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The present study is focused on the thorough analysis of cause–effect relationships between pellet for-
mulation characteristics (pellet composition as well as process parameters) and the selected quality attri-
bute of the final product. The shape using the aspect ratio value expressed the quality of pellets. A data
matrix for chemometric analysis consisted of 224 pellet formulations performed by means of eight dif-
ferent active pharmaceutical ingredients and several various excipients, using different extru-
sion/spheronization process conditions. The data set contained 14 input variables (both formulation
and process variables) and one output variable (pellet aspect ratio). A tree regression algorithm consis-
tent with the Quality by Design concept was applied to obtain deeper understanding and knowledge
of formulation and process parameters affecting the final pellet sphericity. The clear interpretable set
of decision rules were generated. The spehronization speed, spheronization time, number of holes and
water content of extrudate have been recognized as the key factors influencing pellet aspect ratio. The
most spherical pellets were achieved by using a large number of holes during extrusion, a high sphero-
nizer speed and longer time of spheronization. The described data mining approach enhances knowledge
about pelletization process and simultaneously facilitates searching for the optimal process conditions
which are necessary to achieve ideal spherical pellets, resulting in good flow characteristics. This data
mining approach can be taken into consideration by industrial formulation scientists to support rational
decision making in the field of pellets technology.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The multivariate data analysis of manufacturing process is
increasingly used in the field of pharmaceutical technology. It is
mainly due to the fact of growing need for better understanding
of the formulation and process development by pharmaceutical
scientists (Djuris, 2013). This approach is consistent with the
Quality by Design concept which is currently recommended by
the regulatory authorities worldwide (ICH Q8 R2, 2009). It is gen-
erally known that research and development stage in the pharma-
ceutical industry is very expensive and time-consuming, therefore
it should be conducted as efficiently as possible. A successful
development of a pharmaceutical formulation is dependent on
both formulation ingredients and process parameters (Djuris,
2013). Application of chemometric tools such as experimental
design and multivariate data analysis enables to increase the pro-
duct and process knowledge and consequently allows for appropri-
ate excipients selection as well as proper identification and
optimization of critical process parameters (Djuris et al., 2012;
Ibrić et al., 2002; Petrović et al., 2011; Verma et al., 2009).

Generally, two various approaches in better product and pro-
cess understanding can be distinguished. One of them is experi-
mental design methodology which seems to be an essential tool
for successful building of quality into new pharmaceutical prod-
ucts and processes, especially at the early stage of their develop-
ment. In this approach, the proper choice of experimental
designs and then the data collection according to the generated
design matrix are crucial in order to draw valid and objective con-
clusions. Data from a well-designed experiment are easy to ana-
lyze. In many cases, a simple low-order (usually a first-order or a
second-order) polynomial model is appropriate to describe in
detail the main effects of the investigated factors and their interac-
tions. Furthermore, a better overview can be obtained by plotting
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the model response surface. Despite of many advantages of experi-
mental design approach, sometimes a second-order polynomial
model does not have sufficient density in the parameter space to
capture the expected nonlinearities of the system (Kristan and
Horvat, 2012).

In contrast to experimental design, data mining approach in
better product and process understanding differs the manner in
which the data were collected. This approach based on multivari-
ate data analysis is usually applied in the quality improvement of
existing products and processes. The multivariate methods can
be used in manufacturing process analysis to reveal internal struc-
ture and identify dependencies in large complex process data sets
from historical batch records. Thus, the historical process data sets
are analyzed retrospectively in order to better understand the
manufacturing process and consequently improve the product
quality. A typical multivariate techniques, such as artificial neural
networks, support vector machines and partial least squares
regression are widely used to model complex relationships hidden
in large data sets (Amani et al., 2008; Chansanroj et al., 2011;
Lourenço et al., 2011; Mihajlovic et al., 2011; Ronen et al., 2011).
These methods can predict successfully the product properties
resulting from a given set of ingredients and process conditions.
Despite of good predictive abilities of the obtained models, the
relationships between the predictor variables and the predicted
output value (quality attribute of the final product) are not so easy
to interpret and for this reason, the mentioned methods are often
considered as black boxes. The use of this kind of multivariate
models is not completely in accordance with the Quality by
Design concept which requires clear science-based understanding
of the mechanics behind the prediction and thus the system being
modeled (Polizzi and García-Muñoz, 2011). A good solution can be
the application of knowledge discovery methods, such as neuro-
fuzzy logic, decision trees or methods based on rough set theory.
These exploratory data mining techniques enable to generate
easily understandable decision rules which are useful in a manu-
facturing process optimization as well as a new drug product
development (Branchu et al., 2007; Lee et al., 2003; Mendyk
et al., 2010; Shao et al., 2006). The ability of the knowledge discov-
ery methods to convert large complex process data sets into infor-
mation-rich rules and simultaneously their ability to identify the
most significant factors affecting the product quality make them
suitable for quality improvement of existing pharmaceutical prod-
ucts and processes, according to the Quality by Design principles.
The multivariate analysis of historical process data sets can also
provide valuable guidance for design of new drug products and
processes. This approach seems to be complementary to the
experimental design in the pharmaceutical quality improvement
strategy. The design approach is particularly relevant and recom-
mended at the early development stage of new pharmaceutical for-
mulations, whereas data mining approach (through a retrospective
analysis) seems to be a good solution to extract knowledge from
large, complex formulation and process data sets from historical
batch records. The significant advantage of this approach is the
possibility of uncover interactions and non-linear relationships
that might not be easily detectable when small experimental
designs are used.

Pharmaceutical literature overview from the last few years indi-
cates that the analysis of the process data seems to be essential in
order to gain useful knowledge, improve process understanding
and consequently ensure acceptable final drug product quality.
The attempt to implement selected algorithms to new pharmaceu-
tics development is completely reasonable and recommended. As
there is no literature data on application of a decision trees meth-
odology for characterization of pellets manufacturing process, in
this work attention is directed toward the decision tree algorithm
as a potentially useful tool for pellet formulation development and
optimization. The present study is focused on the thorough analy-
sis of cause–effect relationships between formulation characteris-
tics (pellet composition as well as process parameters) and the
selected quality attribute of the final product. The quality of pellets
was expressed by the shape using the aspect ratio value. The phar-
maceutical pellets should have ideal spherical shape, resulting in
good flow properties which ensure reproducible die or capsule fill-
ing and consequently good content uniformity (Dukić-Ott et al.,
2009). Due to the possibility of generation clear set of decision
rules, in this project the tree regression algorithm was applied to
find and describe significant relationships hidden in the
experimental data set and to build a regression model, providing
the pellet aspect ratio based on the formulation composition and
process parameters. The aim of a multivariate model construction
was to find the optimal formulation composition and extru-
sion/spheronization parameters for obtaining spherical pellets.

 

2. Materials and methods

2.1. The data set

The pellet formulation data set containing 224 experimental
records was formed based on data described in previously pub-
lished research articles (Bornhöft et al., 2005; Thommes and
Kleinebudde, 2006b, 2007a, 2007b, 2008). All pellets were pre-
pared by extrusion/spheronization technique using eight different
active pharmaceutical ingredients (acetaminophen, theophylline,
mesalamine, hydrochlorothiazide, phenacetin, chloramphenicol,
dimenhydrinate, lidocaine) and various excipients. The active
pharmaceutical ingredients (API) were used at fractions of 20%,
40%, 60% and 80% in pellet formulations. Each API molecule was
described by water solubility and log P value. The influence of
two different types of the pelletization aid (microcrystalline cellu-
lose, kappa-carrageenan) on pellets sphericity was investigated.
The pelletization aid was used at fraction of 20% in each for-
mulation. Furthermore, four fillers of varied solubility (lactose,
mannitol, maize starch, dicalcium phosphate dihydrate) at frac-
tions of 0%, 20%, 40% and 60% were examined. The production
parameters during extrusion (screw speed, number of holes),
spheronization (spheronizer speed, spheronization time,
spheronization temperature) and drying (temperature, time) were
varied. All qualitative input variables and minimum and maximum
values for the above mentioned quantitative variables describing
pelletization process parameters, API and excipients properties
are given in Table 1.

A data matrix for chemometric analysis contained 14 input vari-
ables (both formulation and process variables) and one output
variable (pellet quality attribute). The input variables (also called
independent variables) described pellet quantitative and qual-
itative composition as well as preparation technology (screw
speed, number of holes, spheronization speed, spheronization
time, spheronization temperature, drying temperature, drying
time, water content of extrudate). Whereas the output variable
(also called a dependent or target variable) was a pellet aspect ratio
value. The ideal pellets should be characterized by spherical shape
which is expressed by the aspect ratio value of one.
2.2. Data mining procedure

In this project, CART (Classification and Regression Trees) as one
of the most popular methods of decision trees induction was
applied to explore the impact of process parameters and
formulation composition on the pellet aspect ratio. As a non-
parametric method, it does not require any assumptions about
the statistical distribution of predictor variables (Mahjoobi and

 



Table 1
Qualitative input variables, minimum and maximum values for quantitative input variables and the obtained pellet aspect ratios.

Qualitative input variables
Excipients properties Type of filler Lactose, mannitol, maize starch,

dicalcium phosphate dehydrate
Type of pelletization aid Microcrystalline cellulose, kappa-

carrageenan

Parameters MIN MAX

Quantitative input variables
API properties LogP �0.39 2.44

Solubilty (g/L) 0.72 14.30
Fraction of API (%) 20 80

Excipients properties Fraction of filler (%) 0 60
Extrusion Screw speed (rpm) 50 200

Number of holes 3 23
Spheronization Speed (rpm) 500 1000

Time (s) 15 300
Temperature (�C) 15 45

Drying Temperature (�C) 60 105
Time (h) 0.17 24

LOD (%)* 34 125

Quantitative output variable
Aspect ratio 1.05 1.89

* LOD – loss on drying; the water content of the extrudates was calculated in % (w/w) based on dry mass.
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Etemad-Shahidi, 2008). A significant advantage is also that both
quantitative and qualitative data can be used as inputs to form
the decision tree. CART algorithm creates binary trees from studied
data, thus each internal node has exactly two outgoing branches.
The important inputs are selected as the splitting criteria in form-
ing the shape and sequence of branches. The goal is to produce
subsets of the data which are as homogeneous as possible with
respect to the target variable (Mahjoobi and Etemad-Shahidi,
2008). The decision tree criteria separate important from unimpor-
tant branches so only strong relationships between inputs and the
target variable are retained (de Ville, 2006). Thus, the decision tree
is useful as an exploratory data mining technique. Thanks to clear
set of decision rules, it is possible to discover cause–effect relation-
ships hidden in a large studied data set.

Because of predictive abilities, a tree model provides the target
variable based on the values of predictor variables. If the target
variable is continuous, CART algorithm produces a so called regres-
sion tree model. In this model, each terminal node’s predicted cate-
gory is the mean of the target values for records in the node
(Mahjoobi and Etemad-Shahidi, 2008). A tree model complexity
has a crucial effect on its accuracy. Too complicated trees with
too many nodes should be avoided because of a lack of trans-
parency and difficulties with useful graphical representation
(Rokach and Maimon, 2008). The cross-validation was applied to
assess the optimal model complexity and minimize the risk of
overfitting. Furthermore, to avoid undesired model complexity, in
our work the minimum size of each node which was divided into
child nodes was defined as 22 cases (i.e. 10% of all cases in the
studied data set). It means that any split of a node containing less
than 22 cases was not accepted.

Detailed description and theoretical concepts related to this
data mining technique can be found in references (de Ville, 2006;
Grąbczewski, 2014; Rokach and Maimon, 2008). In our project,
all calculations were performed with the use of STATISTICA� 10
software (StatSoft, Tulsa, Oklahoma, USA).
3. Results and discussion

A complex multivariate dataset (224 pellet formulations
described by 14 independent variables) was formed and then the
tree regression algorithm was applied in order to find the best
set of decision rules and simultaneously to investigate whether
the pellets quality can be successfully predicted based on a for-
mulation composition and preparation technology. In this study,
the pellet quality was characterized by the shape (expressed as
aspect ratio). The pellets for pharmaceutical applications should
have spherical shape. The spherical pellets are expected to have
better flow characteristics. It is assumed that the aspect ratio lower
or equal to 1.1 is acceptable for pharmaceutical pellets whereas
ratios above this value are considered as insufficient (Bornhöft
et al., 2005; Thommes and Kleinebudde, 2006a, 2007a; Thommes
et al., 2009). A good data mining model, according to the Quality
by Design concept, should facilitate finding the optimal for-
mulation composition and extrusion/spheronization parameters
for obtaining desired spherical pellets.

In order to construct a reliable chemometric model, the data set
was randomly divided into training and testing subsets. The train-
ing subset containing 75% of all cases was used for a model con-
struction, whereas the testing subset (25% of all cases) was
required to test a predictive ability of the calibration model.
During the model construction, data space was divided into
mutually exclusive regions, containing homogeneous groups of
objects according to the pellet aspect ratio (a target variable).
Two child nodes were formed in each division, thus a binary deci-
sion tree was finally obtained. As shown in Fig. 1, the decision tree
consists of nodes, which are connected by branches representing
the explanatory variables.

The influence of process parameters on pellet sphericity is
depicted in the form of a tree graph (Fig. 1). The obtained model
gives insight into the mutual relations hidden in the complex stud-
ied pelletization process data set. As it can be seen, variables
describing spheronization conditions such as speed and time are
directly responsible for the pellet aspect ratio. These are variables
with very high predictive value. Furthermore, number of holes dur-
ing extrusion and water content of extrudate have been also recog-
nized as key factors influencing pellet shape. Information extracted
from the tree model shows that a larger number of die holes
applied during pellet manufacturing process leads to pellets with
the lower aspect ratio value. The type and fraction of the active
pharmaceutical ingredient as well as the type and fraction of
excipients were not found significant. The analysis of the tree
graph implies explicitly that the pellets sphericity is determined
mainly by the extrusion/spheronization process conditions. The

 



Fig. 1. Regression tree model generated by CART algorithm, N is the number of cases in each node.
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pellet shape seems to be independent of drying parameters (such
as temperature, time) and the formulation composition.

Pellets with the lowest aspect ratio were defined as optimum.
The most spherical pellets were achieved by using a spheronizer
speed higher than 625 rpm and spheronization time longer than
135 s. As it can be seen, if spheronization speed is less than
625 rpm, the pellet aspect ratio tends to be high (1.41). Non-
spherical pellets with high mean aspect ratio value (1.75) were also
obtained when spheronization speed was higher than 625 rpm and
simultaneously spheronization time was shorter than 30 s. The
unacceptable pellet shape was achieved when water content of
extrudate was less than or equal to 71% and when less than 8 die
holes were applied during extrusion, despite of using a higher
speed (>625 rpm) and longer time of spheronization (>30 s).
Thus, it seems that the number of holes during extrusion process
is preferred to be larger than 8.

The results of the study confirm clearly that the pellet sphericity
is mainly related to the selected pelletization process parameters.
Four of the eight investigated process parameters (water content,
one extrusion and two spheronization variables) affected the pellet
shape, markedly. The types and ratios in which the ingredients
were combined did not influence the pellet shape significantly.
The analysis of the decision tree structure indicates that pellet
sphericity could be improved by changing the spheronization
(speed, time) and extrusion (number of holes) conditions or water
content of extrudate. An increase in the number of holes, time and
speed of spheronisation process resulted in pellets with lower
aspect ratios. Furthermore, most of the investigated formulations
(mainly containing carrageenan as the pelletization aid) required
a higher water content to produce spherical pellets. The results
of our preliminary research work have indicated the possibility
of application of a decision tree methodology to better pel-
letization process understanding and consequently to appropriate
design manufacturing process in order to achieve a desired pellet
shape. As shown in Fig. 1, spheronisation time longer than 135 s
should be recommended, shorter spheronisation time has a nega-
tive effect on the sphericity and leads to pellets with higher aspect
ratios. The combination of spheronization speed higher than
625 rpm, spheronization time longer than 30 s and a number of
holes less than 8 should be avoided. Decreasing the number of
die holes for extrusion clearly resulted in pellets with unacceptable
aspect ratio value.

The principal cause–effect relationships obtained in this study
are also in agreement with the results described by Bornhöft
et al. (2005), Thommes and Kleinebudde (2006b, 2007a, 2007b,
2008), which additionally confirms the model usefulness.
Mendyk et al. (2010) have applied neural networks and sensitivity
analysis to identify crucial variables influencing the pellet aspect
ratio. Their study also revealed the importance of spheronization
parameters such as rotational speed and time of the process.
Whereas, variables describing formulation composition were con-
firmed to be less significant than preparation technology. Thus, the
pellet aspect ratio seems to be much more dependent on the pro-
cess variables than properties of ingredients.

In order to evaluate the accuracy of prediction, aspect ratio val-
ues predicted by the model were compared to experimentally
obtained values by using correlation coefficient. These coefficients
were determined both for the training (r = 0.8726) and testing
(r = 0.8013) subset. As shown in Fig. 2, the predicted pellet aspect
ratios were comparable to the actual measured values which con-
firmed model usefulness.

The model performance was also estimated as the mean
squared error (MSE) and the root mean squared error (RMSE) for
the training and testing subsets (Table 2).

The results of this study confirm good predictive and describing
abilities of decision trees in terms of pellets preparation technol-
ogy. The obtained tree model provides constructive conclusions
about the impact of process parameters on the pellet sphericity.
The significant advantage of the model is undoubtedly easy
visualization of the complex pelletization process data and

 



Fig. 2. Comparison between observed and predicted pellet aspect ratios by
regression tree model (CART algorithm) for testing and training data.

Table 2
Estimation of the regression tree model performance.

Training subset Testing subset

MSE 0.0044 0.0073
RMSE 0.0661 0.0855
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interpretability of the results because of a clear set of decision
rules. In contrast to so called black box models (such as artificial
neural networks), the decision tree methodology allows not only
to predict but also explain and describe relationships between
the preparation technology and the final product quality attribute.
A series of if-then rules provide deeper understanding and knowl-
edge of factors affecting the pellet aspect ratio. This approach is
highly in accordance with the Quality by Design concept because
it assumes designing manufacturing process to ensure predefined
product quality. Better pelletization process understanding can
directly lead to pellets sphericity improvement. The use of decision
tree methodology as a decision-support tool makes it possible to
choose optimal process parameters that are necessary in order to
achieve a desired quality of final drug product.
4. Conclusions

This study indicates that the multivariate calibration technique
such as the tree regression algorithm is capable to find crucial
cause–effect relationships hidden in a large complex data set,
describing pellets composition and their preparation technology.
The significant advantage of this approach is undoubtedly the
interpretability of the regression model because of simple, infor-
mative and statistically meaningful rules which can be used to sup-
port rational decision making in the field of pellets technology. In
contrast to so called black box models, the described approach is
completely in accordance with the Quality by Design concept
because of the transparency of mechanics behind the prediction.

To sum up, the decision tree method as an effective data mining
tool is expected to gain much interest in the field of industrial
pharmaceutical technology. This data mining approach could
increase knowledge of the formulation and it also provides useful
clues for industrial formulation scientists. The extracted informa-
tion could directly lead to the quality improvement of existing
products and processes as well as could speed up the development
process in the pharmaceutical industry, significantly.
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