 L’Aquila earthquake
demonstrates the efficacies and the applicability of the proposed
model in predicting the final degradation state of the examined
structural element. Indeed, the diffusion and the level of the dam-
age obtained through the finite element modeling appears realistic
and in agreement with the observed damage that occurred in the
columns after the earthquake.

Finally, numerical applications demonstrated that the devel-
oped computational procedure is reliable for the analyses of dama-
ging structures subjected to softening. The regularization in the
constitutive law avoided strange irregularities in the structural
response and allowed a smooth convergence of the iterative proce-
dure. Moreover, numerical tests proved the advantages provided
by the proposed nonlocal regularization technique over the local
approach. Indeed, the independence of the numerical results from
the discretization is shown in the case of sinusoidal loading. The
ability of the computational tool is demonstrated for the realistic
simulation of the structural damage caused by the L’Aquila earth-
quake, for which the damage field numerically evaluated matches
the state of damage of the examined structural element.
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