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In this paper, we consider RSA with N = pq, where p,q are of same bit size, i.e., q < p <

2q. We study the weaknesses of RSA when multiple encryption and decryption exponents
are considered with same RSA modulus N . A decade back, Howgrave-Graham and Seifert
(CQRE 1999) studied this problem in detail and presented the bounds on the decryption
exponents for which RSA is weak. For the case of two decryption exponents, the bound
was N0.357. We have exploited a different lattice based technique to show that RSA is
weak beyond this bound. Our analysis provides improved results and it shows that for two
exponents, RSA is weak when the RSA decryption exponents are less than N0.416. Moreover,
we get further improvement in the bound when some of the most significant bits (MSBs)
of the decryption exponents are same (but unknown).

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

One of the most popular cryptosystems in the history
of cryptology, the public key algorithm RSA [11], can be
described briefly as follows:

• primes p,q, with q < p < 2q;
• N = pq, φ(N) = (p − 1)(q − 1);
• e,d are such that ed = 1 + kφ(N), k � 1;
• N, e are publicly available and the plaintext M is en-

crypted as C = Me mod N;
• the secret key d is required to decrypt the ciphertext

as M = Cd mod N .

The study of RSA is one of the most attractive areas in
cryptology research as evident from many excellent works
(one may see [1,7,10] and the references therein for de-
tailed information).

Wiener [12] showed that when d < 1
3 N

1
4 then N can

be factored easily. Later, Boneh and Durfee [2] increased
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this bound up to d < N0.292. Thus use of smaller d is in
general not recommendable. In [6], the authors presented
state-of-the-art results when more than one decryption ex-
ponents are available for a single RSA modulus N . It has
been shown that in the presence of two decryption expo-
nents (d1,d2), N can be factored in polynomial time when

d1,d2 < N
5

14 . In the presence of three decryption expo-

nents the bound has been improved to N
2
5 . In asymptotic

sense, it has been shown in [6] that when large num-
ber of decryption exponents are available, then the upper
bound of decryption exponents for which RSA is weak,
approaches to N . However, in such a case, the algorithm
of [6] becomes exponential in the number of decryption
exponents.

In this paper, we exploit a different lattice based tech-

nique and improve the bound (i.e., N
5

14 ) of [6] significantly
for the case of two decryption exponents; we show that
the upper bound of the decryption exponents, for which
RSA is weak, is N0.416. One may note that our bound
considering two decryption exponents is better than that

achieved (i.e., N
2
5 ) in [6] exploiting three decryption expo-

nents too. Our result has another component that it takes
care of the case when some of the most significant bits
(MSBs) of the decryption exponents are same (but un-
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known). This implicit information increases the bound of
decryption exponents further. We also present experimen-
tal results to show the improvements over the work of [6].
Following the idea of [8], we present a technique for which
one needs to construct certain polynomials based on the
number of available encryption exponents. The construc-
tion of these polynomials is quite tedious beyond two de-
cryption exponents and we note that this method does not
provide encouraging results for three or more decryption
exponents.

As explained in the introduction of [6], we also agree
that studying this kind of cryptanalysis may not have di-
rect impact to RSA used in practice. However, there are
few issues for which this kind of problems is interesting.

• This shows how one can find further weaknesses of
RSA with additional public information – in this case
more than one encryption exponent.

• Moreover, this shows how one can extend the ideas
of [12,2], where a single encryption exponent is con-
sidered, to more than one exponent.

2. RSA cryptanalysis in the presence of two decryption
exponents

Before proceeding further, the reader is referred to
[3,4,8,5] and the references therein for details of lattice
based techniques in this area and in particular to [8] for
the strategy we follow. In this regard, we like to point
out that the polynomial, that we use in Theorem 1, has
not been studied earlier following the technique of [8] and
one may note that these polynomials are not covered in [7,
Table 3.2, Section 3.4] too. Further, we like to state the
following assumption, which we find true for the experi-
ments we have performed. We discuss it in more details
after the technical results.

Assumption 1. Consider a set of polynomials { f1, f2, . . . , f i}
on n variables, i � n, having the roots over integers of the form
(x1,0, x2,0, . . . , xn,0). Then we will be able to collect the roots ef-
ficiently by calculating the resultants of these polynomials. One
may also assume that the roots can be recovered by using the
Gröbner basis computation.

Now we present the result when two encryption expo-
nents are available.

Theorem 1. Let (e1, e2) be two RSA encryption exponents with
common modulus N. Suppose d1,d2 are the corresponding de-
cryption exponents. Let d1,d2 < Nδ and |d1 − d2| < Nβ . Then,
under Assumption 1, one can factor N in poly(log N) time when

1

12
β + 1

6
δ − 5

48
< 0.

Proof. We have

e1d1 = 1 + k1(N + r), (1)

and

e2d2 = 1 + k2(N + r), (2)
where r = −p − q + 1. Multiplying the first equation by e2
and the second one by e1 and then subtracting them, we
get

e1e2(d1 − d2) = (e2 − e1) + (N + r)(k1e2 − k2e1). (3)

We want to find the solutions d1 − d2, r,k1,k2 of the poly-
nomial

f (x1, x2, x3, x4)

= e1e2x1 − (e2 − e1) − (N + x2)(e2x3 − e1x4)

= e1e2x1 − (e2 − e1) − Ne2x3 + Ne1x4 − e2x2x3

+ e1x2x4.

It is given that |d1 − d2| < Nβ , and also we have |r| < (1 +√
2 )N

1
2 , k1 < Nδ , k2 < Nδ . Let X1 = Nβ, X2 = N

1
2 , X3 =

Nδ, X4 = Nδ . Then X1, X2, X3, X4 are the upper bounds of
d1 − d2, r,k1,k2 neglecting the constant terms.

In the strategy of [8, p. 273], the set S is the set of all
monomials of f m for a given positive integer m.

The set M is defined as the set of all monomials that
appear in xi1

1 xi2
2 xi3

3 xi4
4 f (x1, x2, x3, x4), with xi1

1 xi2
2 xi3

3 xi4
4 ∈ S .

So, in this case, S and M are

S =
⋃{

xi1
1 xi2

2 xi3
3 xi4

4 : xi1
1 xi2

2 xi3
3 xi4

4 is a monomial of f m}
,

M = {
monomials of xi1

1 xi2
2 xi3

3 xi4
4 f : xi1

1 xi2
2 xi3

3 xi4
4 ∈ S

}
.

It follows that,

xi1
1 xi2

2 xi3
3 xi4

4 ∈ S ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i1 = 0, . . . ,m,

i3 = 0, . . . ,m − i1,

i4 = 0, . . . ,m − i1 − i3,

i2 = 0, . . . , i3 + i4,

and

xi1
1 xi2

2 xi3
3 xi4

4 ∈ M ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i1 = 0, . . . ,m + 1,

i3 = 0, . . . ,m + 1 − i1,

i4 = 0, . . . ,m + 1 − i1 − i3,

i2 = 0, . . . , i3 + i4.

Apart from f , we need to find at least three more poly-
nomials f0, f1, f2 that share the same root (d1 − d2, r,k1,

k2) over the integers. From [8], we know that these poly-
nomials can be found by LLL [9] algorithm in poly (log N)

time if X s1
1 X s2

2 X s3
3 X s4

4 < W s for s j = ∑
x

i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S

i j ,

where j = 1, . . . ,4 and s = |S|, W = ‖ f (x1 X1, x2 X2, x3 X3,

x4 X4)‖∞ � Ne2 X3 ≈ N2+δ (assuming e2 is of full bit-size).
One can check that

s1 = 1

12
m4 + 2

3
m3 + 23

12
m2 + 7

3
m + 1,

s2 = s3 = s4 = 1

8
m4 + 13

12
m3 + 27

8
m2 + 53

12
m + 2, and

s = 1

12
m4 + 2

3
m3 + 23

12
m2 + 7

3
m + 1.

For a given integer m, from our definition of S and M
and neglecting the lower order terms we have the required
condition
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Table 1
Comparison of theoretical and experimental results. By |N|, we mean the
bit size of N and so on.

|N| |di |
Theory [6] Expt. [6] Our Theorem 1 Our expt.

500 178 178 208 192
700 250 249 291 267

1000 357 – 416 383

X
1

12
1 (X2 X3 X4)

1
8 < W

1
12 .

Substituting the values of X1, X2, X3, X4 and lower bound
of W in this inequality, we get 1

12 β + 1
4 δ + 1

16 < 1
12 (2 + δ).

Thus, we arrive at the condition ( 1
12 β + 1

6 δ − 5
48 ) < 0.

Under this condition, we have four polynomials f , f0,

f1, f2 that share the same root (d1 − d2, r,k1,k2) over the
integers. Then under Assumption 1, one can find the root
and thus RSA can be broken efficiently. �
Corollary 1. Let (e1, e2) be two RSA encryption exponents with
the common modulus N. Suppose d1,d2 are the corresponding
decryption exponents. Then, under Assumption 1, one can factor
N in poly(log N) time when d1,d2 < N0.416 .

Proof. The proof follows from Theorem 1, putting β = δ,
i.e., when no information is assumed regarding the equal-
ity of MSBs in d1,d2. �

We like to point out that the result of Corollary 1 ex-
tends the upper bound on d1,d2 which is N0.416 than the
bound N0.357 presented in [6, Section 3.2].

Now let us present our experimental results to show
how it improves that of [6]. As the lattice used in [6] are
of small dimensions, the time required was of the order of
a few seconds. However, using our strategy, one requires a
lattice of higher dimensions than that of [6] and thus the
time required are of the order of a few hours. It can be
checked that the dimension of the lattice, i.e., |M| in the
proof of Theorem 1 is 1

12 m4 + m3 + 53
12 m2 + 17

2 m + 6.
We get substantially better experimental results than

[6] for m = 3, i.e., when the lattice dimension is 105. We
have implemented the programs in SAGE 3.1.1 over Linux
Ubuntu 8.04 on a laptop with Dual CORE Intel(R) Pen-
tium(R) D CPU 1.83 GHz, 2 GB RAM and 2 MB Cache.
Due to constraint on lattice dimensions in experiments (we
choose lattice parameters such that the program termi-
nates in reasonable time, e.g., we use m = 3 for experi-
ments), we cannot achieve the theoretical bound that we
present in Theorem 1. However, we list the experimental
results such that they improve the theoretical bound pre-
sented in [6].

As in Theorem 1, we have considered Assumption 1, let
us now clarify how it actually worked. In the proof of The-
orem 1, we considered that we will be able to get at least
three polynomials f0, f1, f2 along with f , that share the
integer root.

In experiments we found more than 4 polynomials
(other than f ) after the LLL algorithm that share the
root, and let us name them f0, f1, f2, f3. Let R( f , f0)

be the resultant of f , f0 and so on. We calculate f4 =
R( f , f0), f5 = R( f , f1), f6 = R( f , f2), f7 = R( f , f3) and
then f8 = R( f4, f5), f9 = R( f6, f7). In all the experiments,
we observe that x4

3x4
4 is the GCD of f8, f9. Then we cal-

culate f10 = R(
f8

x4
3x4

4
,

f9

x4
3x4

4
) and we find that f10 is a poly-

nomial in x4 only which corresponds to k2 in the proof of
Theorem 1. Since d1,d2 < N0.416 and p +q < (1+√

2 )N0.5,
we have p + q < e2. Thus, we can find p + q by calculating
(N + 1 + k−1

2 ) mod e2 and this immediately provides the
factorization of N .

Note that in Theorem 1, we have considered the case
that |d1 − d2| < Nβ . When a few MSBs of d1,d2 are shared
(but not known), then β < δ. As more MSBs are shared,
β decreases and δ increases. As example, a few numerical
values of 〈δ,β〉 following the constraint in Theorem 1 are
〈0.416,0.416〉, 〈0.45,0.35〉 and 〈0.5,0.25〉.

In terms of experimental results, referring to Table 1,
we find that for 500-bit N , the bound we could reach for
d1,d2 is 192 bits for which RSA is weak. With the knowl-
edge that 61 many MSBs of d1,d2 are same (no other
information about the bits), this bound can be extended
to 200 bits.

3. Conclusion

In this paper we have shown that RSA is weak when
two encryption exponents are available for the same mod-
ulus and the (unknown) RSA decryption exponents are less
than N0.416. Further improvements in this bound has been
achieved when some amount of MSBs of the decryption
exponents are same (but unknown).

One may note that the extension of our results to many
decryption exponents is quite tedious to handle and it
needs to be considered in a case by case basis. For the
case of three decryption exponents, one may add one more
equation

e3d3 = 1 + k3(N + r), (4)

with the earlier equations (1), (2). However, we are not
successful to improve the bounds of [6] in this manner. As
an example, considering a similar approach as in (3), one
may try to consider the following:

e1e2(d1 − d2) − (e2 − e1)

= (N + r)(k1e2 − k2e1) and

e1e3(d1 − d3) − (e3 − e1)

= (N + r)(k1e3 − k3e1), where r = −p − q + 1.

However, we have checked that the polynomial, eliminat-
ing (N + r), does not provide improved results over [6].
Thus the effectiveness of extending our strategy, as in the
case of two decryption exponents, does not look promising
for more than two exponents.
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