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Detecting communities in social networks represents a significant task in understanding the structures
and functions of networks. Several methods are developed to detect disjoint partitions. However, in real
graphs vertices are often shared between communities, hence the notion of overlap. The study of this case
has attracted, recently, an increasing attention and many algorithms have been designed to solve it. In
this paper, we propose an overlapping communities detecting algorithm called DOCNet (Detecting over-
lapping communities in Networks). The main strategy of this algorithm is to find an initial core and add
suitable nodes to expand it until a stopping criterion is met. Experimental results on real-world social
networks and computer-generated artificial graphs demonstrate that DOCNet is efficient and highly reli-
able for detecting overlapping groups, compared with four newly known proposals.
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1. Introduction example, a person usually has connections to several social groups
Graphs play a central role in the field of complex systems. Indeed
they are the preferred tool for mathematical modeling. We find it
naturally in the study of several areas: sociology, biology, linguis-
tics, physics, computer science . . . (Pons, 2004). These graphs can
reach large sizes and in more than hundred nodes, it becomes diffi-
cult to understand their structures and to view it legibly (Pons,
2004). The search for strongly linked groups of vertices can provide
a simplified representation of the structure of large graphs: this fact
is important for the end user because it allows to understand very
intuitively the modeled social network. Thus, it brings the members
of network by affinity or common characteristics, it is enrolled in
the context of community detection. This represents one of the
key problems in social network analysis and it has been extensively
studied (Pons, 2004). These studies are divided into two families:
finding homogenous communities (Fortunato, 2010; Zardi & Ben
Romdhane, 2013; Cheong, Huynh, Lo, & Goh, 2013) or extracting
a set of pairs of communities that behave in opposite ways with
one another (exhibiting antagonistic behaviors) (Zhang, Lo, Lim, &
Prasetyo, 2013; Lo, Surian, Prasetyo, Zhang, & Lim, 2013).

However, we should notice that in most of existing approaches the
computed partitions are disjoint; i.e., each vertex is assigned to a sin-
gle community. However, it is well understood that people in a social
network are naturally characterized by multiple community mem-
berships, hence the notion of overlap between communities. For
like family, friends and colleagues. He can be an active member simul-
taneously in the fields of mathematics, biology, science, etc. Another
typical example is in the PPI networks (protein–protein interaction)
(Fortunato, 2010) in which we seek to identify functional classes. In-
deed, many proteins have multiple functions depending on different
tissues. They may belong to more than one functional unit and some-
times they act as a bridge that allows the transfer of information. So
the assignment of this gene to a single class is not justifiable. For this
reason, overlapping community detection algorithms have been
investigated (Xie, Kelley, & Szymanski, 2013).

In this paper, we propose an efficient algorithm to identify over-
lapping nodes. It is based on the local optimization of a fitness
function and a fuzzy belonging degree of different nodes. This
membership is not only based on the number of link which con-
nects the node to the community, but also on the size of the com-
munity and the shortest path from the node to all its members. We
propose an objective function to qualify the overall quality of a
partition; and present DOCNet, an algorithm for its optimization.
The rest of this paper is organized as follows. In Section 2, we re-
view related work; while in Section 3 we introduce preliminary
material. Section 4 outlines the fundamentals of our model. In Sec-
tion 5, we report experimental results and the final section offers
concluding remarks and sheds light on future research directions.

2. Related works

Detecting overlapping communities is a task of a great impor-
tance in our world. Indeed, it is treated by several approaches
which are reviewed and categorized into five classes that reflect
how communities are identified (Xie et al., 2013).
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2.1. Graph theory partition

The first family is based on graph theory and the most popular
technique in this approach is the Clique Percolation Method (CPM)
proposed by Palla, Derenyi, Farkas, and Vicse (2005). It is based on
the concept that the internal links in a community are likely to
form cliques due to their high density. The main idea of this
method is to move a clique on a graph, in some way, so it would
probably be trapped inside its original community because it could
not cross the bottleneck formed by the inter-community links.
CPM is suitable for networks with dense connected parts. However
K-clique cannot reach vertices with degree one (‘‘leaves’’)
(Fortunato, 2010). In addition, it is very costly (Palla et al., 2005).

2.2. Link partition

Another line of research is link partition (Evans & Lambiotte,
2009; Ahn, Bagrow, & Lehmann, 2009; Wu, Lin, Wan, & Tian,
2010; Kim & Jeong, 2011). Indeed, it may happen that communities
are joined to each other through their overlapped nodes without an
inter-cluster edge. So it has been recently suggested to define com-
munity as sets of edges (Xie et al., 2013). The basic idea of Evans’s
method (Evans & Lambiotte, 2009) is to transform the original graph
to a line graph i.e., each vertex in the line graph corresponds to an
original edge and a link in the line graph represents the adjacency
between two edges in the original graph. Nevertheless, this algo-
rithm is memory inefficient (Tang, Wang, & Liu, 2012), so it cannot
be applied to large social networks. Ahn and Al (Ahn et al., 2009)
suggested an hierarchical clustering of links and computed the sim-
ilarity between two links using Jaccard Index. The time complexity
of this algorithm is O nk2

max

� �
, where kmax is the maximum degree of

node and nis the number of vertices in the network.

2.3. Local expansion and optimization partition

The idea of growing a partial community has also been explored
(Xie et al., 2013). It relies on a fitness function characterizing the
local quality of dense groups of nodes. Different overlapped groups
can be locally optimal, so the vertices can be shared between com-
munities. Baumes, Goldberg, Krishnamoorthy, Magdon-Ismail, and
Preston (2005) proposed the iterative scan algorithm (IS) which
starts with a candidate and adds or removes vertex as long as
the function related to the density of link strictly improves. LFM
(Lancichinetti, Fortunato, & KertTsz, 2009) develops a community
from a random starting node until the objective function is not
maximized. This method depends on a parameter that controls
the size of formed groups. EAGLE (Shen, Cheng, Cai, & Hu, 2008)
uses the agglomerative framework to produce a dendrogram. First,
all maximal cliques are found and considered as first communities.
Then the pair of communities with maximum similarity are
merged. The optimal cut in the dendrogram is determined by the
modularity. EAGLE is computationally expensive with complexity
Oðn2 þ ðhþ nÞsÞ (Xie et al., 2013), where s is the number of maxi-
mal cliques and h is the number of pairs of maximal cliques which
are neighbors. GCE (Lee, Reid, McDaid, & Hurley, 2010) identifies
cliques as seeds and expands them in greedy way. GCE also re-
moves the communities that are similar using a function which
computes the distance between communities. OSLOM (Lancichi-
netti, 2011) which is a multi-purpose technique, tests the statisti-
cal significance of a cluster with respect to a global null model
during community expansion. Its main idea is to progressively
add and remove vertices within the community so that to improve
its fitness function. This process is repeated several times starting
from different nodes in order to explore different regions of the
graph. Its time complexity is Oðn2Þ. This family neglects communi-
ties of small sizes. An improvement of GCE and OSLOM is given by

 

 

its conjunction, with WERW-Kpath (Fiumara, De Meo, Ferrara, &
Provetti, 2013) algorithm which is a preprocessing step in which
edges are weighted according to their centrality. This algorithm en-
hances the modularity and the quality of the community structure
of these methods.

2.4. Fuzzy partition

The fourth approach is based on fuzzy clustering (Xie et al.,
2013). It quantifies the strength of association between all nodes
and communities and determines its adhesion to a group or not
according to this degree. The most famous algorithm in this class
is FCM which minimizes the intra-cluster variance by reducing
its objective function (Bezdek, Ehrlich, & Full, 1984). FCM loses
the graph structure because it takes into account only the distances
between nodes. Nepusz, Petrczi, Ngyessy, and Bazs (2008) modeled
the overlapping community detection as a nonlinear constrained
optimization problem which can be solved by simulated annealing
methods. NMF (Psorakis, Roberts, & Ebden, 2011) is a model based
on Bayesian nonnegative matrix factorization. We may cite also
OSBM (Latouche, Birmele, & Ambroise, 2011; Gregory, 2010), etc.
Yet, these fuzzy approaches compute communities with spherical
shapes mainly due to the constraints imposed on the membership
degrees (Bezdek et al., 1984; Latouche et al., 2011; Psorakis et al.,
2011). This is a major shortcoming since in real-networks, commu-
nities are of arbitrary shapes.

2.5. Agent-based partition

Finally, the Agent-based (Xie et al., 2013) approach uses labels
to identify the membership of vertices and propagate it between
neighbors, a node can have more than one label. In COPRA
(Gregory, 2010), nodes update their belonging coefficients by
averaging the coefficients from all its neighbors in a synchronous
way. Its time complexity is Oðlogðvm

n ÞÞ by iteration, where n is the
number of vertices and m is the number of links and v is a param-
eter. SLPA (Xie, Szymanski, & Liu, 2011) spreads labels between
nodes according to pairwise interaction rules and provides each
node with a memory to store received information. Multi-state
spin models (Reichardt & Born holdt, 2004) aim to minimize the
equation of Hamiltonian. Despite, the high speed of this type of
methods, they produce only small communities in some networks.

Despite the attempt of various methods to overcome the detec-
tion of overlapping communities, this problem still remains. Since
it is an NP-hard problem (Fortunato, 2010) and some unstable
nodes lying at the border between communities are often hard to
classify into one community. Inspired by the above approaches,
in this paper, a new Local Expansional algorithm called DOCNet,
based on node fuzzy membership degree, proposed to detect the
overlapping community structures. But, before going into its de-
tails, we need to introduce the following preliminary concepts.

3. Preliminaries

3.1. Problem formulation

We consider an undirected graph G ¼ ðV ; EÞ, with n ¼j V j nodes
and m ¼j E j edges. The purpose of the detection of overlapping
communities in G is to determine a partition P ¼ C1; . . . ;Cxf g of
all the nodes of G where communities may be joined to each others
(overlapped) (9Ci \ Cj – ;; i – j). A community may generally be
described as group of nodes that probably share common proper-
ties and/or play similar roles within a network (Fortunato, 2010).
It is a tight group with a high density of inter-community connec-
tions and a low density of intra-community connections (two com-
munities can overlap since a node can belong to more than one).
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This partition recovers all the nodes of G and do not require a priori
knowledge of the number or the size of communities to be built.

3.2. Basic definitions

Definition 1 (Cardinality of a community). The cardinality of a
community C is the number of its vertices. It is denoted by j C j.

 

 

Definition 2 (Direct neighbor). In the graph G ¼ ðV ; EÞ, the vertex v
is a direct neighbor of the node u if v and u are connected by an
edge. This relationship is represented by the edge ðv ;uÞ 2 E.
Definition 3 (Vertex border). It is all the direct neighbors of node v
in the graph. This set is noted by BðvÞ. More formally this quantity
is noted as follows:

BðvÞ ¼ u 2 V ; u;vf g 2 Ef g ð1Þ
Definition 4 (Internal Degree of a vertex to a community). We call
internal degree of a vertex v to a community C as the number of
edges that point towards members of C. We note it dinðv;CÞ.

dinðv ;CÞ ¼ j ðv; v 0Þ 2 E; v 0 2 Cf gj ð2Þ
Definition 5 (External Degree of a vertex to a community). We call
external degree of a node v to a community C as the number of
its direct neighbors who are not in C. We note it dextðv;CÞ.

dextðv ;CÞ ¼ j ðv ;v 0Þ 2 E; v 0 R Cf gj ð3Þ
Definition 6 (Complete community). In a complete community C,
each pair of vertices is connected (8v i; v j 2 C; 9ðv i;v jÞ 2 E).
Definition 7 (Overlap between two communities). The overlap
between two communities is the set of vertices shared between
them.

OverðCi;CjÞ ¼ v j v 2 Ci and v 2 Cj
� �

ð4Þ
The more this quantity is bigger, the more we have a resem-

blance between both communities.
3.3. Fundamental concepts

3.3.1. Importance of a node
First, we should argue that the choice of random seeds where

the community exploration starts may affect obtained covers. This
means, in principle, that we cannot rely on random seeds (like
other methods mentioned in the literature). We have found that,
in a social network, a node whose neighbors are also connected
(i.e., ‘‘know’’ one ‘‘another’’), is the most relevant choice which
tends to be the most compact core to form a group. That’s why
we have developed a new factor that measures the importance of
an individual in a network that represents the starting point in
the formation of a community. Indeed, for a network G with
n nodes and m edges, the node importance of node u is its tendency
to be the center of a community. This term combines two concepts:

1. The size of the border of node u (the degree of u) noted
j BðuÞ j. This term is a function of first-order which takes
into account the direct neighbors of vertex u.

2. The local coefficient of clustering of this node, which is a
function of second order, takes into account the connec-
tions between neighboring vertices of u, and is defined by:
cfcðvÞ ¼
2 j ejk
� �

j
j BðvÞ j ðj BðvÞ j �1Þ ; v j;vk 2 V ; ejk 2 E ð5Þ
The coefficient of clustering was introduced by Watts and Strogatz
(1998). This coefficient models how much a node and its neighbors
can form a clique.
Definition 8 (Node Importance). Given a graph G and a node u,
Node-Importance of u is a factor that measures how much this
node is able to form a group. This index is noted NI and defined as:

NIðuÞ ¼ cfcðuÞ� j BðuÞ j ð6Þ

where cfcðuÞ is the clustering coefficient of u and j BðuÞ j its border
size. We remark that the importance of a node increases as its
neighborhood increases and as these neighbors are also connected.
Stated otherwise, the importance of a node increases as it becomes
a ‘‘central influential’’ node in the network.
3.3.2. Membership degree
Our definition of the membership degree of a node v to a com-

munity C should not only take into consideration the interactions
between v and C; but also the interactions between members of C.
But, before outline of our idea, we need the subsequent definitions.

Definition 9 (Distance between two nodes). The distance between
two nodes u and v of graph G, noted as distðu;vÞ, is the number of
edges being in the shortest path which leads u towards v. In a
weighted graph, we add the weights of the links of the path.
Property 1. For any node u and v from the graph G such that u – v
we have: 0 < distðu;vÞ 6 diamðGÞ
Property 2. Let v be a node belonging to a community C. If u is a node
of the graph G as u R C then we have:

distðu; vÞP 1
Definition 10 (Average distance between a node and a commu-
nity). It is the sum of distances of node u to different nodes
v 2 C, divided by the cardinality of C. It is given by:

distmoyðu;CÞ ¼

P
v2C

distðu;vÞ
jC�1j If u 2 CP

v2C
distðu;vÞ
jCj Otherwise

8><
>: ð7Þ
Theorem 1. For every node u of a graph G such that u R C. If
distmoyðu;CÞ ¼ 1 then uf g [ Cf g is a complete community (see Defini-
tion 6).
Proof. Let u R C.
We have distmoyðu;CÞ ¼ 1 this is equivalent to say thatP

v2C
distðu;vÞ
jCj ¼ 1 or even

P
v2Cdistðu;vÞ ¼ jCj.

However, according to the Property 2, distðu;vÞP 1. j C j is a
sum of distances j C j each of which is of size greater than or equal
to 1 then we necessarily have:

distðu; vÞ ¼ 1; 8v 2 C

Thereafter there is a path having a distance of size 1 that leads from
u to wholes nodes of C and hence the union of u with C is a complete
community (see definition 6). h
Property 3. For all nodes v of the graph Gwe have: 0 < 1
distmoyðv ;CÞ 6 1
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Definition 11 (Weighting coefficient). It is the degree of compact-
ness of one node u to a community C. More formally it is noted
as follows:

qðu;CÞ ¼ jBðuÞj
dinðu;CÞ

ð8Þ

 

 

Property 4. For all nodes u of the graph G we have: 0 6 1
qðu;CÞ 6 1

Now, we are ready to define the membership degree as follows.

Definition 12 (Membership degree). The membership degree of
node v to community C is given by:

Blðu;CÞ ¼ 1
distmoyðu;CÞ � qðu;CÞ

ð9Þ

where distmoyðu;CÞ is the average distance between u and C and
qðu; CÞ is the compactness of u to C.

From Eq. (9), we should notice that a node is ‘‘typical’’ to a com-
munity when ‘‘it is close to its members’’.

Property 5. For all nodes of the graph G we have, 0 6 Blðv ;CÞ 6 1
Given all these definitions, now we are ready to outline the

objective function of our model which will quantify the overall
quality of partitioning.

3.3.3. Objective function
Our objective function called ‘‘Index of connectivity’’, is based

on the idea that a community is simply a set of individuals with
strong interactions between them and few interactions with the
outside. This measure qualifies a partition based on both internal
and external connections of its communities. But, before going
any further we need the following definitions.

Definition 13 (Compactness of a community). It is the number of
all the edges connecting the members of C. It is noted as follows
compðCÞ and defined by:
compðCÞ ¼j ðv ;v 0Þ 2 E; v 2 Cetv 0 2 Cf g j ð10Þ
Definition 14 (Separability of a community). It is the number of all
the edges outside of community C. It is noted sepðCÞ and defined by:

sepðCÞ ¼j ðv ;v 0Þ 2 E; v 2 C;v 0 R Cf g j ð11Þ
The main objective is to compute a partitioning in which com-

munities are compact and separable. However, the notion of
separability does not imply total separability since overlaps are
allowed. All these concepts are taken into consideration in our
objective function ‘‘Index of connectivity’’ defined as follows.
Definition 15 (Index of connectivity). The index of connectivity of a
community is based on the idea of maximizations of the internal
links to a community. It is defined by the difference between the
compactness of C and its separability, normalized by the sum of the
compactness and the separability of the considered one. It is
defined as follows:

ICðCÞ ¼ compðCÞ � sepðCÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞ þ sepðCÞ

p ð12Þ

We notice that the principal of our objective function (the com-
pute of ‘‘compactness’’ and ‘‘separability’’) was used in others mod-
els (Baumes et al., 2005; Lancichinetti et al., 2009) but not in the
same way. Our objective function in Eq. (12) is maximal when
the compactness of a community compðCÞ is high and its separabil-
ity sepðCÞ is low.

This simply means that the vertices included in this community
have strong connections between them and are loosely connected
with nodes outside this community. In an informal way, this
means that we have a compact community separated from the rest
by a sparse area.

Given our objective function, we will outline in the next section
our algorithm DOCNet for its optimization and analyze its
complexity.
4. Description of our method

With the correlative preliminaries above, we introduce an effi-
cient algorithm, called DOCNet (Detection of Overlapping Commu-
nities in Networks), to serve to the requirement for discovering
overlapping communities of complex networks. This model is
based on the principle of ‘‘agglomerative hierarchical clustering’’
since communities are built in an agglomerative manner. In fact,
starting from a single node, we repeatedly expand its border nodes
until it reaches an equilibrium state. Thus, DOCNet consists of two
main components:

Algorithm 1. DOCNet(G)

Data: A graph G ¼ ðV ; EÞ
Result: A set of overlapping communities P ¼ fC1; . . . ;Cng.
begin
1 P  ;

for i ¼ 1 j V j do
2 Ci  fnig.

Imp fnig.
end

3 Save importance of nodes on the vector Imp.
4 Sort nodes in Imp according to their importance in

descending order.
5 while (there are vertices in Imp) do
6 Select the center c which is the first node in Imp.
7 Build the core of C: C  fcg [ fBðcÞg.
8 Extension(C, G) .
9 P  P [ C.
10 Delete member of C from Imp.

end
11 Return (P).
end

Algorithm 2. Extension(C, G)

Data: A graph G ¼ ðV ; EÞ, a community C
begin
1 Build border of C : KC  fni j ni 2 BðCÞg.
2 while (KC–;) do
3 Choose the candidate node nc of KC which has the

highest membership degree to C.
4 if ICðfCg [ fncgÞ > ICðCÞ then
5 C  fCg [ fncg.
6 Update of KC .

else
7 KC  ;.

end
end

8 Return C.
end

1. Building the core of a community.

2. Extending its core.
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DOCNet is outlined in Algorithm 1 this is explained in details
in the following paragraph. We begin with an initial empty parti-
tion. As a starting point, we consider each vertex as a community.
Then we compute the (‘‘node importance’’) NI of all nodes of the
graph. Then we sort vertices according to their importance and in
descending order. These steps represent the initialization phase.
The next step is the formation of the core of community. First,
we select the most important node from vector Imp. In principal,
this node is the ‘‘most influential’’ in the remaining non-partition-
al part of graph. Next, we build the ‘‘core of community’’ of
Cformed by its center and its border. Afterwards, we note by KC

the set of nodes situated on the border of C and which are candi-
dates to its extension. Regarding the extension stage of C, we pro-
ceed as follows. We choose the candidate node nc from KC with
the largest membership degree to the core community. We start
by adding this node. If it increases our objective function we up-
date all boundaries nodes and their membership degrees, and we
check again the next vertex in KC . Otherwise, we stop the expan-
sion of this community, we remove community members from
Imp and we move to the formation of the next community. This
extension process is summarized in Algorithm 2. Summarizing,
the extension of a community is stopped when the ‘‘most impor-
tant node’’ of its boundary does not improve any further the
objective function in Eq. (12). This implicitly means that if the
most important boundary node does not improve the quality of
the considered community; then no other boundary node can
do so. This fundamental property of our extension process is
guaranteed by the following theorem.

Theorem 2. Let C be a community and KC the set of its border nodes.
Let n0 2 KC be a node with the highest membership degree; i.e:
argðn0Þ ¼ max Blðnj;CÞjnj 2 KC

� �
Let C0 ¼ C [ n0f g. If the index of connectivity of C0 is less than C, then
any extension of C by any other node of KC will no further its quality.
Formally:

If ICðC0Þ < ICðCÞ then
ICðC [ nj

� �
Þ < ICðCÞ; 8nj 2 KC

 

 

Proof. We note, d0 ¼j BðnÞ j the degree of a node n in graph.

We have: ICðCÞ ¼ compðCÞ�sepðCÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞþsepðCÞ
p .

Let C0 ¼ C [ nf g
�compðC 0Þ ¼ compðCÞ þ dinðn;CÞ
�sepðC 0Þ ¼ sepðCÞ � dinðn;CÞ þ dextðn;CÞ

¼ sepðCÞ � dinðn;CÞ þ d0 � dinðn;CÞ
¼ sepðCÞ þ d0 � 2dinðn; CÞ

Or ICðC0Þ ¼ compðC0Þ� sepðC0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðC0Þþ sepðC0

p
Þ

¼ compðCÞþdinðn;CÞ� sepðCÞ�d0 þ2dinðn;CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞþdinðn;CÞþ sepðCÞþd0 �2dinðn;CÞ

q

¼ compðCÞ� sepðCÞ�d0 þ3dinðn;CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞþ sepðCÞþd0 �dinðn;CÞ

q

¼�compðCÞ� sepðCÞ�d0 þdinðn;CÞÞþ2compðCÞþ2dinðn;CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞþ sepðCÞþd0 �dinðn;CÞ

q

¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞþ sepðCÞþd0 �dinðn;CÞ

q

þ 2compðCÞþ2dinðn;CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞþ sepðCÞþd0 �dinðn;CÞ

q

Let

�C1 ¼ C [ n1f g; where n1 is the node having the
highest membership degree to C:

�C 0 ¼ C [ nf g; where n is an arbitrary node of
the boundary set Kc

8>>><
>>>:
We want to prove that: ICðC1Þ 6 ICðCÞ ! ICðC0Þ 6 ICðCÞ
Or we have:

�ICðC 0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞ þ sepðCÞ þ d0 � dinðn;CÞ

q

þ 2compðCÞ þ 2dinðn;CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞ þ sepðCÞ þ d0 � dinðn;CÞ

q

�ICðC1Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞ þ sepðCÞ þ d1 � dinðn1;CÞ

p

þ 2compðCÞ þ 2dinðn1;CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞ þ sepðCÞ þ d1 � dinðn1;CÞ

p

8>>>>>>>>>>><
>>>>>>>>>>>:

ð13Þ

Observation
We notice that if the number of internal edges linking a node n

to the community C increases then the sum of the shortest paths
decreases (i.e., dinðnÞ and

P
v2Cdistðn;vÞ are inversely proportional)

(see Fig. 1).
Or Blðn1;CÞP Blðn;CÞ.
We note dmax the maximal degree of node in the graph. So we

have d 6 dmax; 8n 2 V and specially, d1 6 dmax and d0 6 dmax. We
assume here that we are in the extreme case then;
d0 ¼ d1 ¼ dmax ¼ d.

So it is enough to check that dinðn1;CÞP dinðn;CÞ

) j C j dinðn1;CÞ
d
P

v2Cdistðn1;vÞ
P
j C j dinðn;CÞ

d
P

v2Cdistðn;vÞ ()
dinðn1;CÞP

v2Cdistðn1; vÞ

P
dinðn;CÞP

v2Cdistðn;vÞ

We suppose that

dinðn1;CÞ 6 dinðn;CÞ

)
X
v2C

distðn1;vÞP
X
v2C

distðn;vÞ ) 1P
v2Cdistðn1; vÞ

P
1P

v2Cdistðn;vÞ

) dinðn1ÞP
v2Cdistðn1;vÞ

<
dinðnÞP

v2Cdistðn;vÞ

) this is contradictory.
Therefore

dinðn1;CÞP dinðn;CÞ ð14Þ

And subsequently d� dinðn1;CÞ � d� dinðn;CÞ
Hence:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞþsepðCÞþðd�dinðn1;CÞÞ

q

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞþsepðCÞþðd�dinðn;CÞÞ

q
ð15Þ

We suppose that ICðC0Þ � ICðCÞ

) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞ þ sepðCÞ þ d� dinðn;CÞ

q

þ 2compðCÞ þ 2dinðn;CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞ þ sepðCÞ þ d� dinðn;CÞ

p P ICðCÞ ð16Þ

According to (14) we have:



Fig. 1. Relationship between the internal degree of node to a community and the shortest path to all vertices.
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�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞ þ sepðCÞ þ d� dinðn;CÞ

q

þ 2compðCÞ þ 2dinðn1;CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞ þ sepðCÞ þ d� dinðn;CÞ

p P ICðCÞ ð17Þ

In accordance with (15) we have:

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞ þ sepðCÞ þ d� dinðn1; CÞ

q

þ 2compðCÞ þ 2dinðn1;CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
compðCÞ þ sepðCÞ þ d� dinðn1; CÞ

p P ICðCÞ ð18Þ

) ICðC1ÞP ICðCÞ

) this is contradictory.
Therefore

ICðC 0Þ 6 ICðCÞ

Thus

ICðC1Þ 6 ICðCÞ ) ICðC 0Þ 6 ICðCÞ �

Concluding, Theorem 2 gives us a fundamental criteria for stop-
ping the expansion of a community. Our algorithm DOCNet stops
when there are no ‘‘free nodes’’ (i.e. nodes that are not yet assigned
to any communities) in the graph.

An important element in the detection of overlapped communi-
ties in large-scale social networks are both time and space com-
plexity of approach. For this, we will evaluate theoretically the
performance of our algorithm by computing its temporal and spa-
tial complexity. The following theorem is about the time complex-
ity of DOCNet.

Theorem 3. The time complexity of our algorithm DOCNet is Oðn2Þ
where n is the number of vertices in the social network
1 Our proposed algorithm is implemented in Java and ran on a PC (Intel Core i5
Quad CPU 3.2 GHz with 15.0 GB of memory).
Proof. To calculate the time complexity of our algorithm, we will
handle step by step. We begin by the step of construction of the
core of community, which is as follows: first, the initial partition
is done in OðnÞ. The time complexity of the build of vector Imp,
in which we calculate the shortest path between all vertices of
graphs, is Oðmþ nlogðnÞÞ and the degree of all nodes on Oðn2Þ. Then
we sort the vector Impby quicksort with OðnlogðnÞÞ. After, we select
the center of the core and we form community composed by this
node and its direct neighbors. This step is made in OðdmaxÞ, with
dmax is the maximum degree of a node in G. So the time complexity
of the first step is:

TStep1 ¼ O max n2;nlogðnÞ;dmax
� �� �

¼ Oðn2Þ

Then we move to the second stage which is the extension of the
core of community, it is defined as follows: first the construction of
the initial border with a complexity of Oðd2

maxÞ, The index of con-
nectivity is made in Oðdmaxð1þ dmaxÞÞ. Choosing node with the
maximum belonging degree from the border of C is done T time
(T is the border size and it is n in the worst case) so its complexity
is OðTnÞ. All steps mentioned above are repeated in the worst case c
times with c is the number of communities.

TStep2 ¼ O max cðd2
maxÞ; cdmaxð1þ dmaxÞ; cn2

n o� �
¼ Oðcn2Þ

Finally we note that in the general case the number of communities
c is negligible compared to n. Therefore, the time complexity of the
entire algorithm can be estimated to be:

TTemporalðDOCNetÞ ¼ Oðn2Þ �
Theorem 4. The space complexity of our algorithm DOCNet is OðmÞ
where m is the number of edges in the social network.
Proof. In our algorithm, we use the vector Imp that contains all the
vertices of graph sorted according to their importance. The size of
this vector is n with n is the number of vertices. We also build a
graph with m edges. Hence the total space complexity of our algo-
rithm is:

TSpaceðDOCNetÞ ¼ Oðmax m;nf gÞ ¼ OðmÞ: �

In summary, we have presented an objective function to qualify
the overall quality of a computed partitioning. Moreover, we have
presented DOCNet, an algorithm for its optimization. The basic
idea of DOCNet is to expand a community from ‘‘most influantial’’
nodes until no further improvements in the objective function can
be made. the complexity of DOCNet turned to be quadratic in time
and linear in space. These could be considered as satisfactory mea-
sures. The next section will evaluate our model on large-scale and
real-world social networks.
5. Experimental results

The main purpose of this section is to analyze the behavior of
DOCNet experimentally.1 For this, we conducted extensive simula-
tion on both synthetic and three real-world networks. We compared
DOCNet with three well-known algorithms: (1) CFinder (CPM)
which implements the clique percolation (Palla, 2011); (2) COPRA
which is based on label propagation (Gregory, 2010); (3) GCE greedy
approach (GCE, 2013); and (4) EAGLE modularity-based approach
(Eagle Community Detection Algorithm, 2012). Simulation results
on synthetic and real-world networks are presented subsequently.
Before reporting the experimental results, we need to indicate the
performance indices that we will adopt.



Fig. 2. Variation of NMI in function of l.
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5.1. Evaluation criterion

5.1.1. Normalized mutual information (NMI)
We adopted the extended normalized mutual information

(NMI) which takes into account the overlap between communities.
It is proposed by Lancichinetti et al. (2009) and yields values be-
tween 0 and 1, with 1 corresponds to a perfect case. NMI between
two partition C0 and C00 (respectively the expected and the real
community structure) is given by:

NMIðX j YÞ ¼ 1� ½HðXjYÞ þ HðYjXÞ�
2

ð19Þ

The conditional entropy of a cluster Xk given Yl is defined as:
HðXK j YlÞ ¼ HðXk;YlÞ � HðYlÞ. The entropy of XK with respect to
the entire vector Y is based on the best matching between Xk and
any component of Y given by HðXk j YÞ ¼ minl2 1;2;...;jC00 jf gHðXk j YlÞ.

The normalized conditional entropy of a partition X with re-
spect to Y is: HðXjYÞ ¼ 1

jC0 j
P

k
HðXk jYÞ
HðXkÞ

.

5.1.2. F-score
To provide more precise analysis, we consider the identification

of overlapping nodes given by f-score:

F ¼ 2 � precision � recall
precisionþ recall

ð20Þ

where recall is the number of correctly detected overlapping nodes
divided by the true number of overlapping nodes and precision is
defined as the number of correctly detected overlapping nodes di-
vided by the total number of detected overlapping nodes (Fortuna-
to, 2010).

5.1.3. The modularity of overlap
This is an extension of the classical modularity (Shen et al.,

2008). It takes into account the number of communities to which
each vertex belongs and the degree of membership in each
community.

Q ov ¼
1

2m

X
c

X
i;j2c

Aij �
kikj

2m

	 

1

OiOj
ð21Þ

where Oi is the number of communities to which the node i belongs,
m is the number of edge of the graph, ki is the degree of a node i and
Aij is the element of adjacency matrix. A good partitioning maxi-
mizes modularity.

5.2. Artificials networks

We adopted the LFR (Benchmark Graphs, 2013) benchmark for
synthetic networks for which the exact partition of the network is
known. In our experiments, we used five sizes of networks
N = 1000, N = 2000, N = 5000, N = 8000, N = 10,000 and N = 50,000.
The rest of the parameters are as follows: The average degree is
kept at k = 10; the mixing parameter l is 0.2; the maximum degree
is 50; the community size varies between 20 and 100; On (the
number of overlapping nodes) varies from 10% to 80%; Om (the
number of communities to which each overlapping node belongs)
varies from 2 to 8. By increasing the value of On or Om, we create
harder detection tasks.

5.2.1. DOCNet performance with the variation of network complexity
We generated a number of graphs while varying l which mod-

els the fraction of edges outside the community of each node rela-
tive to the total number of edges. In fact, as this parameter
increases, the boundaries between communities become less clear.
The results are illustrated in Fig. 2 and we note from these curves
that the increase in the ratio l has an influence on the quality of

 

 

partition detected by all models studied. In fact, as l increases,
the NMI decreases. This means that the network becomes more
complex, the calculated partition is away from the exact one. The
CPM and EAGLE models still farthest from the exact solution.
COPRA has a good quality for simple graphs and tends sharply to
zero solution. As the network complexity increases, our model re-
tains a uniform behavior even when it is a complex case in which
each node have many links within the community and outside it.
GCE gives the best result. As against, our model is better than
CPM, EAGLE and COPRA especially for complex networks (i.e.,
when l increases).

5.2.2. DOCNet performance with graphs of thousand nodes
The first LFR benchmark contains 1000 nodes. The community

size ranges from 20 to 100. The mixing parameter l is 0.2. Simula-
tion results are reported in Tables 1–4 and Fig. 3. According to the
results of Tables 1–3 and Fig. 3 we note that the NMI, the recall,
precision and F-score of COPRA tend sharply to zero values. GCE
is too close to the exact partition but it has a limited recall. CPM
represent good precision but a faraway partition from the real
one. Similar to CPM, EAGLE achieves a high precision and a low
NMI when varying On. Our model maintains a nearly constant
quality partition influenced by the increase of On. It has the best re-
call and F-score. The experimental results are shown in Table 4.
GCE has the best quality of partition. Against by, CPM is the far-
thest from the real structure of the graphs. Our model has an as-
pect too close to the exact one compared with COPRA and GCE.

5.2.3. DOCNet performance with graphs of two thousand nodes
In this second set of runs, we consider LFR graph containing

2000 nodes, the mixing parameter is 0.2 and communities’ size
vary between 20 and 100. Simulation results are summarized in
Tables 5–8 and Fig. 4. Similar results were obtained. Based on
the results in Table 5, we observe that GCE has the best partition
by varying the number of overlapped nodes (On) because it uses
maximal cliques as seed nodes, which are easy to find in such
dense graph. The second is DOCNet. CPM, EAGLE and COPRA are
more distant and tend rapidly to zero values. According to the re-
sults of Tables 6, 7 and Fig. 4 we observe that DOCNet has the best
recall. We also find that the F-score is the most significant. The data
reported in Table 8 show that when varying Om from 2 to 8; DOC-
Net retains a good quality partition, which varies between 0.80 and
0.43 and it is close to GCE which is the best.

5.2.4. DOCNet performance with graphs of five thousands nodes
We consider graphs of 5000 nodes and when varying Om and On

we obtain the following results: We denote from Tables 9–11 that
DOCNet is influenced by the increase of overlap, like the other



Table 2
Recall for networks with N ¼ 1000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM EAGLE DOCNet

10 0.84 0.37 0.18 0.45 0.73
20 0.78 0.30 0.21 0.39 0.68
30 0.76 0.45 0.07 0.43 0.72
40 0.00 0.23 0.17 0.35 0.71
50 0.00 0.57 0.10 0.36 0.70
60 0.00 0.39 0.14 0.30 0.78
70 0.00 0.44 0.13 0.32 0.76
80 0.00 0.54 0.17 0.33 0.77

Table 3
Precision for networks with N ¼ 1000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM EAGLE DOCNet

10 0.37 0.94 0.38 0.43 0.30
20 0.55 0.85 0.53 0.69 0.36
30 0.71 0.83 0.43 0.68 0.45
40 0.00 0.68 0.61 0.80 0.49
50 0.00 0.70 0.67 0.82 0.61
60 0.00 0.67 0.74 0.84 0.62
70 0.00 0.78 0.79 0.82 0.73
80 0.00 0.83 0.84 0.93 0.80

Table 4
NMI for networks with N ¼ 1000; K ¼ 10; l ¼ 0:2; On ¼ 10%.

Om COPRA GCE CPM EAGLE DOCNet

2 0.61 0.90 0.33 0.44 0.74
3 0.56 0.80 0.00 0.45 0.62
4 0.65 0.73 0.30 0.39 0.54
5 0.63 0.73 0.38 0.28 0.50
6 0.00 0.69 0.27 0.23 0.44
7 0.00 0.65 0.34 0.21 0.43
8 0.00 0.62 0.34 0.23 0.42

Fig. 3. F-score for networks with N ¼ 1000; K ¼ 10; l ¼ 0:2; Om ¼ 2.
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models. In fact, increasing this rate causes a decrease in the quality
of partition. But we notice that our model has a good quality of
NMI compared to other.

From Fig. 5, we remark that since the rate of overlap is more
than 45% DOCNet manages to have the best F-score than the other
methods. In fact, it has an evolutionary aspect which increases
with On, contrary to GCE. Although our model has shown its effec-
tiveness (in terms of NMI) by increasing the rate of overlap On, it
fails to be the first by comparing it with the best known methods
and the most recent. In fact, its quality is the best in taking
Om ¼ 2 (see Table 12).

5.2.5. DOCNet performance with graphs of eight thousands nodes
For the LFR-8000 graph and from Table 13 we find that with the

change in overlap rate our model lowers the quality of partition
which remained always better than CPM, EAGLE and COPRA. On
the other hand, DOCNet and as shown in Table 14 is able to have
better recall than the other algorithms. The Fig. 6 shows the F-score
as a function of the rate of overlapping nodes. Since On is more than
40%, DOCNet achieves the largest F-score in networks with differ-
ent size. It has also an evolutionary aspects. GCE, EAGLE and CPM
have average performance. On the contrary of COPRA which is
the worst. We notice that our model has a positive correlation with
On (see Table 15). While other algorithms demonstrate a negative
correlation. This is due to the high recall of DOCNet.

According to the results of Table 16 we notice that since the rate
of overlap is more than 20%, DOCNet manages to have the best NMI
than the other methods. In fact, it has an evolutionary aspect which
increases with Om, unlike of GCE, COPRA, EAGLE and CPM. This is
even the case for N = 8000 and large On. So, we observe that our
model provides a good partition for large scale graph.

5.2.6. DOCNet performance with graphs ten thousands nodes
In this type of graph with large size and from Table 17, we find

that COPRA found the best solution by varying the overlap rate
from 10% to 30% and it tends sharply to zero value. The CGE model
found a good partition throughout the change of On. In regarding
our model, it has an average aspect. In fact, it is better than CPM
for performance concerning the NMI. By observing other measures
of performance, we note that our model has the highest recall, its
precision is average and F-score increases by incrementing the
overlap rate. EAGLE suffers from under-detection (where only very
few overlapping nodes are identified) which results in a low recall
score. This is clear in Tables 18, 19 and Fig. 7. In this case, from
Table 20, we find that our algorithm has a quality of partition that
improves by increasing the number of communities to which node
belongs. COPRA and GCE are the best. From Fig. 8 DOCNet has the
best F-score by varying the Om.

5.2.7. DOCNet performance with graphs fifty thousands nodes
As a final test for artificial networks, we generated graphs with

large size. Simulation results are summarized in Table 21. We no-
tice from these results that our model was in average able to detect

 

 

Table 1
NMI for networks with N ¼ 1000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM EAGLE DOCNet

10 0.61 0.90 0.33 0.37 0.77
20 0.58 0.85 0.30 0.43 0.68
30 0.55 0.80 0.08 0.32 0.58
40 0.00 0.59 0.07 0.08 0.41
50 0.00 0.56 0.06 0.13 0.39
60 0.00 0.41 0.06 0.05 0.26
70 0.00 0.34 0.06 0.02 0.23
80 0.00 0.28 0.02 0.02 0.17

Table 5
NMI for networks with N ¼ 2000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM EAGLE DOCNet

10 0.85 0.89 0.49 0.40 0.78
20 0.72 0.82 0.40 0.35 0.74
30 0.58 0.81 0.27 0.15 0.59
40 0.44 0.77 0.25 0.10 0.51
50 0.00 0.68 0.14 0.12 0.45
60 0.00 0.58 0.09 0.03 0.32
70 0.00 0.32 0.06 0.02 0.19
80 0.00 0.26 0.04 0.10 0.07



Table 6
Recall for networks with N ¼ 2000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM AGLE DOCNet

10 0.93 0.38 0.40 0.36 0.65
20 0.81 0.36 0.29 0.40 0.73
30 0.68 0.88 0.19 0.35 0.71
40 0.57 0.42 0.23 0.36 0.73
50 0.00 0.50 0.25 0.34 0.75
60 0.00 0.54 0.17 0.33 0.74
70 0.00 0.45 0.17 0.21 0.75
80 0.00 0.48 0.21 0.26 0.76

Table 7
Precision for networks with N ¼ 2000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM EAGLE DOCNet

10 0.39 0.68 0.51 0.67 0.31
20 0.54 0.77 0.72 0.81 0.41
30 0.67 0.88 0.66 0.74 0.41
40 0.71 0.86 0.77 0.84 0.48
50 0.00 0.72 0.77 0.86 0.56
60 0.00 0.76 0.80 0.84 0.64
70 0.00 0.75 0.80 0.86 0.70
80 0.00 0.83 0.89 0.33 0.82

Table 8
NMI for networks with N ¼ 2000; K ¼ 10; l ¼ 0:2; ON ¼ 10%.

Om COPRA GCE CPM EAGLE DOCNet

2 0.85 0.90 0.42 0.42 0.80
3 0.64 0.79 0.52 0.40 0.57
4 0.55 0.74 0.43 0.36 0.51
5 0.53 0.72 0.41 0.35 0.47
6 0.46 0.69 0.45 0.44 0.46
7 0.41 0.65 0.36 0.17 0.41
8 0.32 0.60 0.39 0.30 0.43

Fig. 4. F-score for networks with N ¼ 2000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

Table 9
NMI for networks with N ¼ 5000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM AGLE DOCNet

10 0.79 0.79 0.57 0.39 0.82
20 0.65 0.87 0.54 0.18 0.69
30 0.53 0.82 0.42 0.17 0.64
40 0.42 0.76 0.24 0.06 0.51
50 0.36 0.67 0.17 0.17 0.41
60 0.25 0.52 0.14 0.15 0.33
70 0.00 0.40 0.12 0.15 0.27
80 0.00 0.32 0.12 0.14 0.19

Table 10
Recall networks with N ¼ 5000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM EAGLE DOCNet

10 0.94 0.33 0.45 0.37 0.68
20 0.80 0.36 0.48 0.38 0.72
30 0.66 0.40 0.44 0.39 0.69
40 0.54 0.38 0.38 0.36 0.70
50 0.47 0.47 0.36 0.31 0.75
60 0.42 0.51 0.37 0.28 0.75
70 0.00 0.47 0.32 0.26 0.74
80 0.00 0.47 0.30 0.23 0.75

Table 11
Precision for networks with N ¼ 5000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM EAGLE DOCNet

10 0.39 0.93 0.56 0.78 0.37
20 0.59 0.90 0.79 0.85 0.39
30 0.66 0.87 0.84 0.92 0.46
40 0.69 0.84 0.83 0.89 0.48
50 0.74 0.76 0.88 0.89 0.57
60 0.79 0.73 0.88 0.90 0.63
70 0.00 0.78 0.89 0.90 0.72
80 0.00 0.84 0.91 0.91 0.81

Fig. 5. F-score for networks with N ¼ 5000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

Table 12
NMI for networks with N ¼ 5000; K ¼ 10; l ¼ 0:2; ON ¼ 10%.

Om COPRA GCE CPM EAGLE DOCNet

2 0.79 0.92 0.57 0.39 0.81
3 0.67 0.79 0.51 0.30 0.58
4 0.50 0.77 0.53 0.35 0.53
5 0.52 0.71 0.44 0.36 0.48
6 0.52 0.67 0.44 0.42 0.45
7 0.45 0.63 0.43 0.27 0.42
8 0.35 0.60 0.43 0.25 0.40

Table 13
NMI for networks with N ¼ 8000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM EAGLE DOCNet

10 0.74 0.91 0.67 0.31 0.84
20 0.66 0.86 0.55 0.24 0.70
30 0.57 0.57 0.49 0.13 0.62
40 0.44 0.44 0.38 0.07 0.51
50 0.35 0.35 0.28 0.10 0.41
60 0.28 0.28 0.26 0.11 0.36
70 0.20 0.20 0.21 0.09 0.25
80 0.00 0.18 0.00 0.07 0.19

D. Rhouma, L.B. Romdhane / Expert Systems with Applications 41 (2014) 4309–4321 4317 
 

 



Table 14
Recall for networks with N ¼ 8000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM EAGLE DOCNet

10 0.92 0.35 0.50 0.37 0.11
20 0.81 0.34 0.48 0.38 0.68
30 0.65 0.35 0.49 0.41 0.73
40 0.58 0.33 0.43 0.36 0.72
50 0.47 0.46 0.40 0.32 0.78
60 0.37 0.46 0.55 0.30 0.73
70 0.34 0.47 0.37 0.27 0.74
80 0.00 0.48 0.00 0.20 0.74

Fig. 6. F-score for networks with N ¼ 8000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

Table 16
NMI for networks with N ¼ 8000; K ¼ 10; l ¼ 0:2; On ¼ 10%.

Om COPRA GCE CPM EAGLE DOCNet

2 0.74 0.91 0.70 0.31 0.84
3 0.62 0.80 0.60 0.34 0.58
4 0.61 0.77 0.56 0.33 0.53
5 0.54 0.71 0.53 0.36 0.49
6 0.46 0.68 0.50 0.26 0.44
7 0.40 0.63 0.51 0.30 0.42
8 0.39 0.58 0.46 0.38 0.37

Table 17
NMI for networks with N ¼ 10;000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM EAGLE DOCNet

10 0.74 0.42 0.18 0.58 0.28
20 0.71 0.21 0.12 0.52 0.20
30 0.62 0.24 0.10 0.40 0.18
40 0.00 0.32 0.08 0.29 0.16
50 0.00 0.19 0.03 0.10 0.08
60 0.00 0.18 0.01 0.03 0.08
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the exact structure for each graph despite its size. We remark also
that COPRA and GCE compute a good partition which is not so far
from the exact one. However, the F-score of DOCNet was always
the highest. This is caused by its excessively high recall. Similar
to small size network, COPRA and GCE maintain great precision
score. Regarding CPM and EAGLE, we were unable to test them
on these complex graphs due to their computation inefficiency.
5.2.8. DOCNet performance with the variation of network density
We evaluated in this section the effect of the variation of the

number of edges (we increased the density of the graph), on net-
works with N ¼ 8000 and l ¼ 0:2. Quantities reported by DOCNet
in Fig. 9 are closer to the ground truth and are slightly steady
during the variation of k. From k ¼ 40 we are unable to run neither
CPM nor EAGLE due to their time-complexity. GCE’s NMI outper-
forms other algorithms when the density of the network rises.
COPRA has an increasing aspect and a positive correlation with
the variation of the number of edges. Plots of Fig. 10 shows F-score
for networks with the increase of network size (in term of number
of edges) from 40,948 (k ¼ 10) to 319,714 ðk ¼ 80Þ. GCE as well as
DOCNet achieves nearly the largest F-score in networks with high
level of density, as defined by k. Interestingly, COPRA, GCE and
DOCNet have a positive correlation with k (they made a harmonic
balance between precision and recall) while other algorithms
typically demonstrate a negative correlation.
Table 15
Precision for networks with N ¼ 8000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM EAGLE DOCNet

10 0.38 0.96 0.68 0.87 0.40
20 0.57 0.93 0.78 0.90 0.35
30 0.64 0.89 0.84 0.91 0.44
40 0.70 0.82 0.84 0.91 0.48
50 0.73 0.74 0.87 0.91 0.55
60 0.76 0.75 0.88 0.92 0.63
70 0.82 0.77 0.90 0.92 0.72
80 0.00 0.84 0.00 0.94 0.82
As a conclusion to these simulations of artificial networks, we
can state that our model performs well for distinct types of graphs
and was able to compute the practically exact structure of each
network regardless of its nature and complexity. The F-score of
all tested methods typically decays moderately as overlapping
diversity Om increases. The high precision of EAGLE (also CPM
and GCE for Om ¼ 2) shows that clique-like assumption of commu-
nities may help to identify overlapping nodes in low overlapping
density case. DOCNet has a great capacity to detect the boundary
node (high F-score). However, GCE achieves the highest NMI than
other models. Subsequently, we will continue our experimental
analysis but considering real networks.

5.3. Reals networks

After having considered artificial networks, we will consider
actually well-known real social networks used in the literature as
a test for several models. Unfortunately, not all of these models
do have an exact known reference structure. Some of used mea-
sures to evaluate the performance of overlapping community
detection in real-world networks are the number of exacted de-
tected communities (denoted as M), the number of detected over-
lapping nodes (Od

n) and the average number of detected
memberships (Od

m). We tested algorithms for the detection of com-
munity overlap on eight reals social networks. The Table 22 pro-
vides some real benchmark networks. We removed CPM and
EAGLE from the test for (PGP, ca-CondMat, ca-CondMat) due to
either their memory or computation inefficiency in large networks
(Xie et al., 2013).

5.3.1. Karate Club
The social network of Karate Club members studied by the

sociologist has become a famous benchmark for all community
Table 18
Recall for networks with N ¼ 10; 000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM EAGLE DOCNet

10 0.49 0.05 0.11 0.05 0.67
20 0.57 0.07 0.10 0.04 0.65
30 0.41 0.05 0.11 0.04 0.67
40 0.00 0.06 0.13 0.06 0.67
50 0.00 0.07 0.12 0.02 0.69
60 0.00 0.08 0.12 0.04 0.68



Table 19
Precision for networks with N ¼ 10;000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

On (%) COPRA GCE CPM EAGLE DOCNet

10 0.49 0.08 0.09 0.30 0.10
20 0.45 0.45 0.15 0.37 0.20
30 0.49 0.49 0.26 0.50 0.29
40 0.00 0.00 0.38 0.62 0.39
50 0.00 0.00 0.46 0.08 0.49
60 0.00 0.00 0.59 0.77 0.58

Fig. 7. F-score for networks with N ¼ 10;000; K ¼ 10; l ¼ 0:2; Om ¼ 2.

Table 20
NMI for networks with N ¼ 10; 000; K ¼ 10; l ¼ 0:2; On ¼ 10%.

Om COPRA GCE CPM EAGLE DOCNet

2 0.74 0.42 0.18 0.59 0.28
3 0.70 0.32 0.18 0.58 0.21
4 0.00 0.14 0.10 0.57 0.14
5 0.00 0.34 0.14 0.59 0.22
6 0.00 0.33 0.14 0.45 0.27
7 0.00 0.43 0.17 0.32 0.28
8 0.00 0.45 0.13 0.40 0.25

Fig. 8. F-score for networks with N ¼ 10;000; K ¼ 10; l ¼ 0:2; On ¼ 10%.

Table 21
Performances of networks with N ¼ 50;000; K ¼ 10; l ¼ 0:2; On ¼ 10%; Om ¼ 2;
jEj ¼ 250;000.

COPRA GCE CPM EAGLE DOCNet

NMI 0.92 0.80 – – 0.76
Precision 0.50 0.30 – – 0.90
Recall 0.98 0.91 – – 0.55
F-score 0.67 0.45 – – 0.68

Fig. 9. Variation of NMI in function of k.

Fig. 10. Variation of F-score in function of k.
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detection methods (Zachary, 1977). The network consists of 34
nodes, each node represents a member of the club, separated into
two distinct groups centered around instructors or administrators.
A partition into three communities is also justified. The experimen-
tal results are listed in Table 23.

5.3.2. Dolphin network
The Dolphins social network is taken from (Lusseau et al., 2003).

It describes the associations between 62 dolphins living in
Doubtful Sound, New Zealand. Ties between dolphin represent
the statistically significant frequent association between them.
The experimental results are listed in Table 24.

5.3.3. Les Miserables network
The network of ‘‘Les Miserables’’ takes into account interactions

between the main characters in the novel written by Victor Hugo
‘‘Miserables’’ (Knuth, 1993). In this network, nodes represent
characters and a link between two nodes is the simultaneous
occurrence of two or more characters in a scene. Five communities
are detected by our method which is similar to the exact one. The
modularity of overlap is 0.29. More detailed results are reported in
Table 25.

5.3.4. Books network
The Network Krebs books on U.S. policy is introduced by

Newman. In this network (Krebs, 2004), nodes represent 105 re-
cent books on American politics bought from Amazon.com. Links
join pairs of books that are often purchased by the same buyer.
Our score is perfectly the same as the actual partition that is three
communities: ‘‘liberal’’, ‘‘neutral’’ or ‘‘conservative’’. Table 26 is a
set of evaluation criteria for our model as well as 4 others.



Table 22
The characteristics of real graphs.

Networks j V j j E j Description

Karate (Network data, 2013a) 34 78 The Zachary Karate Club
Dolphin (Network data, 2013a) 62 159 The network of dolphins
Miserables (Network data, 2013a) 77 254 The network of miserables
Books (Network data, 2013a) 105 441 The network of American Politics Books
email (Network data, 2013b) 1133 5451 The E-mail network URV
GR-QC (SNAP, 2009) 5242 14496 General Relativity and Quantum Cosmology
PGP (Network data, 2013b) 10680 24316 Pretty-Good-Privacy
Ca-CondMat (Network data, 2013a) 40421 175692 Collaboration network of Arxiv Condensed Matter

Table 24
The quality measures partitioning of Dophins obtained for the various models.

CPM (k = 3) COPRA (v = 3) GCE EAGLE DOCNet

Qov 0.29 0.32 0.33 0.32 0.41
M 4.00 3.00 4.00 4.00 3.00

Od
m

2.00 2.00 2.00 2.00 2.00

Od
n

2.00 1.75 2.00 1.50 1.66
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5.3.5. Email network
Email network describes the e-mail interchanges between

members of the Univeristy Rovira Virgili (Tarragona). In fact, nodes
represent members and an edge exists if two members interchange
e-mail. The performance of various models is listed in Table 27.
Algorithms may not perform equally well on different types of net-
work structures. For example GCE, it is sensitive to specific struc-
tures. As shown in Table 27 CPM has the smallest fraction of
overlapping nodes. Regarding COPRA, it detected two large com-
munities and achieves the largest Q ov .
Table 25
The quality measures partitioning of miserable obtained for the various models.

CPM (k = 4) COPRA (v = 2) GCE EAGLE DOCNet

Qov 0.32 0.37 0.34 0.20 0.29
M 4.00 4.00 5.00 16.00 5.00

Od
m

2.33 2.00 2.00 2.22 2.52

Od
n

1.25 2.00 1.25 2.60 6.86
5.3.6. GR-QC network
General Relativity and Quantum Cosmology collaboration net-

work is from the e-print arXiv and covers scientific collaborations
between authors papers submitted to General Relativity and
Quantum Cosmology category (SNAP, 2009). If an author i
co-authored a paper with author j, the graph contains an
undirected edge from i to j. The experimental results listed in
Table 28 shown that our proposal achieves the highest overlapped
nodes. EAGLE and CPM perform worse than either GCE or COPRA.
Table 26
The quality measures partitioning of books obtained for the various models.

CPM (k = 3) COPRA (v = 2) GCE EAGLE DOCNet

Qov 0.39 0.45 0.40 0.30 0.45
M 4.00 2.00 5.00 7.00 3.00

Od
m

2.00 2.00 0.00 2.00 2.00

Od
n

2.25 2.00 0.00 3.00 2.00

Table 27
5.3.7. PGP network
The final example is the network of PGP (Network data, 2013b),

it is composed from 10680 nodes. This network is a giant list of
users algorithm Pretty-Good Privacy (PGP software digit surely
and tearing Cryptographic rately created by the American Phil
Zimmermann in 1991). It guarantees the confidentiality and
authentication of data communication for a secure exchange of
information. The partition of this network is not known in advance
but from the results in Table 29 CPM fails even to partition the
graph because of its large size and complexity.
The quality measures partitioning of email obtained for the various models.

CPM (k = 3) COPRA (v = 3) GCE EAGLE DOCNet

Qov 0.37 0.49 0.18 0.17 0.48
M 41.00 2.00 35.00 44.00 30.00

Od
m

2.12 2.00 2.21 2.59 2.66

Od
n

1.92 8.00 2.30 2.39 10.00
5.3.8. Ca-CondMat network
Condense Matter Physics is a collaborative network (SNAP,

2009). It is from the e-print arXiv and covers scientific collabora-
tions between authors papers submitted to Condense Matter cate-
gory. If an author i co-authored a paper with author j, the graph
contains an undirected edge from i to j. The data represents essen-
tially the complete history of COND-MAT section (SNAP, 2009). As
shown in Table 30, GCE achieves the highest Qov , however DOCNet
outperforms others models significantly in term of Od

m and Od
n. CPM

and EAGLE fail to partition the graph because of its large size and
complexity.
Table 23
The quality measures partitioning of Karate Club obtained for the various models.

CPM (k = 3) COPRA (v = 3) GCE EAGLE DOCNet

Qov 0.32 0.04 0.26 0.31 0.24
M 3.00 6.00 2.00 4.00 3.00

Od
m

2.00 2.00 2.00 2.00 2.00

Od
n

1.00 2.50 3.00 1.00 5.00
To recapitulate, we can say that DOCNet performs well with re-
spect to the adopted criteria, on real-world small and large-scale
social networks. In fact, it was always able to compute the partition
regardless of the size of the network or the size of the communi-
ties. As it is shown in Tables 23–30, COPRA achieves the highest
Qov in nearly all the test networks. DOCNet has a moderate one.
On average, EAGLE and CPM perform worse than either COPRA or
GCE. It is also, interesting to note that all models confirm that
the diversity of overlapping nodes in the tested real social net-
works is small (Od

m is close to 2). Although the number of overlap-
ping nodes differs from algorithm to others. DOCNet seems to be
appropriated to the concept of overlap and returns higher number
of overlapping nodes than others algorithms.



Table 28
The quality measures partitioning of GR-QC obtained for the various models.

CPM (k = 4) COPRA (v = 3) GCE EAGLE DOCNet

Qov 0.23 0.24 0.26 0.10 0.23
M 835.00 405.00 307.00 940.00 824.00

Od
m

2.38 2.08 2.16 2.05 2.51

Od
n

1.09 2.35 2.37 1.04 3.55

Table 29
The quality measures partitioning of PGP obtained for the various models.

CPM (k = 3) COPRA (v = 11) GCE EAGLE DOCNet

Qov – 0.39 0.23 0.21 0.23
M – 993.00 1200.00 4924.00 1151.00

Od
m

– 2.07 2.17 6.27 2.91

Od
n

– 6.60 4.59 1.22 8.83

Table 30
The quality measures partitioning of Ca-CondMat network obtained for the various
models.

CPM COPRA (v = 11) GCE EAGLE DOCNet

Qov – 0.25 0.28 – 0.20
M – 1717.00 2257.00 – 1984.00

Od
m

– 2.00 2.62 – 3.05

Od
n

– 3.82 3.23 – 15.54
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6. Conclusion

In this paper, we focus on the problem of overlapping commu-
nities detecting in social graphs which is a powerful tool for under-
standing the functioning of the network and its structure. Many
current researches on this problem are developed and we have dis-
cussed their limits. Our main contribution is the proposition of an
objective function and a local optimization algorithm called DOC-
Net (Detecting overlapping communities in Networks) which
greedily extend a seed node until a stopping criterion is met. These
proposals and their formal studies are complemented by an exper-
imental study to compare them with the most known methods on
a set of graph tests. According to these tests on artificial graphs, we
found that our model detects the closest partition to the exact one
and it shows a high stability especially for complex networks and
when the rate of overlap between communities becomes impor-
tant. In the case of real graphs, we discover that the performance
of our approach is among the best. In conclusion, this work is effi-
cient and has encouraging results. Moreover, DOCNet needs addi-
tional improvements and require further investigations. For
example, our method is desirable to detect communities in noisy
networks that exhibit a high number of changes over time. Another
direction is interesting, too, is to adapt DOCNet model to weighted
and directed networks.
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