
Physica A 415 (2014) 398–406

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Uncovering the overlapping community structure of complex
networks by maximal cliques
Junqiu Li, Xingyuan Wang ∗, Yaozu Cui
Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China

h i g h l i g h t s

• Introduce the maximal cliques, overlapping vertex, bridge vertex and isolated vertex.
• Propose a new algorithm to find all the maximal cliques.
• Expand the maximal cliques by some rules given in this paper.
• Give satisfactory experimental results.
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a b s t r a c t

In this paper, a unique algorithm is proposed to detect overlapping communities in the
un-weighted and weighted networks with considerable accuracy. The maximal cliques,
overlapping vertex, bridge vertex and isolated vertex are introduced. First, all the maximal
cliques are extracted by the algorithm based on the deep and bread searching. Then two
maximal cliques can bemerged into a larger sub-graph by some given rules. In addition, the
proposed algorithm successfully finds overlapping vertices and bridge vertices between
communities. Experimental results using some real-world networks data show that the
performance of the proposed algorithm is satisfactory.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In nature and society, many real networks can be described as complex networks [1–3], e.g. relationship in social
system, metabolism in biological systems, protein interaction network, literature reference network, and scientific research
cooperation network, etc. Complex networks are a collection of vertices and edges, the vertices of the graph represent the
entities of the systemand the links represent the interactions between the entities. As the further study on the characters and
the physical meanings of the complex networks in the microscopic and mesoscopic level, researchers found that a common
feature which is called community structure exists in many real networks. Communities are groups or clusters of vertices
withinwhich the network connections are densely connected to each other, but betweenwhich they are sparsely connected
with the rest of the network [4–7].

In recent years, many algorithms for detecting communities have been proposed. Two classical algorithms are the
Kernighan–Lin algorithm that uses a greedy algorithm and classifies the networks by optimizing the number of within and
between-community edges [8] and the spectral bisection algorithm based on the eigenvectors of the Laplacian matrix of
graph [9]. In Ref. [10], Newman and Girvan proposed a divisive algorithm called the GN algorithm that recursively removes
edges with the highest betweenness of the edges, constructed a hierarchical tree, and then we can obtain various divided
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communities by cutting the hierarchical tree at different points. This method makes up for the deficiency of the traditional
algorithms, but also has its own defects. This algorithm has high time complexity and has not the defining quantity of
community structure in the network. To measure the quality of network partitioning, the modularity [10] represented by
the Q function was introduced. Recently, many algorithms are proposed based on modularity. In 2004, Newman proposed
a fast greedy algorithm [11] to maximize the modularity, starting with the initial network of n independent communities,
with each community having one vertex. Clauset andNewman described a new algorithm for inferring community structure
from networks by greedily optimizing the modularity [12], which runs in time O(md log n) for a network with n vertices
and m edges where d is the depth of the dendrogram. This algorithm is considerably faster than most previous traditional
algorithms. The same algorithm was presented by Duch and Arenas [13] based on an extremal optimization of the value
of modularity. Newman proposed an algorithm using the eigenvectors of matrices [14]. Wang et al. [15] proposed a
very fast algorithm only based on local information to detect community. Chen et al. [16] presented a fast and efficient
algorithm by mining a node with the closest relations with the community recursively until obtaining a local optimal
community.

All the above algorithms mentioned are unable to find overlapping communities, and assume that each vertex belongs
to only one community. However, there are some vertices belonging to more than one community in some real networks.
So there are a lot of algorithms to explore overlapping community structures in the complex networks recently [17–20].
In addition there is another special type of complex network, which is made up of a lot of maximal cliques. A maximal
clique is a complete sub-graph which is not a subset of any other complete sub-graph in a complex network. The number
of vertex in a maximal clique is more than two and any two vertices have a link connecting to each other. All the maximal
cliques are connected by some overlapping vertices or bridge vertices (in Sections 2.1 and 2.2). This special type of network
can be seen in real life. For instance, in scientific collaboration network [21], some authors belong to different research
groups characterized by different research directions. Such inter-community authors are often of the most interest. In
Chinesemedical prescription network (see Fig. 1), a number of Chinesemedicinalmaterials constitute some Chinesemedical
prescriptions. Fig. 1 is a smallmedical prescription network, which is an un-weighted networkwith 20 Chinesemedicines as
vertices and 6maximal cliques representing the number of the Chinesemedical prescriptions. According to Chinesemedical
prescriptions, these 6 maximal cliques cannot be merged into a larger sub-graph, so 6 communities and 6 overlapping
vertices are obviously detected from Fig. 1.

In this paper, a new algorithm based on the deep and bread searching for extracting all the maximal cliques (complete
sub-graphs) is proposed firstly. According to the characteristics of real networks and some given rules, somemaximal cliques
connected by some overlapping vertices can be merged into a larger sub-graph. All maximal cliques are the community
structure in some real networks which are completely composed of the maximal cliques connected by some overlapping
vertices. Last, some real world networks are used to test the performance of the presented algorithm.

2. Preliminary concepts

2.1. Overlapping vertex

In the past few years, there are many algorithms to detect non-overlapping communities in complex network. But many
real networks have overlapping communities and some vertices belong tomore than one community. So this vertex is called
the overlapping vertex, and this network having the overlapping vertices is called overlapping neighboring network in this
paper. In Fig. 1, this is overlapping neighboring network with six overlapping vertices and six maximal cliques.

2.2. Bridge vertex

Recent studies revealed that some real networks cannot be able to be divided into two communities without allowing
bridge vertices connecting multiple groups or communities. The concept of ‘‘bridge’’ is defined as the vertices that cross
structural holes between discrete groups of people [22].

To emphasize the importance of bridge vertices in community detection and to illustrate the concept, we take a simple
graph shown in Fig. 2 as an example. A visual inspection of this graph most likely suggests three maximal cliques {1, 2, 3},
{4, 5, 6, 7, 8}, {14, 15, 16, 17}. Two maximal cliques are connected by vertex 11, which does not belong to any maximal
clique. In this paper, similar vertex 11 is called bridge vertex.

2.3. Isolated vertex

In addition to extracting maximal cliques, overlapping vertex, and bridge vertices, some vertices with low vertex degree
do not belong to any of maximal cliques. These vertices are called isolated vertex in this paper. In different real networks,
isolated vertices can be isolated from the entire network during the early stage of extracting maximal cliques. At the last
stage, isolated vertices can be divided into some communities by some given rules. In Fig. 2, vertex degree of vertices 9, 10,
12 and 13 is 1 and these vertices do not belong to any maximal cliques. So these vertices are called isolated vertices.
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Fig. 1. A small network of Chinese medical prescriptions.

Fig. 2. A small cooperative network with 17 vertices.

3. Algorithm description

In this paper, the algorithm proposed consists of two main procedures. One is extracting all the maximal cliques based
on deep and bread searching, and the other is an improving procedure in order to expand the maximal cliques and improve
the quality of community structure further.

3.1. Extract all maximal cliques

Scientific collaboration network and Chinese medical prescriptions network have the same network structure, which
are composed of many maximal cliques connected by some overlapping vertices. The number of the maximal clique in
these networks and the number of each vertex belonging to maximal clique have been obviously important to understand
the physical structure of these networks. In scientific cooperation network, each maximal clique represents cooperative
outcome or project. The number of maximal cliques shows the number of cooperative outcomes or projects. The number
of vertices in each maximal cliques shows the number of scientists who collaborate together. The number of each vertices
belonging to a maximal clique explains the number of scientists participating projects. In Chinese medical prescription
network, each maximal clique represents a Chinese medicine. The number of vertices in each maximal clique shows the
number of the medicinal materials making up a Chinese medicine.

Therefore, detecting communities in these real networks having a certain number of maximal cliques, the vital problem
is to accurately extract all maximal cliques from a given network. We can calculate the number of maximal cliques, the
number of vertices including in each maximal clique and the number of each vertex belonging to a maximal clique. A
unique algorithm based on deep and bread searching is proposed in this paper to extract all maximal cliques from some
real networks with a certain number of maximal cliques.

A real network can be modeled as G(V , E), where V represents the set of n vertices or nodes, and E is a set of m links. In
this work we shall use un-weighted or weighted complex network. The proposed algorithm based on the deep and bread
searching for extracting all the maximal cliques evolves as follows:
(a) Initially, compute vertex degree of every vertex and remove isolated vertices with vertex degree 1.
(b) Then, select a vertex [V0] with the largest vertex degree and find its neighboring vertices.
(c) Let vertex [V0] be the starting vertex, searching any neighboring vertex [N1] with label ‘‘DV = 1’’, then search any

neighboring vertex [N2] of vertex [N1] and [V0] with label ‘‘DV = 1’’; search any neighboring vertex [N3] of vertex [N2]

and [V0] with label ‘‘DV = 1’’ until all neighboring vertices of vertex [V0] are searched and get back to initial vertex [V0].
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Fig. 3. Three communities in the small cooperative network with 17 vertices.

(d) After the step (c) get a ring

V0, V1, V2, . . . , Vj, V0


, if vertices


N1,N2, . . . ,Nj


are the neighboring vertices of the vertex

[V0], let vertex [N1] as the starting vertex, searching a part of its neighboring vertex

N3,N4, . . . ,Nj


, and let [N2] be the

starting vertex, searching a part of its neighboring vertices

N4,N5, . . . ,Nj


. Until vertex [Nj−2] is a neighboring vertex

of vertex [Nj].
(e) Output the maximal cliques with ‘‘Ms’’ (s = 1, 2, . . .) and modify vertex degree of the vertex with label ‘‘DV = 1’’ in the

adjacency matrix about the given network.
(f) Go to the step (b) if vertex degree of some vertices is not zero; Go to the step (g).
(g) If vertex degree of each vertex is zero, quit the repetition, and get all maximal cliques.

3.2. Expand the maximal cliques

In this step, we use the following rules to expand the maximal cliques and detect the community structure.
First, find overlapping vertices belonging to more than one maximal clique with label ‘‘OV ’’. Then, find bridge vertices

connectingmore than twomaximal cliques, not belonging to anymaximal clique, and some isolated verticeswith low vertex
degree are found, which are not belonging to any of the maximal cliques.

Second,NM is less total number of vertices in the twomaximal cliques, andNO is the total number of the common vertices
between these two maximal cliques. These two maximal cliques can be merged into a larger sub-graph when NM

2 ≤ NO in
un-weighted networks. Otherwise, these two maximal cliques cannot be merged into a larger sub-graph. However, some
weighted networks with different characteristics have different edge weight on behalf of special meaning. So in these
weighted networks, two maximal cliques can be merged into a larger sub-graph considered the meaning of weight.

Third, isolated vertices with low vertex degree do not belong to any maximal clique. If an isolated vertex connects with
only one non-overlapping vertex, this isolated vertex and vertex connected with it can be divided into a same community.
Otherwise, isolated nodes will be not divided into any community.

For clarification, consider the small cooperative networkwith 17 vertices in Fig. 2, threemaximal cliquesM1 = {1, 2, 3} ,
M2 = {4, 5, 6, 7, 8} , M3 = {14, 15, 16, 17} are extracted. Then vertex 11 is as a bridge vertex, which connects M2 and M3.
Vertices 9, 10, 12 and 13 are isolated vertices. According to the above rules, three communities {1, 2, 3, 13}, {4, 5, 6, 7, 8},
{14, 15, 16, 17}, one bridge vertex 11, and three isolated vertices 9, 10, 12 are detected by this proposed algorithm shown
in Fig. 3.

3.3. Modularity

In 2004 Newman and Girvan [10] proposed themodularityQ tomeasure the quality of a particular division of a network:

Q =


i

(eii − a2i ) = Tre −
e2 , (1)

where eii is the fraction of all edges in the network that link vertices in community i to vertices in community j, in which the
communities are newly generated. ai is the fraction of edges which connect to vertices in community i. This modularity Q
measures the fraction of the edges in the network that the number of within-community edges minus the expected value
of the same quantity in a network with the same community divisions but random connections between the vertices. If the
number of within-community edges is no better than random, we will get Q = 0. Values approaching Q = 1, which is the
maximum, indicate obvious community structure. Despite maximum modularity Q corresponds to the partition that com-
prises the most inner edges within communities and the least outer edges between communities, and the wide acceptance
and applications in some real networks, the modularity Q faces several problems. In Ref. [23], it suffers a resolution limit
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Table 1
Summary of numerical experimental results.

Data Karate Football Netscience Cond-mat-2003

Nodes/links 34/78 115/615 1589/2742 31163/120029
GN algorithm 0.416/0 s 0.572/95 s 0.825/138 s 0.424/1256 s
Louvain algorithm 0.431/0 s 0.594/0 s 0.838/0 s 0.457/175 s
Chen algorithm 0.427/0 s 0.585/0 s 0.841/1 s 0.461/192 s
Our algorithm 0.442/0 s 0.601/0 s 0.842/0 s 0.458/180 s

problem and cannot tackle overlapping communities. So, Shen et al. [24] proposed an extended measure Qc to quantify the
overlapping communities.

The modularity in Eq. (1) can be rewritten as

Q =
1
2m


c∈P


uv

δcuδcv


Auv −

kukv

2m


, (2)

where Auv represents an adjacency matrix with the total number of the edge between u and v, P is a partition of network,
ku =


v Auv is the sum of the edges attached to vertex u, δcu = 1 denotes vertex u belongs to community c and 0 otherwise,

m =
1
2


uv Auv limx→∞ is the total number of edges.

However, considering a vertex might belong to more than one community, we rewrite the modularity in Eq. (2) as

Qm =
1
2m


c∈P


uv

βucβvc


Auv −

kukv

2m


, (3)

where

βuc =
1

Nu∈c

nuc

ku
, (4)

and Nu∈c is the number of vertex u belonging to communities, nuc is the number of edges adjacent to vertex u in the
community, ku =


v Auv is the sum of the edges attached to vertex u. Obviously, the definition in Eq. (4) satisfies the

following conditions

0 ≤ βuc ≤ 1, ∀c ∈ P, u ∈ V . (5)

Furthermore, if u belongs to only one community c, βuc is equal to 1. That is to say, Eq. (4) is consistentwith the definition
of the modularity for a non-overlapping community in Ref. [10].

4. Results

The proposed detecting overlapping community algorithm is implemented by Java programming language running on
a personal computer with 3.0 GHz processor, 4.0 GB memory and Win7 operating system. In order to further verify the
performance of our proposed algorithm, we have applied it on some test-case networks, such as Zachary’s karate club net-
work [25], football network, collaboration network, and cond-mat-2003. These networks can be downloaded from http://
www-personal.umich.edu/∼mejn/netdata/. In Table 1 we have compared it with three other algorithms (GN algorithm [10],
Louvain algorithm [26], Chen algorithm [27]) in networks of various sizes. For each algorithm, the table displays the modu-
larity Qm and the computation time.

Thewell-known ‘‘karate club’’ [25] iswidely used as a benchmark for somealgorithms in detecting community structures.
Zachary observed social interactions between themembers of a karate club at an American university over the course of two
years and constructed this network,which contains of 34members of the karate club as vertices and 78 edges is representing
friendships amongmembers of the club. A dispute arose between the club’s administrator and the club’s instructor whether
to raise club fees, and as a result, the club eventually split in two smaller clubs, centered round the administrator and the
instructor respectively.We evaluate the proposed algorithm by testing on un-weighted Zachary’s karate club network. First,
25 maximal cliques are extracted from Zachary’s karate club during the test of our algorithm. The number of overlapping
vertices belonging to two maximal cliques reduces with the merger of two maximal cliques. Only two overlapping 1 and
32 are detected at last. Then four overlapping communities which are represented by the circular, square, triangular and
hexagon are detected with Qm being 0.4118 in Fig. 4. One bridge vertex 10 and one isolated vertex 12 are detected at the
same time. This network is also discussed inmany papers. Different four communities are detected in Refs. [22,23]. Four non-
overlapping communities are detected by the algorithm in Ref. [28]. Two communities and one common vertex with 10 are
detected in Ref. [27] with the modularity Qo is 0.4214. In Ref. [29] two communities are overlapping, sharing a five vertices
{3, 9, 10, 14, 30}. As we see in Table 1, although Louvain algorithm is a fast algorithm, it is not able to detect overlapping
communities, whereas our algorithm can find them (see Fig. 4).

InMay 2006, M.E.J. Newman compiled aweighted collaboration network of scientists who are publishing on theworking
of network theory and experiment [14]. There are in total 1589 scientists and 2742 coauthor-ships in this collaboration
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Fig. 4. Four overlapping communities from Zachary’s karate club study.

Fig. 5. 98 overlapping communities from Netscience-coauthor network.

network.We just take the largest connected componentwith 397 scientists as the test benchmark. First 100maximal cliques
are extracted from this collaboration network. Then we use the above rules to expand the maximal cliques and detect
the community structure in Section 3.2. 98 overlapping communities are detected from 397 scientists by this proposed
algorithm with the modularity Qm being 0.8411 in Fig. 5. The vertices with white background are overlapping vertex, and
many of these overlapping vertices are cross-disciplinary researchers. The vertex 191 is the isolated vertex. The vertices 311
and 132 are the bridge vertices.

We extensively have tested the performance of our algorithmon artificial networkswith built-in hierarchical community
structure. Each network was constructed with 128 vertices which are split into 4 communities of 32 vertices each [30]. Pairs
of vertices falling to the same community are linked with probability pin while pairs falling to different communities are
linked with probability pout. The values of pin and pout were chosen to make the expected degree of each vertex equal to 16.
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Fig. 6. Test of our algorithm on the LER benchmark. The number of vertices is N = 1000. The results clearly depend on all parameters. γ is the exponent
for the degree, β is the exponent for the community size distribution, and ⟨k⟩ is the average degree.

The accuracy of the method is evaluated by measuring the fraction of correctly identified nodes and the normalized mutual
information. The fraction of correctly identified vertices is 0.67 for pout = 8, 0.92 for pout = 7 and 0.98 for pout = 6 in
the benchmark proposed in Ref. [30]. In Ref. [10], more than 90% of all vertices are classified correctly from pout = 0 all
the way to around pout = 6 by the shortest-path and random-walk versions of the algorithm perform excellently. Only for
pout ≥ 6 does the classification begin to deteriorate markedly. Our algorithm has been tested on LFR benchmarks proposed
in Ref. [29]. We can infer that the proposed algorithm gives satisfactory results from the figures shown in Figs. 6 and 7.

5. Conclusions

In Ref. [7], Palla et al. proposed a clique percolation (CP) algorithm to detect the overlapping community structure. They
think that a community can be regarded as a collection constituted by some small completely connected networks in a
sense. These completely connected networks can be called clique. k-clique is a completely sub-graph with k vertices. If
two k-cliques have k − 1 common vertices, these two k-cliques are adjacent. In CP algorithm, cliques are found based on
descending order and iterative regression firstly. After all the cliques are found, clique–clique overlap matrix is gotten. Last
k-communities can be detected. Unfortunately, CP algorithm fails to detect the primary binary division in this graph. In
Ref. [31], T.S. Evans proposed the clique graphs algorithm to detect the overlapping communities. To find communities, the
clique graphwill be constructed firstly in aweighted graph and then apply a good vertex partitioning algorithm to the clique
graph. Various definitions and motivations for these weights are given. The clique graphs denoted by C (3) (G) ,D(3) (G) and
D̃(3) (G) correspond to the adjacency matrices defined in (4), (6) and (7) of Ref. [31] respectively. The highlights and the
weakness of the CP method are concluded in Ref. [31].

In summary, a novel algorithm to detect overlapping communities in un-weighted and weighted networks is proposed
in this paper. The first pivotal step of this proposed algorithm is extracting all maximal cliques based on deep and bread
searching. Then two maximal cliques can be merged into a larger sub-graph by some given rules to expand the maximal
cliques and detect the community structure. This proposed algorithm detected in some real networks, which are completely
composed of many maximal cliques connected by some overlapping vertices will save more time. In addition, overlapping
vertex, bridge vertex and isolated vertex are detected by this proposed algorithm. Two representative real networks are used
to test performance of the proposed algorithm. In un-weighted Zachary’s karate clubnetwork, four overlapping communities
are detected with two overlapping vertices, one bridge vertex and one isolated vertex. In weighted collaboration network,
98 overlapping communities are detected from 397 scientists. Some overlapping vertices, bridge vertices and isolated are
detected by this algorithm at the same time. Further some large-scale networks, such as football network, collaboration
network, and cond-mat-2003 are used to evaluate the overlapping community detection algorithm. We have also tested
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Fig. 7. Test of our algorithm on the LER benchmark with N = 5000 vertices. The other parameters are the same as in Fig. 6.

this proposed algorithm on LER benchmark. These experiments demonstrate that the proposed algorithm is rather efficient
for detecting the overlapping communities in the complex network.
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