
Cohesion as Changeability Indicator in Object-Oriented Systems

Abstract

The assessment of the changeability of software systems is
of major concern fo r buyers of large systems found in fast-
moving domains such as telecommunications. One way of
approaching this problem is to investigate the dependency
between the changeability of the software and its design,
with the goal offinding design properties that can be used
as changeability indicators. In the realm of object-
oriented systems, experiments have been conducted
showing that coupling between classes is such an indica-
tor. However, class cohesion has not been quantitatively
studied in respect to changeability. In this research, we
set out to investigate whether cohesion is correlated with
changeability. As cohesion metrics. LCC and LCOM were
adopted, and f o r measuring changeability, a change im-
pact model was used. The data collected on three test
systems of industrial size indicate no such correlation.
Manual investigation of classes supposed to be weakly
cohesive showed that the metrics used do not capture all
the facets of class cohesion. We conclude that cohesion
metrics such as LCC and LCOM should not be used as
changeability indicators.

Hind Kabaili, Rudolf K. Keller and Francois Lustman
Dkpartement IRO

Universitk de Montrkal
C.P. 6128, succursale Centre-ville

Montrkal, Qukbec H3C 3J7, Canada
E-mail: {kabaili 1 keller 1 lustman] @iro. umontreal.ca

Keywords: Software quality, cohesion, changeability,
change impact, correlation, software metrics, C++ lan-
guage.

1. Introduction

The use of object-oriented (00) technology for devel-
oping software has become quite widespread. Researchers
assert that 00 practice assures good quality software, that
is, particularly software that is easy to maintain, reuse, and
extend. Industrial buyers of 00 software want to be sure
of the product quality they acquire. For this, they need 00
measures, to evaluate the software they consider buying.

For various reasons, Bell Canada, the industrial partner
in this project, is interested in buying large-scale software
rather than developing it. Finding practical ways to assess
the quality of software is an important element in the
software purchasing approach of the company. By practi-
cal, we mean automated and easy to implement.

The SPOOL project (Spreading desirable Properties
into the design of Object-Oriented, Large-scale software
systems) is a joint industryluniversity research project
between the Quality Engineering and Research team of
Bell Canada and the GEL0 group at the UniversitP de
Montrtal. As part of the project, design properties are
investigated as changeability indicators.

Cohesion is an important property of 00 designs, and
metrics have been proposed to quantify and measure it. In
this paper, we try to assess cohesion as an indicator of
changeability. The paper is organized as follows. Section
2 presents an overview of cohesion as a quality indicator
and describes the change impact model used in the a-
perimentation. The relationship between cohesion and
changeability was tested empirically, as reported in Sec-
tion 3. The negative result of the test led us to investigate
the reasons behind this lack of relationship as described in
Section 4. Section 5, finally, summarizes the work and
provides an outlook into future work.

2. Cohesion and changeability

Building quality 00 systems relies on good design. To
assess the quality of a design with some objectivity, we
need to quantify design properties. Several software met-
rics have been developed to assess and control the design
phase and its products [1,6,7,9]. One of the most impor-
tant design properties is cohesion. Module cohesion was
introduced by Yourdon and Constantine as “how tightly
bound or related the internal elements of a module are to
one another” [15]. A module has a strong cohesion if it
represents exactly one task of the problem domain, and all
its elements contribute to this single task. Yourdon and

39
0-7695-1028-O/Ol $lO.OO 0 2001 IEEE

Constantine describe cohesion as an attribute of design,
rather than code, and as an attribute that can be used to
predict reusability and maintainability. However, these
assumptions have never been supported by experimenta-
tion.

2.1. Cohesion in object-oriented sytems

A class is cohesive if it cannot be partitioned into two
or more sets defined as follows. Each set contains instance
variables and methods. Methods of one set d o not access
directly or indirectly variables of another set. Many
authors have implicitly defined class cohesion by defining
cohesion metrics. In the 00 paradigm, most of the cohe-
sion metrics are inspired from the metric suite defined by
Chidamber and Kemerer (C&K) [6]. According to these
authors “if an object class has different methods perfom-
ing different operations on the same set of instance van-
ables, the class is cohesive”. As a metric for assessing
cohesion, they define LCOM (Lack of Cohesion in Meth-
ods) as the number of pairs of methods in a class, having
no common attributes, minus the number of pairs of
methods sharing at least one attribute. The metric is set to
zero when the value is negative.

Li and Henry [I I] redefine LCOM as the number of
disjoint sets of methods. Each set contains only methods
that share at least one instance variable.

Hitz and Montazeri [9] restate Li’s definition of LCOM
based on graph theory. LCOM is defined as the number of
connected components of a graph. Vertices represent
methods. There is an edge between 2 vertices if the corre-
sponding methods access the same instance variable. Hitz
and Montazeri propose to split a class into smaller, more
cohesive classes, if LCOM > 1.

Bieman and Kang [2] propose TCC (Tight Class Cohe-
sion) and LCC (Loose Class Cohesion) as cohesion met-
rics, based on Chidamber and Kemerer’s approach. They
too consider pairs of methods using common instance
variables. However, the way in which they define attribute
usage is different. An instance variable can be used di-
rectly or indirectly by methods. An instance variable is
used directly by a method M, if the instance variable 9-
pears in the body of the method M. The instance variable
is indirectly used, if it is directly used by another method
M’ which is invoked directly or indirectly by M. Two
methods are directly connected if they use directly or
indirectly a common attribute. TCC is defined as the per-
centage of pairs of methods that are directly connected.
LCC counts the pairs of methods that are directly or indi-
rectly connected. Constructors and destructors are not
taken into account for computing LCC and TCC. The
range of TCC and LCC is always in the [0,1] interval.
They propose three ways to calculate TCC and LCC: (I)
include inherited methods and inherited instance variables
in the analysis, (2) exclude inherited methods and inher-

ited instance variables from the analysis, or (3) exclude
inherited methods but include inherited instance variables.
With respect to the three ways of calculating their metrics,
Bieman and Kang do not express any preference. We
opted for evaluating them according to the first way, con-
sidering inheritance as an intrinsic facet of 00 systems.
LCC is an extension of TCC in that additional features are
taken into account. LCC being more comprehensive than
TCC, we adopted LCC, together with LCOM, as the
prime cohesion metrics of our experimentation.

2.2. Impact model

One way of assessing the changeability of an 00 sys-
tem is by performing a change impact analysis. By
changeability we mean its capacity to absorb changes. In
this study, the changeability of 00 software is assessed by
an impact model defined in our previous work [3,4]. &-
low, we detail the changes considered and the links n-
volved, and we introduce the notions of impact and impact
expression.
Changes

A change applies to a class, a variable or a method.
Examples are deleting a variable, changing the signature
of a method, or removing a class from the list of parents
of another class. Thirteen changes have been identified:

(i) Variable: addition, deletion, type change, and
scope of change

(ii) Method: addition, deletion, return type change,
implementation change, signature change, and
scope change
Class: addition, deletion, and structure change

The changes considered in this paper are atomic
changes. More complex changes, for instance refactoring
operations such as moving a variable or a method along
the class hierarchy, or inserting a new class to factor out
some common characteristics of a group of classes, are
subject to future work. Among other things, an attempt
will be made to define them as a combination of atomic
changes. In this way, changes might be dealt with at a
higher level of abstraction.

Links
The following links connect classes one to another.

They reflect usual connections in 00 systems, and are not
specific to any particular 00 programming language.

S (association): one class references variables of m-

G (aggregation): the definition of one class involves

H (inheritance): one class inherits the features de-

(iii)

other class

objects of the other class

fined in another (parent) class

40

1 (invocation): methods in one class invoke methods
defined in another class.

L (local): pseudo-link meaning that a change in a
class may also have an impact in that same class.

The links are independent from each other, and we
can expect to find any number and type of links between
two classes. Note that instantiation is not a link in its own
right, but is taken into account with the invocation link.

Impact

We call impact ofa change the set of classes that re-
quire correction as a result of that change. Our model
implies that one single change is considered at a time. The
impact depends on two factors. One factor is the type of
change. For example, a change to a variable type has an
impact on all classes referencing that variable, whereas
the addition of a variable has no impact on those classes.
Given a type of change, the second factor is the nature of
the links involved.' If, for instance, the scope of a method
is changed from public to protected, the classes that n-
voke the method will be impacted, with the exception of
the derived classes. Note that we limit ourselves to syn-
tactic impact; considering semantic impact, for instance
runtime errors, is beyond the scope of this paper. The
impact of change ch, to class cl, is defined by a set expres-
sion E in which the variables are the sets defined by the
various links:

Impact(cl,, ch,) = E (S, G, H, 1 L)

For example,

Impact(cl,, ch,) = SH'+G

means that the impacted classes are those associated (S)
with, but not inheriting (H') from cl, or those aggregated
(G) with cl,.

2.3. Application to C+t

The industrial partner of our project was interested in
the evaluation of programs in C++ for which only the
code was available. The model was therefore mapped into
that language.

In the C++ model, a change is a syntactic change to the
code, and impact is considered if, as a result of that
change, the code at some other place does not recompile
successfully. The links identified in the conceptual model
exist at the code level, and an additional one, F forfriend-
ship, is added to reflect the existence of this feature in
C++. F was not considered as a link at the design level

' Please note that the impact of a change does depend only on the two
factors described above. There is no relationship between the impacts of
two different changes.

since it is specific to C++. Possible changes were enumer-
ated and for each, the impact set-expression was derived
by examining all possible combinations of links between a
changed class and another class. As an example, the
change in a variable's scope from public to private (code
change from public int v; to private int v;)
results in the impact SF', meaning that the impacted
classes are those linked to the changed class by associa-
tion but not by friendship. A total of 66 changes and their
impact expressions was compiled, 12 for variables, 35 for
methods, and 19 for classes (see [3] for more details about
the list of changes and impact calculations).

3. Empirical validation of cohesion-
changeability relationship

3.1. Objectives

One way to assess the changeability of a software sys-
tem is to find some design properties that can be used as
changeability indicators. In the realm of 00 systems,
experiments have been conducted showing that coupling
between classes is an indicator of changeability. Chaumun
et al. observed a high correlation between changeability
and some coupling metrics, across different industrial
systems and across various types of changes [4].

However, measuring coupling is difficult since it is an
inter-class property. In fact, to measure it, the knowledge
of the whole system and of all links between classes must
be mastered.

Cohesion is an intra-class property; to measure it we
only need to consider the studied class. Note that a widely
held belief in the design community states that high cohe-
sion is related to low coupling. Because of this supposed
relationship, we decided to investigate cohesion as a
changeability indicator. If this investigation proved suc-
cessful, the assessment of cohesion as changeability indi-
cator would be less costly that the computation of cou-
pling.

3.2. Experimental procedure

To test the hypothesis that cohesion is correlated to
changeability, we adopted the well-known cohesion met-
rics, LCC and LCOM (see Section 2.1).

Due to lack of resources, we were unable to investigate
the whole list of 66 changes of our impact model for C++
(see Section 2.3). Rather, we limited ourselves to six
changes, which we selected according to four criteria.
First, there should be at least one change for each compo-
nent (variable, method, and class). Second, a selected
change should indeed have an impact in at least one other
class (according to our model, there are 29 changes with
no such impact). Third, the impact expression should be

41

different for any pair of.changes; since otherwise, we
would have obtained duplicate results. And fourth, as an
informal criterion, we required the selected changes to be
of practical relevance, that is, they should be suitable to be
exercised in practice. Table 1 lists the six changes consid-
ered and their corresponding impact expression.

Lines of code

Table 1. Investigated changes with impact expres-
sions

XForms ET++ System-B

7 117 70796 291 619

Impact

Expression
Change

Variable type change

Blank lines

of effective classes

I SH’F’ I 2. Variable scope change I I from public to protected

1009 12 892 90426

83 584 1226

I 3. I Method signature change I I + L I

~~ ~ ~

of classes

of files (.C/.h)

I H’IF’ I 4. Method scope change I I from public to protected

22 1 722 1420

143 485 1153

Class derivation change I H,F, (s + I) I
from public to protected

of generalizations

of methods

of variables

Size in repository

S + G + H + I + Addition of abstract
class in class inheritance
structure

75 466 94 1

450 6 255 8 594

1928 4460 13 624

2.9 MB 19.3 MB 41.0MB

In the experiment, we first extracted the LCC and
LCOM metrics from the test systems. Next, for each of
the six changes considered, and each of the test systems,
we determined its test set, that is, the set of classes for
which the change is applicable. For example, when con-
sidering the method scope change from public to protected
(Change #4), only classes with at least one public method
were included in the test set. Then, for each class in each
test set, the change impact for the given change was cal-
culated, i.e., the number of classes that would be im
pacted. If the change was one that affected a variable or
method component (Changes # I through #4), the change
impacts for each individual variable or method of the
given class were added together, and the total was divided
by the number of variables or methods in the class.

Once the metrics and impact data were collected, we
investigated the correlation between each change impact
and each design metric for all the classes involved in the
test sets. Then, in each case the correlation coefficient was
calculated.

3.3. Environment

the experimental procedure that was adopted.
Three industrial systems were considered. They vary in

class size and application domain. The first test system is
XForms, which can be freely downloaded from the web
[14]. It is a graphical user interface toolkit for X window
systems. It is the smallest of the test systems (see Table
1). ET++, the second test system, is a well-known appli-
cation framework [13]. The version used in the experi-
ment is the one included in the SNIFF+ development
environment [121. The third and largest test system was
provided by Bell Cunudu, and is called, for confidentiality
reasons, System-B. It is used for decision making in tek-
communications. Table 2 provides some size metrics for
these systems. Note that the header files of the programs
are included in the numbers shown in the lower part of the
table (last six rows), whereas the numbers in the upper
part (first four rows) represent the system that was effec-
tively investigated in the study. In # of classes many ele-
ments such us unions are counted by the compiler as
classes.

Table 2. Size metrics of test systems

Lines of pure comments I 764 I 3 494 I 71 209

To calculate the metrics involved in the experimentation,
we used the SPOOL environment (see Figure I) . This
environment has been developed for the entire SPOOL
project and comprises various analysis and visualization
capabilities to cope with large-scale software systems
[I O] .

In this section, we first present the three test systems of
the experiment. Then, the environment in which the ex-
periment was conducted is described. Finally, we discuss

42

source code

capture

Result
processing

I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I

fcl i

I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Set of
queries

I

I
I I

repository I

Figure 1. Environment for metrics calculation

The environment provides a repository-based solution.
A parsing tool, parses the test system source code. The
parsed information contains data about all classes and
links in the system. This information is captured and fed
into a design repository. Metrics requests are batch-
processed using a flexible report generator mechanism.
Reports typically contain information on the metrics as
well as on the target class, methods, and variables. This
triggers a set of queries corresponding to the specified
metrics. The code in these queries uses the metrics request
information as parameters to interrogate the repository.
We collected cohesion metrics values from the three test
systems. Furthermore, we gathered the impact value of the
six changes. For each metric and impact involved in the
experimentation, we calculated some descriptive statistics
(minimum, maximum, mean, median, and standard devia-
tion; see Appendix A and B). To test our hypotheses, we
calculated for the two cohesion metrics the Pearson coef-
ficient of correlation in respect to the six impacts of
change (see Appendix C).

3.4. Results

Each of the six changes was applied to each test sys-
tem. The impact values are presented in Appendix A.

The values vary from one system to another, from one
change to another, and no general conclusion can be
drawn on the impact of a given change. Comparison be-
tween changes, however, yields some results. Based on
both mean values and median values, a classification of
changes by impact comes out. Among the six changes
investigated, the most expensive one, across systems, is
the addition of an abstract class in the inheritance struc-

ture of a class (Change #6). On the other hand, the least
expensive one is to change the scope of a method from
public to protected (Change #4). This might have been
expected, considering their impact expressions (see Ap-
pendix A).

According to C&K [6] and Bieman and Kung [2], a
class is strongly cohesive when LCC = 1 or LCOM = 0.
Appendix B shows the mean value for both LCC and
LCOM. Based on the mean value of LCC and LCOM,
p(LCC) = 0.62 and p(LC0M) = I , we can conclude that
Xforms classes are not so strongly cohesive. For ET++,
p(LCC) = 0.42 and NLCOM) = 89.70. Finally for Sys-
tem-B, p(LCC) = 0.56 and p(LC0M) = 145.73. Based on
these values, and referring to the definition of both LCOM
and LCC, we concluded that the three test systems classes
are not strongly cohesive.

Note that a similar reasoning can be done based on the
median value of both LCC and LCOM.

According to the median of LCOM for the three test
systems, half of the classes could be split. On the other
hand, the median values of LCC for Xforms (0.69) and
System B (0.61) suggest that half of the classes have a
LCC value bigger that 0.6. At this stage, we can conclude
that there is discrepancy between LCC and LCOM.

The Pearson correlation coefficients are presented in
Appendix C. Two exceptions aside, most correlation coef-
ficients for the two cohesion metrics are weak. The two
exceptions are, for Xforms, the correlation coefficients
between LCC and the change # I and between LCC and
change #5, with values in either case around 0.5. How-
ever, they are not significant enough to confirm the cor-
relation hypothesis.

4. Analysis

4.1. Investigation of weakly cohesive classes

The goal of our study was to find a correlation te-
tween cohesion and changeability, but the result was
negative. Consequently, we set out to investigate this
absence of correlation. We came up with the following
explanations: (1) the cohesion metrics chosen for the
experimentation or the impact of changes are not the right
ones, (2) there is no relationship between cohesion and
changeability. Explanation (2), being counter to a widely
held belief in the design community, was discarded. And,
since the changes of the impact model were already vali-
dated in [4,5], we focused our investigation on the fol-
lowing sub-hypothesis:

(1A) The LCC and LCOM metrics do not correctly
measure cohesion.

Thus, we question the quality of the investigated cohe-

43

sion metrics (sub-hypothesis (1 A)). Intuitively, when they
show a high class cohesion (LCC = I or LCOM = 0), the
classes are probably quite cohesive. However, we were
doubtful about the expressiveness of LCOM and LCC in
the presence of weak class cohesion. Thus, we set out to
study manually various weakly cohesive classes occurring
in the three test systems.

We chose from each of the three test systems classes
that exhibit weak cohesion (LCC < 0.5 and/or/ LCOM >
0), to verify if they were real candidates for splitting.
After studying these classes, we found that many of them
should not be split. Some classes had no variables or only
abstract methods, yielding to low LCC or high LCOM
values. We also noticed that for some classes, counting
inherited variables or inherited methods reduces the cohe-
sion metric. Some classes have multiple methods that
share no variables but perform related functionality's and
putting each method in a different class would be against
good 00 design. Finally, we identified several classes that
have numerous attributes for describing internal states,
together with an equally large number of methods for
manipulating them. These attributes belong together and
.should not be separated.

Based on this analysis, we notice that low values of
LCC and high values of LCOM do not assure a weakly
cohesive class. In fact, although many studied classes
show a weak cohesiveness based on cohesive metrics,
their source code shows an acceptable cohesion. We con-
clude that as measured, LCC and LCOM do not reflect in
general the cohesion property of a class.

4.2. Reasoning about results

The results found in our study call for a revision of the
definition of actual cohesion metrics. Chae and Kwon [8]
observe that some special methods must be treated in such
way as not to compromise the value of the cohesion met-
rics. They also suggest that cohesion metrics may take
into account some additional characteristics of classes, for
instance, the patterns of interaction among the members of
a class. However, all these additional properties are not
trivial to measure, since they are semantic.

We can early conclude that, as long as a new cohesion
metric is not defined, taking into account important facets
of the cohesion property, actually defined cohesion met-
rics cannot be trusted as changeability indicators.

5. Conclusion

In this paper, our major goal was to validate cohesion
metrics as changeability indicators. To this end, we tried
to correlate cohesion metrics with impact of change. First,
a model of software changed and change impact was
adapted for C++ language. For practical reasons, we only
investigated six changes, chosen to be representative of

C++ systems changes. Furthermore, we limited our de%
nition of change impact to recompilation errors. As cohe-
sion metrics, we chose LCC and LCOM. Data about these
metrics systems were collected on three different indus-
trial. Our experimentation showed a weak correlation
between cohesion metrics and changeability.

According to 00 design principles, a good design cx-
hibiting high class cohesion goes together with less impact
of changes. A relationship should therefore exist between
cohesion and changeability. We suspected that the cohe-
sion metrics used in the experimentation do not reflect the
real cohesion of a class. We decided to investigate manu-
ally classes with low cohesion metric values. We found
that although some classes have low LCC and/or high
LCOM, these classes are actually cohesive. In fact many
facets of the cohesion property are missing in the actual
cohesion metrics.
For the same test systems, our previous work [SI showed
that coupling is a changeability indicator. However, we
could not come up with the same conclusion for cohesion.
Thus, we conclude, that actually defined cohesion metrics
are not good changeability indicators. As future work, we
are trying to feed our database with new test systems. In
the same direction, we project to extend the change impact
model.

6. References

[l] Lionel C. Briand, John Daly, and Jurgen Wust. A unified
framework for cohesion measurement in object-oriented sy s-
tems. In Empirical Software Engineering - An International
Journal, 3(1), pages 67-1 17, 1998.
[2] James M. Bieman and Byung-Kyoo Kang. Cohesion and
reuse in an object-oriented system. In Proceedings ofthe Sympo-
sium on Software Reusability (SSR'95), pages 259-262, Seattle,
WA, April 1995.
[3] M. A. Chaumun. Change impact analysis in object-oriented
Systems: Conceptual Model and Application to C++. Master's
thesis, Universitk de Montreal, Canada, November 1998.
[4] M. Ajmal Chaumun, Hind Kabaili, Rudolf K. Keller, and
Francois Lustman. A change impact model for changeability
assessment in object-oriented systems. In Proceedings of the
Third Eitromicro Working Conference on Software Maintenance
and Reengineering, pages 130-1 38, Amsterdam, The Nether-
lands, March 1999.
[5] M. Ajmal Chaumun, Hind Kabaili, Rudolf K. Keller, Fran-
cois Lustman, and Guy St-Denis. Design properties and hject-
oriented software changeability. In Proceedings of the Fourth
Euromicro Working Conference on Software Maintenance and
Reengineering, pages 45-54, Zurich, Switzerland, February
2000. IEEE.
[6] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for
Object Oriented Design. In IEEE Transactions on Software
Engineering, Vol. 20, No. 6, pages 476-493, June 1994.
[7] Shyam R. Chidamber, David P. Darcy, and Chris F. Ke-
merer. Managerial use of metrics for object-oriented software:
An exploratory analysis. In IEEE Transactions on Software
Engineering, 24(8):629-639, August 1998.

44

[8] Heung Seok Chae and Yong Rae Kwon. A cohesion measure
for classes in object-oriented systems, In Proceedings of the
Fijlh international Sofhoare Metrics Symposium, pages 158-1 66,
Bethesda, MD, November 1998.
[9] Martin Hitz and Behzad Montazeri. Measuring coupling and
cohesion in object-oriented systems. Proc. Int. Symposium on
Applied Corporate Computing, pages 25-27, October, 1995.
[IO] Rudolf K. Keller, Reinhard Schauer, Sebastien Robitaille,
and Patrick Page. Pattem-based reverse engineering of design
components. In Proceedings of the Twenty-First Intemational
Conference on Software Engineering, pages 226-235, Los An-
geles, CA, May 1999. IEEE.

[I 13 Wei Li and Sallie Henry. Object-oriented metrics that pre-
dict maintainability. In Journal of Systems and Sofhoare, 23: 11 1-
122, February, 1993.
[12lTakeFive GmbH, Salzburg, Austria. SNIFF+ Documentation
Set, 1999. Available online at: <http://www.takefive.com>.
[13 J Andre Weinand, Erich Gamma, and Rudolf Marty. Design
and implementation of ET++, a seamless object-oriented appli-
cation framework. In Structured Programming, 1 O(2): 63-87,
April-June, 1989.
[141 Xforms Library. Graphical user interface for X. Documen-
tation Set, 1997. Available online at
<http:/ibragg.phys.uwm.edu/xfom~.
[I51 Edward Yourdon and Lany L. Constantine. Structured
Design. Prentice Hall, Englewood Cliffs, N.J., 1979.

Appendix A: Change impact results for the three test systems

Class derivation chan

* Note that the impact values are calculated as averages (Section3.2), and hence a median need not to be an integer.

45

http://www.takefive.com

Appendix 6: Metrics

Std. Dev.
Minimum

Maximum
Mean
Median

Std. Dev.

results for the three test systems

0.31 352.81
0 0

1 1 I706
0.56 145.73
0.61 10

0.3 1 695.72

I System

Change

1 LCC I LCOM I

System LCC LCOM

Xforms

83 classes

584 classes

+ System-B

1226 classes L

Maximum

Median 0.69

Std. Dev. 0.27 25.40
Minimum 0 0

Maximum

Median
89.07

Appendix C: Correlation coefficients for the three test systems

I XForms I -0.44 I 0.09 I I I Method scope change
from public to protected

Class derivation change
from public to protected

S stem-B

ET++
XForms -0.52

S stem-B -0.01 0.05
Addition of abstract XForms -0.39 -0.01

6. class in class inheri- ET++ I 0.03 I 0.34
tance structure System-B I -0.07 I 0.35

’ There is only one class in the test set.

46

