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Abstract 

The assessment of the changeability of software systems is 
of major concern fo r  buyers of large systems found in fast- 
moving domains such as telecommunications. One way of 
approaching this problem is to investigate the dependency 
between the changeability of the software and its design, 
with the goal offinding design properties that can be used 
as changeability indicators. In the realm of object- 
oriented systems, experiments have been conducted 
showing that coupling between classes is such an indica- 
tor. However, class cohesion has not been quantitatively 
studied in respect to changeability. In this research, we 
set out to investigate whether cohesion is correlated with 
changeability. As cohesion metrics. LCC and LCOM were 
adopted, and f o r  measuring changeability, a change im- 
pact model was used. The data collected on three test 
systems of industrial size indicate no such correlation. 
Manual investigation of classes supposed to be weakly 
cohesive showed that the metrics used do not capture all 
the facets of class cohesion. We conclude that cohesion 
metrics such as LCC and LCOM should not be used as 
changeability indicators. 
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1. Introduction 

The use of object-oriented (00) technology for devel- 
oping software has become quite widespread. Researchers 
assert that 00 practice assures good quality software, that 
is, particularly software that is easy to maintain, reuse, and 
extend. Industrial buyers of 00 software want to be sure 
of the product quality they acquire. For this, they need 00 
measures, to evaluate the software they consider buying. 

For various reasons, Bell Canada, the industrial partner 
in this project, is interested in buying large-scale software 
rather than developing it. Finding practical ways to assess 
the quality of software is an important element in the 
software purchasing approach of the company. By practi- 
cal, we mean automated and easy to implement. 

The SPOOL project (Spreading desirable Properties 
into the design of Object-Oriented, Large-scale software 
systems) is a joint industryluniversity research project 
between the Quality Engineering and Research team of 
Bell Canada and the GEL0 group at the UniversitP de 
Montrtal. As part of the project, design properties are 
investigated as changeability indicators. 

Cohesion is an important property of 00 designs, and 
metrics have been proposed to quantify and measure it. In 
this paper, we try to assess cohesion as an indicator of 
changeability. The paper is organized as follows. Section 
2 presents an overview of cohesion as a quality indicator 
and describes the change impact model used in the a- 
perimentation. The relationship between cohesion and 
changeability was tested empirically, as reported in Sec- 
tion 3. The negative result of the test led us to investigate 
the reasons behind this lack of relationship as described in 
Section 4. Section 5, finally, summarizes the work and 
provides an outlook into future work. 

2. Cohesion and changeability 

Building quality 00 systems relies on good design. To 
assess the quality of a design with some objectivity, we 
need to quantify design properties. Several software met- 
rics have been developed to assess and control the design 
phase and its products [1,6,7,9]. One of the most impor- 
tant design properties is cohesion. Module cohesion was 
introduced by Yourdon and Constantine as “how tightly 
bound or related the internal elements of a module are to 
one another” [15]. A module has a strong cohesion if it 
represents exactly one task of the problem domain, and all 
its elements contribute to this single task. Yourdon and 
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Constantine describe cohesion as an attribute of design, 
rather than code, and as  an attribute that can be used to 
predict reusability and maintainability. However, these 
assumptions have never been supported by experimenta- 
tion. 

2.1. Cohesion in object-oriented sytems 

A class is cohesive if it cannot be partitioned into two 
or more sets defined as  follows. Each set contains instance 
variables and methods. Methods of one set d o  not access 
directly or indirectly variables of  another set. Many 
authors have implicitly defined class cohesion by defining 
cohesion metrics. In the 00 paradigm, most of the cohe- 
sion metrics are inspired from the metric suite defined by 
Chidamber and Kemerer (C&K) [6]. According to these 
authors “if an object class has different methods perfom- 
ing different operations on the same set of instance van- 
ables, the class is cohesive”. As a metric for assessing 
cohesion, they define LCOM (Lack of Cohesion in Meth- 
ods) as the number of pairs of methods in a class, having 
no common attributes, minus the number of  pairs of 
methods sharing at least one attribute. The metric is set to 
zero when the value is negative. 

Li and Henry [ I  I ]  redefine LCOM as the number of 
disjoint sets of methods. Each set contains only methods 
that share at least one instance variable. 

Hitz and Montazeri [9] restate Li’s definition of LCOM 
based on graph theory. LCOM is defined as the number of 
connected components of a graph. Vertices represent 
methods. There is an edge between 2 vertices if the corre- 
sponding methods access the same instance variable. Hitz 
and Montazeri propose to split a class into smaller, more 
cohesive classes, if LCOM > 1. 

Bieman and Kang [2] propose TCC (Tight Class Cohe- 
sion) and LCC (Loose Class Cohesion) as cohesion met- 
rics, based on Chidamber and Kemerer’s approach. They 
too consider pairs of  methods using common instance 
variables. However, the way in which they define attribute 
usage is different. An instance variable can be used di- 
rectly or indirectly by methods. An instance variable is 
used directly by a method M, if the instance variable 9- 
pears in the body of the method M. The instance variable 
is indirectly used, if it is directly used by another method 
M’ which is invoked directly or indirectly by M. Two 
methods are directly connected if they use directly or 
indirectly a common attribute. TCC is defined as the per- 
centage of pairs of methods that are directly connected. 
LCC counts the pairs of  methods that are directly or indi- 
rectly connected. Constructors and destructors are not 
taken into account for computing LCC and TCC. The 
range of TCC and LCC is always in the [0,1] interval. 
They propose three ways to calculate TCC and LCC: ( I )  
include inherited methods and inherited instance variables 
in the analysis, (2) exclude inherited methods and inher- 

ited instance variables from the analysis, or (3) exclude 
inherited methods but include inherited instance variables. 
With respect to the three ways of calculating their metrics, 
Bieman and Kang do not express any preference. We  
opted for evaluating them according to the first way, con- 
sidering inheritance as an intrinsic facet of 00 systems. 
LCC is an extension of TCC in that additional features are 
taken into account. LCC being more comprehensive than 
TCC, we adopted LCC, together with LCOM, as the 
prime cohesion metrics of our experimentation. 

2.2. Impact model 

One way of assessing the changeability of an 00 sys- 
tem is by performing a change impact analysis. By 
changeability we mean its capacity to absorb changes. In 
this study, the changeability of 00 software is assessed by 
an impact model defined in our previous work [3,4]. &- 
low, we detail the changes considered and the links n- 
volved, and we introduce the notions of impact and impact 
expression. 
Changes 

A change applies to a class, a variable or a method. 
Examples are deleting a variable, changing the signature 
of a method, or removing a class from the list of parents 
of another class. Thirteen changes have been identified: 

(i) Variable: addition, deletion, type change, and 
scope of change 

(ii) Method: addition, deletion, return type change, 
implementation change, signature change, and 
scope change 
Class: addition, deletion, and structure change 

The changes considered in this paper are atomic 
changes. More complex changes, for instance refactoring 
operations such as  moving a variable or a method along 
the class hierarchy, or inserting a new class to factor out 
some common characteristics of  a group of  classes, are 
subject to future work. Among other things, an attempt 
will be made to define them as  a combination of  atomic 
changes. In this way, changes might be dealt with at a 
higher level of abstraction. 

Links 
The following links connect classes one to  another. 

They reflect usual connections in 00 systems, and are not 
specific to any particular 00 programming language. 

S (association): one class references variables of m- 

G (aggregation): the definition of  one class involves 

H (inheritance): one class inherits the features de-  

(iii) 

other class 

objects of the other class 

fined in another (parent) class 
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1 (invocation): methods in one class invoke methods 
defined in another class. 

L (local): pseudo-link meaning that a change in a 
class may also have an impact in that same class. 

The links are independent from each other, and we 
can expect to find any number and type of  links between 
two classes. Note that instantiation is not a link in its own 
right, but is taken into account with the invocation link. 

Impact 

We call impact ofa  change the set of classes that re- 
quire correction as a result of that change. Our model 
implies that one single change is considered at a time. The 
impact depends on two factors. One factor is the type of 
change. For example, a change to a variable type has an 
impact on all classes referencing that variable, whereas 
the addition of a variable has no impact on those classes. 
Given a type of change, the second factor is the nature of 
the links involved.' If, for instance, the scope of a method 
is changed from public to protected, the classes that n- 
voke the method will be impacted, with the exception of 
the derived classes. Note that we limit ourselves to syn- 
tactic impact; considering semantic impact, for instance 
runtime errors, is beyond the scope of this paper. The 
impact of change ch, to class cl, is defined by a set expres- 
sion E in which the variables are the sets defined by the 
various links: 

Impact(cl,, ch,) = E  (S, G, H, 1 L) 

For example, 

Impact(cl,, ch,) = SH'+G 

means that the impacted classes are those associated (S) 
with, but not inheriting (H') from cl, or those aggregated 
(G) with cl,. 

2.3. Application to C+t 

The industrial partner of  our project was interested in 
the evaluation of programs in C++ for which only the 
code was available. The model was therefore mapped into 
that language. 

In the C++ model, a change is a syntactic change to the 
code, and impact is considered if, as a result of that 
change, the code at some other place does not recompile 
successfully. The links identified in the conceptual model 
exist at the code level, and an additional one, F forfriend- 
ship, is added to reflect the existence of this feature in 
C++. F was not considered as a link at the design level 

' Please note that the impact of a change does depend only on the two 
factors described above. There is no relationship between the impacts of 
two different changes. 

since it is specific to C++. Possible changes were enumer- 
ated and for each, the impact set-expression was derived 
by examining all possible combinations of links between a 
changed class and another class. As an example, the 
change in a variable's scope from public to private (code 
change from public int v; to  private int v;) 
results in the impact SF', meaning that the impacted 
classes are those linked to the changed class by associa- 
tion but not by friendship. A total of  66 changes and their 
impact expressions was compiled, 12 for variables, 35 for 
methods, and 19 for classes (see [3] for more details about 
the list of changes and impact calculations). 

3. Empirical validation of cohesion- 
changeability relationship 

3.1. Objectives 

One way to assess the changeability of a software sys- 
tem is to find some design properties that can be used as 
changeability indicators. In the realm of 00 systems, 
experiments have been conducted showing that coupling 
between classes is an indicator of changeability. Chaumun 
et al. observed a high correlation between changeability 
and some coupling metrics, across different industrial 
systems and across various types of changes [4]. 

However, measuring coupling is difficult since it is an 
inter-class property. In fact, to measure it, the knowledge 
of the whole system and of  all links between classes must 
be mastered. 

Cohesion is an intra-class property; to measure it we 
only need to consider the studied class. Note that a widely 
held belief in the design community states that high cohe- 
sion is related to low coupling. Because of this supposed 
relationship, we decided to investigate cohesion as a 
changeability indicator. If this investigation proved suc- 
cessful, the assessment of cohesion as changeability indi- 
cator would be less costly that the computation of  cou- 
pling. 

3.2. Experimental procedure 

To test the hypothesis that cohesion is correlated to 
changeability, we adopted the well-known cohesion met- 
rics, LCC and LCOM (see Section 2.1). 

Due to lack of resources, we were unable to investigate 
the whole list of 66 changes of our impact model for C++ 
(see Section 2.3). Rather, we limited ourselves to six 
changes, which we selected according to four criteria. 
First, there should be at least one change for each compo- 
nent (variable, method, and class). Second, a selected 
change should indeed have an impact in at least one other 
class (according to our model, there are 29 changes with 
no such impact). Third, the impact expression should be 
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different for any pair of.changes; since otherwise, we 
would have obtained duplicate results. And fourth, as an 
informal criterion, we required the selected changes to be 
of  practical relevance, that is, they should be suitable to be 
exercised in practice. Table 1 lists the six changes consid- 
ered and their corresponding impact expression. 

Lines of code 

Table 1. Investigated changes with impact expres- 
sions 

XForms ET++ System-B 

7 117 70796 291 619 

Impact 

Expression 
Change 

Variable type change 

Blank lines 

# of effective classes 

I SH’F’ I 2. Variable scope change I I  from public to protected 

1009 12 892 90426 

83 584 1226 

I 3.  I Method signature change I I + L I 

~~ ~ ~ 

# of classes 

# of files (.C/.h) 

I H’IF’ I 4. Method scope change I I  from public to protected 

22 1 722 1420 

143 485 1153 

Class derivation change I H,F, (s + I) I 
from public to protected 

# of generalizations 

# of methods 

# of variables 

Size in repository 

S + G + H + I +  Addition of abstract 
class in class inheritance 
structure 

75 466 94 1 

450 6 255 8 594 

1928 4460 13 624 

2.9 MB 19.3 MB 41.0MB 

In the experiment, we first extracted the LCC and 
LCOM metrics from the test systems. Next, for each of  
the six changes considered, and each of the test systems, 
we determined its test set, that is, the set of  classes for 
which the change is applicable. For example, when con- 
sidering the method scope change from public to protected 
(Change #4), only classes with at least one public method 
were included in the test set. Then, for each class in each 
test set, the change impact for the given change was cal- 
culated, i.e., the number of classes that would be im 
pacted. If the change was one that affected a variable or 
method component (Changes # I  through #4), the change 
impacts for each individual variable or method of the 
given class were added together, and the total was divided 
by the number of variables or methods in the class. 

Once the metrics and impact data were collected, we 
investigated the correlation between each change impact 
and each design metric for all the classes involved in the 
test sets. Then, in each case the correlation coefficient was 
calculated. 

3.3. Environment 

the experimental procedure that was adopted. 
Three industrial systems were considered. They vary in 

class size and application domain. The first test system is 
XForms, which can be freely downloaded from the web 
[14]. It is a graphical user interface toolkit for X window 
systems. It is the smallest of the test systems (see Table 
1). ET++,  the second test system, is a well-known appli- 
cation framework [13]. The version used in the experi- 
ment is the one included in the SNIFF+ development 
environment [ 121. The third and largest test system was 
provided by Bell Cunudu, and is called, for confidentiality 
reasons, System-B. It is used for decision making in tek- 
communications. Table 2 provides some size metrics for 
these systems. Note that the header files of the programs 
are included in the numbers shown in the lower part of the 
table (last six rows), whereas the numbers in the upper 
part (first four rows) represent the system that was effec- 
tively investigated in the study. In # of classes many ele- 
ments such us unions are counted by the compiler as 
classes. 

Table 2. Size metrics of test systems 

Lines of pure comments I 764 I 3 494 I 71 209 

To calculate the metrics involved in the experimentation, 
we used the SPOOL environment (see Figure I ) .  This 
environment has been developed for the entire SPOOL 
project and comprises various analysis and visualization 
capabilities to cope with large-scale software systems 
[ I O ] .  

In this section, we first present the three test systems of 
the experiment. Then, the environment in which the ex- 
periment was conducted is described. Finally, we discuss 
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Figure 1. Environment for metrics calculation 

The environment provides a repository-based solution. 
A parsing tool, parses the test system source code. The 
parsed information contains data about all classes and 
links in the system. This information is captured and fed 
into a design repository. Metrics requests are batch- 
processed using a flexible report generator mechanism. 
Reports typically contain information on the metrics as 
well as on the target class, methods, and variables. This 
triggers a set of queries corresponding to the specified 
metrics. The code in these queries uses the metrics request 
information as parameters to interrogate the repository. 
We collected cohesion metrics values from the three test 
systems. Furthermore, we gathered the impact value of the 
six changes. For each metric and impact involved in the 
experimentation, we calculated some descriptive statistics 
(minimum, maximum, mean, median, and standard devia- 
tion; see Appendix A and B). To  test our hypotheses, we 
calculated for the two cohesion metrics the Pearson coef- 
ficient of correlation in respect to the six impacts of  
change (see Appendix C). 

3.4. Results 

Each of the six changes was applied to each test sys- 
tem. The impact values are presented in Appendix A. 

The values vary from one system to another, from one 
change to another, and no general conclusion can be 
drawn on the impact of a given change. Comparison be- 
tween changes, however, yields some results. Based on 
both mean values and median values, a classification of 
changes by impact comes out. Among the six changes 
investigated, the most expensive one, across systems, is 
the addition of an abstract class in the inheritance struc- 

ture of  a class (Change #6). On the other hand, the least 
expensive one is to change the scope of  a method from 
public to protected (Change #4). This might have been 
expected, considering their impact expressions (see Ap- 
pendix A). 

According to C&K [6] and Bieman and Kung [2], a 
class is strongly cohesive when LCC = 1 or LCOM = 0. 
Appendix B shows the mean value for both LCC and 
LCOM. Based on the mean value of LCC and LCOM, 
p(LCC) = 0.62 and p(LC0M) = I ,  we can conclude that 
Xforms classes are not so strongly cohesive. For ET++, 
p(LCC) = 0.42 and NLCOM) = 89.70. Finally for Sys- 
tem-B, p(LCC) = 0.56 and p(LC0M) = 145.73. Based on 
these values, and referring to the definition of both LCOM 
and LCC, we concluded that the three test systems classes 
are not strongly cohesive. 

Note that a similar reasoning can be done based on the 
median value of both LCC and LCOM. 

According to the median of LCOM for the three test 
systems, half of the classes could be split. On the other 
hand, the median values of  LCC for Xforms (0.69) and 
System B (0.61) suggest that half of  the classes have a 
LCC value bigger that 0.6. At this stage, we can conclude 
that there is discrepancy between LCC and LCOM. 

The Pearson correlation coefficients are presented in 
Appendix C. Two exceptions aside, most correlation coef- 
ficients for the two cohesion metrics are weak. The two 
exceptions are, for Xforms, the correlation coefficients 
between LCC and the change # I  and between LCC and 
change #5, with values in either case around 0.5. How- 
ever, they are not significant enough to confirm the cor- 
relation hypothesis. 

4. Analysis 

4.1. Investigation of weakly cohesive classes 

The goal of our study was to find a correlation te- 
tween cohesion and changeability, but the result was 
negative. Consequently, we set out to investigate this 
absence of correlation. We came up with the following 
explanations: (1) the cohesion metrics chosen for the 
experimentation or the impact of changes are not the right 
ones, (2) there is no relationship between cohesion and 
changeability. Explanation (2), being counter to a widely 
held belief in the design community, was discarded. And, 
since the changes of the impact model were already vali- 
dated in [4,5], we focused our investigation on the fol- 
lowing sub-hypothesis: 

(1A) The LCC and LCOM metrics do not correctly 
measure cohesion. 

Thus, we question the quality of the investigated cohe- 
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sion metrics (sub-hypothesis (1 A)). Intuitively, when they 
show a high class cohesion (LCC = I  or LCOM = 0), the 
classes are probably quite cohesive. However, we were 
doubtful about the expressiveness of LCOM and LCC in 
the presence of weak class cohesion. Thus, we set out to 
study manually various weakly cohesive classes occurring 
in the three test systems. 

We chose from each of the three test systems classes 
that exhibit weak cohesion (LCC < 0.5 and/or/ LCOM > 
0), to verify if they were real candidates for splitting. 
After studying these classes, we found that many of them 
should not be split. Some classes had no variables or only 
abstract methods, yielding to low LCC or high LCOM 
values. We also noticed that for some classes, counting 
inherited variables or inherited methods reduces the cohe- 
sion metric. Some classes have multiple methods that 
share no variables but perform related functionality's and 
putting each method in a different class would be against 
good 00 design. Finally, we identified several classes that 
have numerous attributes for describing internal states, 
together with an equally large number of methods for 
manipulating them. These attributes belong together and 
.should not be separated. 

Based on this analysis, we notice that low values of 
LCC and high values of LCOM do not assure a weakly 
cohesive class. In fact, although many studied classes 
show a weak cohesiveness based on cohesive metrics, 
their source code shows an acceptable cohesion. We con- 
clude that as measured, LCC and LCOM do not reflect in 
general the cohesion property of a class. 

4.2. Reasoning about results 

The results found in our study call for a revision of the 
definition of actual cohesion metrics. Chae and Kwon [8] 
observe that some special methods must be treated in such 
way as not to compromise the value of the cohesion met- 
rics. They also suggest that cohesion metrics may take 
into account some additional characteristics of classes, for 
instance, the patterns of interaction among the members of 
a class. However, all these additional properties are not 
trivial to measure, since they are semantic. 

We can early conclude that, as long as a new cohesion 
metric is not defined, taking into account important facets 
of the cohesion property, actually defined cohesion met- 
rics cannot be trusted as changeability indicators. 

5. Conclusion 

In this paper, our major goal was to validate cohesion 
metrics as changeability indicators. To this end, we tried 
to correlate cohesion metrics with impact of change. First, 
a model of software changed and change impact was 
adapted for C++ language. For practical reasons, we only 
investigated six changes, chosen to be representative of 

C++ systems changes. Furthermore, we limited our de% 
nition of change impact to  recompilation errors. As cohe- 
sion metrics, we chose LCC and LCOM. Data about these 
metrics systems were collected on three different indus- 
trial. Our experimentation showed a weak correlation 
between cohesion metrics and changeability. 

According to 00 design principles, a good design cx- 
hibiting high class cohesion goes together with less impact 
of changes. A relationship should therefore exist between 
cohesion and changeability. We suspected that the cohe- 
sion metrics used in the experimentation do not reflect the 
real cohesion of a class. We decided to investigate manu- 
ally classes with low cohesion metric values. We found 
that although some classes have low LCC and/or high 
LCOM, these classes are actually cohesive. In fact many 
facets of the cohesion property are missing in the actual 
cohesion metrics. 
For the same test systems, our previous work [SI showed 
that coupling is a changeability indicator. However, we 
could not come up with the same conclusion for cohesion. 
Thus, we conclude, that actually defined cohesion metrics 
are not good changeability indicators. As future work, we 
are trying to feed our database with new test systems. In 
the same direction, we project to extend the change impact 
model. 
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Appendix A: Change impact results for the three test systems 

Class derivation chan 

* Note that the impact values are calculated as averages (Section3.2), and hence a median need not to be an integer. 
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Appendix 6: Metrics 

Std. Dev. 
Minimum 

Maximum 
Mean 
Median 

Std. Dev. 

results for the three test systems 

0.31 352.81 
0 0 

1 1 I706 
0.56 145.73 
0.61 10 

0.3 1 695.72 

I System 

Change 

1 LCC I LCOM I 

System LCC LCOM 

Xforms 

83 classes 

584 classes 

+ System-B 

1226 classes L 

Maximum 

Median 0.69 

Std. Dev. 0.27 25.40 
Minimum 0 0 

Maximum 

Median 
89.07 

Appendix C: Correlation coefficients for the three test systems 

I XForms I -0.44 I 0.09 I I I Method scope change 
from public to protected 

Class derivation change 
from public to protected 

S stem-B 

ET++ 
XForms -0.52 

S stem-B -0.01 0.05 
Addition of abstract XForms -0.39 -0.01 

6. class in class inheri- ET++ I 0.03 I 0.34 
tance structure System-B I -0.07 I 0.35 

’ There is only one class in the test set. 
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